[image: image1.wmf]Item Found

First Notice

Sent

Owner

Found After

First Notice

No Owner

Found

Item Returned

Second Notice

Sent

Owner Found

After Second

Notice

No Owner

Found

Item Returned

Item

Disposed

90-728 Management Information Systems

Fall 1999
The Ten Things You Need to Know about Relational Database Design
I. Prototype Entities—how to store an organization’s data

Transaction: an event entity in which goods or services are provided, often in exchange

for payment

Economic Exchange Entity Sets: for transactions such as for the sale of products, but
also useful for non-market transactions like the safety inspection of motor vehicles

SUPPLIER: physical entity set;

e.g., Vehicle Inspection Station, Salesperson

CONSUMER: physical entity set;

e.g., Vehicle, Customer

PRODUCT CODE: conceptual entity set;

e.g., Inspection Outcome (pass or fail), Product

TRANSACTION: event entity set

relating SUPPLIER, CONSUMER, and PRODUCT

and including a date/time attribute;

TRANSACTION PRODUCT LINK: physical entity set

Relating TRANSACTION and PRODUCT

(Also called TRANSACTION DETAIL)

****Each entity set gets its own table in a relational database****
There are only two prototypes for transactions:

1. Multiple products appear in columns of the TRANSACTION table - and there is no TRANSACTION PRODUCT LINK table – examples are a car inspection or a health department inspection consisting of a fixed checklist of pass/fail items.

2. Multiple products appear in rows of a TRANSACTION PRODUCT LINK table - and both the TRANSACTION and TRANSACTION PRODUCT LINK tables appear – an example is the retail customer paying for a shopping cart full of selected products.

II. Products-in-Columns Transactions

The State Bureau of Motor Vehicles maintains a database on all vehicle inspection garages and inspections performed in the state. An inspection always covers a fixed number of check list items; e.g, brakes, lights, and steering.
Illustrative Data:

GARAGE VEHICLE

 Garage Garage

 ID Name VIN Make Year

┌───────┬─────────────────┐ ┌──────────────┬───────┬──────┐

│ 12A4 │ Andy's Sunoco │ │ 88713827 │ Ford │ 1990 │

│ 339B │ Sally's BP │ │ 23878110 │ Dodge │ 1976 │

│ ... │ ... │ │ 82736618 │ Nissan│ 1994 │

└───────┴─────────────────┘ │ ... │ ... │ ... │

 └──────────────┴───────┴──────┘

INSPECTION

Inspection Inspection VIN Garage Brakes Lights Steer Number Date ID ing

┌───────────┬───────────┬───────────┬────────┬──────┬─────┬─────┐

│ 37582 │ 8/15/95 │23878110 │ 12A4 │ P │ P │ P │

│ 44677 │ 8/06/96 │23878110 │ 12A4 │ P │ P │ P │

│ 44678 │ 8/08/97 │82736618 │ 12A4 │ F │ P │ P │

│ ... │ ... │ ... │ ... │... │ ... │ ... │

└───────────┴───────────┴───────────┴────────┴──────┴─────┴─────┘

Relational Database Model:

GARAGE (Garage ID, Garage Name, ...)

VEHICLE (VIN, Make, Year, ...)

INSPECTION (Inspection Number, VIN@, Garage ID@, Inspection Date,

 Brakes, Lights, Steering)

Entity-Relationship (ER) Model:

 ┌──────────┐1 M┌────────────┐ M 1┌──────────┐

 │ VEHICLE ├─────────┤ INSPECTION ├──────────┤ GARAGE │

 └──────────┘ └────────────┘ └──────────┘

III.
Classical Retail Transactions

ABC Company retails Widgets A, B, and C directly to customers. A given transaction has a single salesperson and customer, and one or more products (A, B, and/or C). Here products or services are in rows.
Entity-Relationship Models:
 ┌──────────────┐

