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T his study examines innovation tournaments in which an organizer seeks solutions to an innovation-related problem
from a number of agents. Agents exert effort to improve their solutions but face uncertainty about their solution

performance. The organizer is interested in obtaining multiple solutions—agents whose solutions contribute to the orga-
nizer’s utility are called contributors. Motivated by mixed policies observed in practice, where some tournaments are open
and others restrict entry, we study when it is optimal for the organizer to conduct an open tournament or to restrict entry.
Our analysis shows that whether an open tournament is optimal is tied to: (1) the variance of uncertainty as compared to
the impact of effort; (2) the number of contributors, and (3) the skewness of the uncertainty distribution. Our results help
explain mixed policies about restricting entry observed in practice as well as recent empirical and experimental findings.
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1. Introduction

As organizations increasingly look beyond their
boundaries toward outsourcing research and devel-
opment activities, innovation tournaments have
emerged as one popular and cost-effective tool. In an
innovation tournament, an organizer elicits solutions
to a problem from a group of agents, but awards only
the best solutions. One of the key decisions in the
design of an innovation tournament is how many
agents to let in (Boudreau et al. 2011). More agents in
a tournament allow the organizer to tap into a more
diverse set of solutions. However, more agents in a
tournament also affect agents’ incentives to exert
effort toward improving their solutions by reducing
their chances of winning an award. Thus, the orga-
nizer should carefully choose between an open tour-
nament where any agent can freely participate or a
restricted-entry tournament where only a subset of
agents can participate. In this study, we aim to under-
stand why open tournaments are prevalent in practice
and to also provide insights into when open tourna-
ments are undesirable.
We encounter many open innovation tournaments

in practice. For instance, since 2012, Samsung has
organized several open tournaments, called the Sam-
sung Smart App Challenge, soliciting innovative
applications for its online app store. At the crowd-
sourcing platform InnoCentive, organizers run open
ideation and reduction-to-practice (RTP) challenges

that seek innovative ideas and innovative solutions
with working prototypes, respectively. Similar open
tournaments are organized at crowdsourcing plat-
forms Tongal and TopCoder in several categories
such as concept projects and coding challenges. For
instance, in the Arcelik Exploratory Testing Chal-
lenge, agents compete by identifying issues in Arce-
lik’s website (Topcoder 2020). At the opposite end of
the spectrum, there are also quite a few innovation
tournaments with restricted entry. For instance, it is
not uncommon in architectural design tournaments to
restrict the number of participants (e.g., RAIC 2019).
As a starting point of understanding these mixed poli-
cies observed in practice, we focus on two dimensions
in which innovation tournaments differ: the uncer-
tainty faced by agents that participate in a tournament
and the estimated number of solutions utilized by the
tournament organizer.
In innovation tournaments, agents face uncertainty

about the quality of their solution due to the stochas-
tic nature of the innovation process. This uncertainty
is associated with the specific problem at hand and
has two important properties: variance and skewness.
First, the variance of agents’ uncertainty can differ
across tournaments. For instance, InnoCentive RTP
challenges that seek innovative solutions (e.g., devel-
oping 3D-printable robots for bomb squads) may
entail larger uncertainty than a Topcoder coding chal-
lenge such as the Arcelik Exploratory Testing Chal-
lenge. Second, beyond variance, skewness and tail
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properties of uncertainty distribution also vary across
tournaments. It may be reasonable to expect most
tournaments to feature symmetric (e.g., uniform as
in Mihm and Schlapp 2019 or normal as in Hu and
Wang 2019) or right-skewed (e.g., Gumbel as in Ter-
wiesch and Xu 2008) distributions. Yet, in some tour-
naments, a left-skewed distribution for the solution
uncertainty may be suitable. According to Dahan
and Mendelson (2001), a left-skewed (Weibull-type)
distribution is suitable when there are “predictably
finite bounds on the upside profit potential of a new
product. . . Such might be the case for a product that
serves a small market, upgrades an existing user
base, conforms to a fixed-price contract, or is capac-
ity-constrained” (page 110). For instance, in the
Arcelik Exploratory Testing Challenge, the upside
potential for developed solutions is limited by the
severity of issues a user can encounter in Arcelik’s
website.1

The second dimension in which innovation tourna-
ments differ is the estimated number of solutions that
a tournament organizer will utilize. We refer to agents
whose solutions contribute to the organizer’s utility
as contributors. Some tournaments, given the nature of
the problem at hand, can have only a single contribu-
tor. For instance, this is the case for an architectural
design contest where only a single design will be
adopted. Other tournaments may feature multiple
contributors. For instance, an organizer that runs an
InnoCentive ideation challenge or a Tongal concept
project may utilize or further develop multiple viable
ideas or concepts instead of only the best one. The
Samsung Smart App Challenge sought many useful
applications to contribute to Samsung’s objective of
enriching its app marketplace. Our interview with
Samsung revealed that the organizer of the Samsung
Smart App Challenge 2013 estimated that 150 apps
(among hundreds of submissions) could be uploaded
to Samsung App marketplace. While the organizer in
some tournaments may end up utilizing a different
number of solutions than estimated, in some tourna-
ments, the number of contributors has to be deter-
mined at the beginning of the tournament and cannot
be changed. For instance, in Tongal concept projects,
organizers often commit to receiving the intellectual
property rights of a fixed number of concepts (see,
e.g., Tongal 2020). Importantly, an organizer designs
its tournament based on the expected number of con-
tributors estimated before the tournament begins
rather than the actual number of solutions used at the
end. It is worth noting that the organizer does not nec-
essarily pay all contributors. For instance, in ideation
challenges, organizers usually have perpetual rights
to use or further develop any submitted idea, but they
award only the best idea(s). Similarly, in the Samsung
Smart App Challenge 2013, although practitioners

