Lecture 3: Immunoglobulin Structure and Function Chapter 4: Immunology, a short course.

- Antigens: Foreign material that is recognized by the immune system. Type of response (B-cell versus T-cell) depends on the antigen.
- Immunogen: Foreign material that produces an immune response (B- and T-cell activation)
- **Hapten**: Foreign material that is reccognized by the immune system, but can only function as an immunogen when complexed to other immunogens.
- Antibodies, or immunoglobulins:
 - Activated B cells produce soluble antibodies.
 - Unactivated and memory B-cells produce surface, membrane-bound, antibodies.
 - The membrane form is associated with two copies of Ig_{α} and Ig_{β} , giving the B-cell receptor.
 - Antibodies can recognize an extremely diverse set of antigens.
 - A *single* B-cell produces antibodies that are *homogenous* in their specificity. This is one example of **Allelic exclusion** in the immune system. Although two copies of the gene are present (maternal and paternal), only one is used to express the protein.

Historical and Biochemical Evidence for Immunoglobulin structure.

- 1. Electrophoretic separation of serum proteins yields albumin, α , β , γ globulin, in that order. γ globulin levels were increased in immunized animals and could be decreased by incubation with specific antigens.
- 2. papain (protease) cut γ -globulin into two identical Fab fragments (fragment-antigen binding) and Fc (fragment that crystallized).
- 3. pepsin (protease) cut γ -globulin into a single 100 KDa fragment F(ab')₂, consisting of two Fab domains.
- 4. Reduction of disulfide bonds showed the presence of four chains, two light (25 KDa) and two heavy chains (50 KDa).
- 5. Anti-Fab antibodies bound to both heavy and light chains
- 6. Anti-Fc antibodies bound only to heavy chains.

These data lead to proposal of a Y-shaped structure by Porter in **1962**, many years before the 1st crystal structure was known.

Structure and Function of IgG: Prototypical Antibody Structure:

Quaternary Structure:

- 2 Light Chains: V_L domain (110 residues), Constant Domain, C_L (110 residues). Two forms of light chains, λ (lambda) and κ (kappa).
- 2 Heavy Chains: IgG V_H domain has $C_H 1$, $C_H 2$, $C_H 3$.

Five different forms: γ , α , μ , δ , ϵ .

- Class of an immunoglobulin is defined by its type of heavy chain: IgG(γ), IgA(α), IgM(μ), IgD(δ), IgE(ε). These are termed Isotypes.
- V domains pair in heavy and light Chains, as do C_L and C_H1.
- Variable region recognizes antigen
- Constant region has effector functions.

- C_L and C_H1 linked by disulfide bond
- C_{H2} in each heavy chain linked by disulfide bond.
- Carbohydrate linked to C_H2 domain.
- Region between CH1 and CH2 is non-globular and composed of Cys and Pro, this **hinge** region is thought to provide conformational flexibility for the two Fab domains.
- **Membrane bound** forms contain a transmembrane segment followed by a very short cytosolic segment. This is generated by alternative splicing/polyadenylation of the mRNA.

Tertiary Structure:

Each domain (e.g. V_L, C_H3) consists of 7 stranded (4+3) β-sandwich, crosslinked by a disulfide bond. This structure is termed the Immunoglobulin fold and is found in many proteins that participate in the immune response.

Primary Structure:

- Constant regions have the same sequence within a class of antibody. Haplotype differences can occur, but the human population is not very polymorphic.
- Variable regions differ from antibody-to-antibody, generating *diversity*.
- Extensive sequence variability found in three segments of both V_L and V_H. These are *called hyper-variable regions*. Since these regions are also primarily involved with binding antigen they are also referred to a *complementary-determining-regions* (*CDR*).

Antibody-Antigen Interactions:

- Each pair of associated V_L and V_H domains can bind antigen. Therefore IgG can bind 2 antigens.
- Usually all 6 (3L and 3H) CDRs are used.

Diversity: Antibody diversity is generated by:

- Multiple genes encoding both VL and VH
- Segmental joining of additional DNA segments to form the mature V_L and V_H genes
- Addition of nucleotide bases during the joining event
- Random association of Heavy and light chains (facilitated by the V_C, C_H1 disulfide bond)
- Somatic (body) mutation of mature heavy and light chain genes after antigen stimulation generate higher affinity antibodies.

Antibody-Hapten Interactions: (e.g. dinitrophenyl, phosphocholine, cocaine, PCP, human chorionic gonadotrophin -HCG)

- Antibodies generated by attaching hapten to a carrier protein to make it immunogenic
- Resultant antibodies can recognize hapten with useful specificity and affinity.
- Interaction between antibody and immunoglobulin generally involves a deep binding pocked, utilizing 4-6 of the CDRs.
- Applications of Antibody-Hapten Interactions:
 - 1. Antibodies against HCG form the basis of home pregnancy tests.
 - 2. Antibodies against cocaine are used for drug screening and detoxification.
 - 3. Antibodies against PCP are used for detoxification.

Antibody-Antigen Interations (e.g. prostate specific antigen, PSA):

- Antigen is immunogenic.
- Antibodies generally of very high affinity (nM dissociation constants).
- **Epitope**: region on the antigen that contacts the antibody.

- Interactions between antibody and antigen:
 - 1. Utilizes all 6 CDRs.
 - 2. Involves extensive surface contacts between relatively flat surfaces on both the antibody and the immunoglobulin
 - 3. Mediated by ion-pairing, hydrogen bonds (often mediated by water), van der Waals interactions, hydrophobic interactions.
 - 4. Usually involve discontinuous segments of the polypeptide chain.
 - 5. Often highly sensitive to changing one or more residues within the epitope, leading to a distinction between structural and energetic residues within the epitope.

Property - Isotype	IgG1	IgG2	IgG3	IgG4	IgA1/ A2	IgM	IgE	IgD
Structural aspects	Hinge Variant	Hinge Variant	Hinge Variant	Hinge Variant	Forms dimers with J chain	Hinge replaced by C _µ 2	Hinge replaced by Cɛ2	Has Hinge
Polymeric	No	No	No	No	Dimer- tetramer (S-S bond to J chain)	Pentameric (S-S bonds to adjacent IgM and to J chain)*	No	No
Serum 1/2 life	23	23	8	23	6	5	2.5	3
Activates Complement	+	+/-	++	-	-	+++	-	-
Crosses Placenta	+	+/-	+	+	-	-	-	-
Binds to Fc receptors on macrophages	++	+/-	++	+	-	+	-	-
Present in Secreations/Milk	-	-	-	-	++ (15g/day)	+	-	-
Histamine release from Mast Cells	-	-	-	-	-	-	+	-
Present in Colostrum	+	+	+	+	-	-	-	-

Structural Comparisons of Classes of Immunoglobulins:

Immunoglobulins and Development:

- Fetal synthesis of IgM and IgA begin during the 5th month.
- Immature B-cells express IgM on surface. IgM is monomeric on surface.
- Mature B-cells express IgM and IgD on surface.
- Activated B-cells switch class to IgM+IgD, IgA, IgE, IgG, or IgA & IgM, IgE & IgM, IgG & IgM, largely membrane bound.
- Plasma cells can secreate IgM, IgG, IgA, IgE (all but IgD)
- Memory Cells display IgG, IgA, IgE, alone or combined with IgM. These are usually higher affinity than the orginal B-cell clone because of affinity maturation via somatic cell mutation.