 │ SALESPERSON │

 └──────┬───────┘

 1│

 │

 M│

 ┌────────────┐M M┌──────┴───────┐M 1┌───────────┐

 │PRODUCT CODE├──────────┤ TRANSACTION ├──────────┤ CUSTOMER │

 └────────────┘ └──────────────┘ └───────────┘

Unfortunately, PRODUCT CODE and TRANSACTION have a many-to-many relationship. Many-to-many relationships cannot be directly implemented in a relational database. Hence we introduce a new entity set, called a linking (or bridge or intersection or composite) entity set – TPLINK (short for TRANSACTION PRODUCT LINK)
 ┌──────────────┐

 │ SALESPERSON │

 └──────┬───────┘

 1│

 │

 M│

 ┌──────┴───────┐M 1┌───────────┐

 │ TRANSACTION ├──────────┤ CUSTOMER │

 └──────┬───────┘ └───────────┘

 1│

 │

 M│

 ┌────────────┐1 M┌──────┴────────┐

 │PRODUCT CODE├──────────┤ TPLINK │

 └────────────┘ └───────────────┘

Relational Database Model:

SALESPERSON (Employee ID, Employee First Name, Employee Last Name, ...)

CUSTOMER (Customer ID, Customer First Name, Customer Last Name, ...)

PRODUCT CODE (Product Code, Product Description)

TRANSACTION (Transaction ID, Transaction Date, Customer ID@, Employee ID@)

TPLINK (Transaction ID@, Product@ Quantity, Price)

Illustrative Data:

 SALESPERSON CUSTOMER
Employee Employee Employee Customer Customer Customer

ID First Last ID First Last Name Name Name Name

┌────────┬─────────┬────────┐ ┌────────┬─────────┬──────────┐

│ 10 │ Fred │ Flinn │ │ 121 │ Walt │ Wilson │

│ 12 │ Bill │ Smith │ │ 145 │ Carol │ King │

│ 14 │ Billy │ Smith │ │ 166 │ Mary │ Wilson │

└────────┴─────────┴────────┘ │ 223 │ Larry │ Jackson │

 │ ... │ ... │ ... │

 └────────┴─────────┴──────────┘

PRODUCT CODE

Product Product TRANSACTION
Code Description

┌───────┬───────────────────┐ Transaction Transaction Customer Employee

│ A │ Super Widget │ ID Date ID ID

│ B │ Super Widget Plus │ ┌────────────┬────────────┬─────────┬─────────┐

│ C │ Ultra Widget │ │ 30012 │ 8/13/97 │ 166 │ 14 │

└───────┴───────────────────┘ │ 30013 │ 8/13/97 │ 223 │ 10 │

 │ 30014 │ 8/14/97 │ 166 │ 14 │

 │ ... │ ... │ ... │ ... │

 └────────────┴────────────┴─────────┴─────────┘

TPLINK

 Transaction Product Quantity Price

 ID Code

┌────────────┬────────┬──────────┬─────────┐

│ 30012 │ A │ 12 │ 32.95 │

│ 30012 │ C │ 24 │ 99.95 │

│ 30013 │ A │ 100 │ 32.95 │ Here’s where the products

│ 30013 │ B │ 150 │ 59.75 │ are in rows.

│ 30013 │ C │ 25 │ 99.95 │

│ 30014 │ C │ 12 │ 99.95 │

│ ... │ ... │ ... │ ... │

└────────────┴────────┴──────────┴─────────┘

IV. Codes

Codes enforce uniformity in data entry and ensure 100% data retrieval. For example, a code for hair color may include BLACK, BROWN, BLONDE, RED, GRAY, etc. Without codes, the data entry person could input a variety of spellings; e.g., BR, BR., BRN, BRN., BRWN, BRWN., BROWN, etc. Then if you wanted to retrieve all persons with brown hair, you’d have to search for all spellings! Alternatively, if the data entry person is forced to use the code BROWN, then only one spelling has to be searched.