estimated 150 contributors, only the best few apps
were given awards.
Our study develops a model that is sufficiently gen-

eral to capture the two key features of tournaments
described above. In particular, we model agents’
uncertainty with a general class of distributions that
have log-concave or increasing density functions
(e.g., normal, uniform, exponential, Weibull, and
Gumbel distributions). This allows us to characterize
the impact of variance and skewness in agents’
uncertainty on the design of an optimal innovation
tournament. In addition, we assume that the orga-
nizer’s ex-ante utility depends explicitly on the best K
submitted solutions, where K can be any number
between one and the total number of participants. It
turns out that the difference between a tournament
with a single contributor and a tournament with
many contributors plays an important role in a tour-
nament’s design.
Our analysis shows that whether an open tourna-

ment is optimal is closely tied to: (1) the variance of
uncertainty as compared to the impact of effort (in
short, uncertainty-effort ratio); (2) the number of con-
tributors, and (3) the skewness of uncertainty distri-
bution. (Table 1 provides a typology of tournaments
that should be open or feature restricted entry.) First,
we show that an open tournament is optimal if an
innovation problem involves a sufficiently large
uncertainty-effort ratio. The intuition is as follows.
More participants in the tournament can reduce
agents’ incentives to exert effort, yet they can help the
organizer benefit from having a more diverse set of
solutions from participants. For a sufficiently large
uncertainty-effort ratio, the positive impact of having
a diverse set of solutions outweighs the potentially
negative incentive effect. Therefore, an organizer
seeking solutions with a high uncertainty-effort ratio
(e.g., innovative solutions) may benefit from an open
tournament. Our result provides a plausible explana-
tion for why a wide range of innovation tournaments
featuring large uncertainty (e.g., InnoCentive RTP
challenge) are open.
A tournament features a relatively low uncertainty-

effort ratio when it involves low uncertainty (e.g., as

Table 1 Settings Where Open or Restricted-Entry Tournaments are
Optimal

Navy

Low uncertainty-effort ratio
and symmetric or right-
skewed distribution

High uncertainty-effort
ratio or left-skewed

distribution

Small
number of
contributors

Restrict (e.g., architectural
design tournaments)

Open (e.g., InnoCentive
RTP challenges)

Large
number of
contributors

Open (e.g., Samsung Smart
App Challenge)

Open (e.g., Arcelik
Exploratory Testing
Challenge)
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in Arcelik Exploratory Testing Challenge) or the
agents’ effort plays a substantial role in their solution
performance (e.g., app design or architectural design).
For such a tournament, the benefit of having a diverse
set of solutions is not large enough to offset a poten-
tially negative incentive effect. In this case, our results
indicate that there are two cases where an open tour-
nament can still be optimal. The first case is when the
organizer aims to utilize many solutions. For instance,
the Samsung Smart App Challenge has a large num-
ber of estimated contributors and it is an open tourna-
ment. The second case where an open tournament can
be optimal is when more participants encourage
agents to exert more effort. We find that agents can
increase effort with more participants when their
uncertainty features a left-skewed distribution, as
opposed to the prior literature that has argued that
agents always reduce effort with more participants
since increased competition lowers agents’ probabil-
ity of winning an award. In fact, we find that the dri-
ver behind how agents change their effort with more
participants is a marginal change of the winning
probability with additional effort rather than the win-
ning probability itself. As the number of participants
increases, the marginal change of an agent’s winning
probability may increase because additional effort
helps the agent gain an edge against more competi-
tors. Thus, more participants can encourage agents to
exert higher efforts under left-skewed distributions.
This result not only helps explain why some Top-
coder coding challenges with small uncertainty-effort
ratios are open, but also is consistent with observa-
tions in the laboratory experiments conducted by List
et al. (2020).
While explaining the frequent use of open tourna-

ments in practice, our study also shows when it is
optimal to restrict entry. Specifically, restricting entry
is optimal in tournaments with a low uncertainty-ef-
fort ratio, a symmetric or right-skewed distribution,
and a small number of contributors. This result may
offer a plausible explanation for why architectural
design contests often restrict entry. When taken
together, our results can help explain mixed policies
in practice that cannot be explained by the results in
the prior literature. For instance, our results may help
explain why some tournaments with low uncertainty-
effort ratios are open (e.g., Samsung Smart App Chal-
lenge) whereas others choose restricted entry (e.g.,
architectural design contests). Our result also pro-
vides theoretical support for the empirical finding of
Boudreau et al. (2011), which implies that a free-entry
open tournament should be encouraged when prob-
lems are highly uncertain but restricted entry can be
optimal when problems feature low uncertainty.
Previous work has provided mixed answers to