A second advantage of codes is that they provide structure to data entry: the data entry does not have to invent values, but just has to look up the right code (on the data entry screen).

Codes have several characteristics:

· A code is a discrete mathematical variable, taking on a finite number of values that are mutually exclusive and exhaustive. Sometimes we add the code value “OTHER” to make codes exhaustive.

· Often a code is conceptual, as opposed to physical. For example, type of street (avenue, boulevard, etc.) is not any physical thing, but just a classification.

· Codes are mostly static, and do not change very often.

· Used as non-key attributes of entities for classification

There are three styles of code tables:

· Self-documenting – a single column table with values that have self-evident meaning. Examples for hair color are BROWN, BLACK, RED, etc.

· Cryptic codes and descriptions – a two column code table. One column has the code, like BR and the second column has the meaning like BROWN.

· All codes in one table – has two to three columns, depending on whether or not self-documenting or cryptic codes are used. The first column is the type of code, like HAIR COLOR or automobile MAKE. Then the remaining column or columns have the usual codes.

[image: image2.png]ttem Description
status Code
Status Date

[Cuer Name

V. Multiple Linking Tables
Suppose that we need to build a database for the operating room of a small hospital. Following

are assumptions (“business rules”) on entities and relationships:

• An operation has a single patient but many doctors, each with a different role (e.g., chief surgeon, resident, anesthesiologist, etc.).

• A patient may have more than one procedures performed in a single operation (e.g., gall stones removal and tumor removal).

• A patient may have several post-operative drugs.

 ┌─────────┐ ┌───────────┐

 │ROLE CODE│ │ PATIENT │

 └───┬─────┘ └────┬──────┘

 │1 │1

 │M │M

 ┌───┴────┐M 1┌────┴──────┐1 M┌─────────┐

 │ ODLINK ├─────────┤ OPERATION ├────────┤OPDLINK │

 └───┬────┘ └────┬──────┘ └───┬─────┘

 │M │1 │M

 │1 │M │1

 ┌───┴────┐ ┌────┴──────┐ ┌───┴─────┐

 │ DOCTOR │ │ OPLINK │ │POST-OP │

 └────────┘ └────┬──────┘ │DRUG CODE│

 │M └─────────┘

 │1

 ┌────┴──────────┐

 │PROCEDURE CODE │

 └───────────────┘

ROLE CODE (Role Code)

PATIENT (Patient#, . . .)

DOCTOR (Doctor#, . . .)

PROCEDURE CODE (Procedure Code, Procedure Name)

POST-OP DRUG CODE (Drug Code, Drug Name)

OPERATION (Operation#, Patient#@, Date, Start Time, . . .) Patient# not a PK
ODLINK (Operation#@, Doctor#@, Role Code@)

OPLINK (Operation#@, Procedure Code@)

OPDLINK (Operation#@, Drug Code@)

VI. Generalization Hierarchy

Suppose that besides brakes, lights, and steering:

· trucks must also have suspensions and frames inspected and

· motorcycles must also have sprockets and chains inspected.

Result of just adding more columns to INSPECTION:

A generalization hierarchy provides an more efficient use of space:
 ┌─────────────┐

 │VEHICLE CODE │

 └──────┬──────┘

 │1

 │

 │M

 ┌────┴─────┐1 M┌────────────┐ M 1┌──────────┐

 │ VEHICLE ├─────────┤ INSPECTION ├──────────┤ GARAGE │

 └──────────┘ └─┬────────┬─┘ └──────────┘ 1│ │1

 ├───G────┤

 1┌─────┘ └────┐1

 ┌────────┴───────┐ ┌───────┴─────────────┐

 │TRUCK INSPECTION│ │MOTORCYCLE INSPECTION│

 └────────────────┘ └─────────────────────┘

GARAGE (Garage ID, Garage Name, ...)

VEHICLE CODE (Vehicle Type)

VEHICLE (VIN, Make, Year, Vehicle Type@, ...)

 INSPECTION (Inspection Number, Inspection Date,

 VIN@, Garage ID@, Brakes, Lights, Steering)

TRUCK INSPECTION (Inspection Number@, Suspension, Frame)

MOTORCYCLE INSPECTION (Inspection Number@, Sprocket, Chain)

VII. Weak Entity Sets

Suppose that the police have a car hot line, 255-CARS, so that citizens can report suspicious cars; e.g., cars involved in dealing drugs, used by gang members, used by gun dealers, perhaps stolen, etc.

Using principles that we know now, we might design the following database:

M
M
M
1

1

1

CALLER (SSN, First Name, Last Name, Phone Number, . . .)

VEHICLE (VIN, Plate Number, State Code, Make And Model Code, Year,

 Color Code, . . .)

CALL (Call#, Date, Time, Address, SSN@, VIN@, . . .)

CVLINK (Call#@, VIN@)

A more realistic model is for cases where most callers are not willing to identify themselves and there is only sketchy data on vehicles. CALLER and VEHICLE become weak entities, no longer capable of having their own primary keys. This means; e.g., if a vehicle is reported by three different callers, the vehicle is included redundantly three times. Also, every time a caller makes a call, she/he is added to the database again.

M
1

1

1

CALLER (Call#@, SSN, First Name, Last Name, Phone Number, . . .)

VEHICLE (Call#@, Vehicle#, VIN, Plate Number, State Code, Make And Model Code,

 Year, Color Code, . . .)

CALL (Call#, Date, Time, Address, SSN@, VIN@, . . .)

VIII. Management of Service Delivery Life Cycles

The classic economic exchange transaction is a single event: payment for provision of goods. In contrast, service delivery often processes cases through a life cycle of multiple events, from “birth” to “death.” Below is a decision tree for a lost and found system and corresponding database design. Note that most data input to the LIFE CYCLE table can be as by-products of other events, such as posting a notice of a found item.

IX. User Views of a Database – how to use data stored in tables to produce information

Relational database tables, such as discussed above, are the building blocks for information outputs that users want. A user view (also called a subschema) is a query – a new, temporary table built (joined) by matching foreign key with primary key values. For example, below is the view joining TRANSACTION and CUSTOMER.

 TRANSCUST VIEW
 Transaction Transaction Employee Customer Customer Customer

 ID Date ID ID First Last

 Name Name

 ┌────────────┬────────────┬─────────┬─────────┬─────────┬─────────┐

 │ 30012 │ 8/13/97 │ 14 │ 166 │ Mary │ Wilson │

 │ 30013 │ 8/13/97 │ 10 │ 223 │ Larry │ Jackson │

 │ 30014 │ 8/14/97 │ 14 │ 166 │ Mary │ Wilson │

 │ ... │ ... │ ... │ ... │ ... │ ... │

 └────────────┴────────────┴─────────┴─────────┴─────────┴─────────┘

X. Steps for Creating a “Starter Kit of User Views”

(i)
Choose an entity set (table) that has not yet been processed. Call the chosen table the "row driver" of the view. (The view will have the same rows and primary key as this table, but may potentially be augmented with additional columns in the view.)

(ii)
Include all tables into the view that fall along relationship paths starting from the row driver that have a cardinality of 1 pointing away from the row driver.

(iii)
Return to step (i) until all tables have been processed.

 ┌──────────────┐

 │ SALESPERSON │

 └──────┬───────┘

 1│

 │

 M│

 ┌──────┴───────┐M 1┌───────────┐

 │ TRANSACTION ├──────────┤ CUSTOMER │

 └──────┬───────┘ └───────────┘

 1│

 │

 M│

 ┌────────────┐1 M┌──────┴───────┐

 │PRODUCT CODE├──────────┤ TPLINK │

 └────────────┘ └──────────────┘

SALESPERSON, CUSTOMER, and PRODUCT CODE have only the trivial views of
themselves

TRANSACTION has the view

TRANS VIEW = TRANSACTION + SALESPERSON + CUSTOMER

TPLINK has the view consisting of every table

TOTAL VIEW = TPLINK + TRANSACTION + CUSTOMER +

SALESPERSON
Code Type�
Code�
�
Hair Color�
Brown�
�
Hair Color�
Black�
�
Hair Color�
Red�
�
Hair Color�
Blonde�
�
Hair Color�
Gray�
�
Make�
Dodge�
�
Make�
Ford�
�
Make�
Nissan�
�
Make�
Chevrolet�
�

Hair Color

Code�
Hair Color Code

Description�
�
Br�
Brown�
�
Bl�
Black�
�
Rd�
Red�
�
Bd�
Blonde�
�
Gr�
Gray�
�

Hair Color

Code�
�
Brown�
�
Black�
�
Red�
�
Blonde�
�
Gray�
�

Inspection Truck Motorcycle

 Inspect. Inspect.

DATA

NO DATA

CVLINK

CALLER

VEHICLE

CALL

VEHICLE

CALL

CALLER

� EMBED Word.Picture.8 ���

�

Event Code�
�
First Notice Sent�
�
Item Disposed�
�
Item Found�
�
Owner Found After First Notice�
�
Owner Found After Second Notice�
�
Second Notice Sent�
�
Item Returned�
�

Item Number�
Item Descrip DesDescription�
Status Code�
Status Date�
�
133�
Brown Purse�
Item Disposed�
9/5/97�
�
134�
Spotted Dog�
Owner Found After First Notice�
7/25/97�
�
135�
Felt Hat�
Owner Found After First Notice�
8/12/97�
�

ITEM

Item Number�
Item Description�
Event Date�
Event Code�
�
133�
Brown Purse�
7/5/97�
Item Found�
�
133�
Brown Purse�
7/5/97�
First Notice Sent�
�
133�
Brown Purse�
8/5/97�
Second Notice Sent�
�
133�
Brown Purse�
9/5/97�
No Owner Found�
�
133�
Brown Purse�
9/5/97�
Item Disposed�
�
134�
Spotted Dog�
7/21/97�
Item Found�
�
134�
Spotted Dog�
7/24/97�
First Notice Sent�
�
134�
Spotted Dog�
7/25/97�
Owner Found After First Notice�
�
135�
Felt Hat�
8/1/97�
Item Found�
�
135�
Felt Hat�
8/1/97�
First Notice Sent�
�
135�
Felt Hat�
8/12/97�
Owner Found After First Notice�
�

LIFE

CYCLE

┌─────────────┐M 1┌───────────┐

│ TRANSACTION├──────────┤ CUSTOMER │

└─────────────┘ └───────────┘

 CUSTOMER

 Customer Customer Customer

 ID First Last

 Name Name

┌────────┬─────────┬──────────┐

│ 121 │ Walt │ Wilson │

│ 145 │ Carol │ King │

│ 166 │ Mary │ Wilson │

│ 223 │ Larry │ Jackson │

│ ... │ ... │ ... │

└────────┴─────────┴──────────┘

TRANSACTION

Transaction Transaction Customer Employee

ID Date ID ID

┌────────────┬────────────┬─────────┬─────────┐

│ 30012 │ 8/13/97 │ 166 │ 14 │

│ 30013 │ 8/13/97 │ 223 │ 10 │

│ 30014 │ 8/14/97 │ 166 │ 14 │

│ ... │ ... │ ... │ ... │

└────────────┴────────────┴─────────┴─────────┘

_934627259.doc

Item Found

First Notice

Sent

Owner

Found After

First Notice

No Owner

Found

Item Returned

Second Notice

Sent

Owner Found

After Second

Notice

No Owner

Found

Item Returned

Item Disposed