when a tournament should be open. (We review the

prior studies that are concerned with our research
question, while referring readers to Ales et al. (2019)
and Chen et al. (2020) for a comprehensive review of
the literature on tournaments.2) Taylor (1995) and
Fullerton and McAfee (1999) argue that an open tour-
nament is never optimal because more intense compe-
tition hinders agents’ incentives to exert effort.
Terwiesch and Xu (2008) reach the same conclusion
when the organizer aims to maximize the perfor-
mance of the average solution. However, by assuming
that the output uncertainty is sufficiently large, they
conclude that an open tournament is always optimal if
the organizer wants to maximize the performance of
the best solution, because the organizer can benefit
from a more diverse set of solutions.
Our contribution is to sharpen these mixed results

in the prior literature and to help explain mixed poli-
cies in practice by showing when an open tournament
is optimal and when it is not. To achieve this goal, we
consider a general log-concave distribution for the
solution uncertainty instead of a specific distribution
(e.g., Gumbel in Terwiesch and Xu 2008 or uniform in
Mihm and Schlapp 2019) and a general number of
contributors as opposed to focusing on the best solu-
tion (e.g., Mihm and Schlapp 2019, Taylor 1995) or all
submitted solutions (e.g., Green and Stokey 1983,
Kalra and Shi 2001). (Erat and Krishnan (2012) also
consider a case where the organizer is interested in
the best two solutions.) Our general model not only
takes prior models as special cases, but also character-
izes the role of contributors in an organizer’s decision
to hold an open tournament. As the closest study to
ours, Terwiesch and Xu (2008) consider a weighted
combination of the performance of the best solution
and the average performance of all solutions, while
noting that the explicit approach of considering the
best K submitted solutions might be intractable. We
conduct a tractable analysis of the explicit approach,
and show that it leads to qualitatively different
results. Our results show that whether an open tour-
nament is optimal is more subtle than what prior
studies show because it depends on the number of
contributors as well as the variance and skewness of
uncertainty.

2. Model

Consider an innovation tournament in which a tour-
nament organizer elicits solutions to an innovation-re-
lated problem from a set of agents. A tournament
proceeds in the following sequence. By anticipating
the number of solutions to utilize at the end of the
tournament, the organizer announces whether the
tournament is open to anyone who wishes to partici-
pate, and how participants of the tournament will be
compensated. Then agents decide whether to

Ales, Cho, and Körpeoğlu: Innovation Tournaments with Multiple Contributors
1774 Production and Operations Management 30(6), pp. 1772–1784, © 2020 Production and Operations Management Society



participate in the tournament, and if they do, they
exert effort to develop their solutions, and submit
them to the organizer. Finally, the organizer evaluates
the submitted solutions and compensates agents
accordingly. Below, we formalize the model.
Agents. There are N (≥3) agents who can poten-

tially participate in the tournament. Let N ( 2 {2,3,...,
N}) be the number of agents who participate. Each
participating agent i ( 2 {1,2,. . .,N}) develops a solu-
tion to the problem posed by the organizer, and gen-
erates an output yi∈Y⊆∪f�∞,∞g. The output yi
can be interpreted as the quality of a solution or its
monetary benefit to the tournament organizer. The
output yi is determined by two components: (i) agent
i’s effort and (ii) a stochastic output shock. We elabo-
rate on each of these components next.
Each agent can enhance the output by exerting

effort ei∈þ. Effort ei leads to a deterministic
improvement of the agent’s output by rðeiÞ, where r is
a strictly concave, increasing, and twice continuously
differentiable function. An agent who exerts effort ei
incurs cost ψðeiÞ, where ψ is a convex, increasing, and
twice continuously differentiable function of effort
with ψ(0)=0. The cost of effort may represent the mon-
etary investment required to exert effort ei or the disu-
tility that agent i incurs from this effort. For ease of
illustration, we use the following forms for r and ψ in
the main body while extending our results to general
r and ψ throughout the Online Appendix.

ASSUMPTION 1. Suppose that r(e)=γ+θ log (e), and
ψðeÞ¼ ceb for c,θ>0 and b≥1.

The effort function coefficient θ captures the impact
of effort on an agent’s output. The larger the value of
θ, the larger is the impact of a unit effort on output.
The parameter b captures how fast the cost of effort is
increasing, so we interpret it as a measure of difficulty
in improving the output. In Assumption 1, we utilize
the logarithmic effort function r to make our results
comparable with Terwiesch and Xu (2008) who use a
special case of the setting in Assumption 1 where b=1.
The power function form that we use for the cost
function ψ is also common in the literature (e.g.,
Candoğan et al. 2020, Körpeoğlu et al. 2020, Mihm
and Schlapp 2019).
In addition to effort, each agent i’s output is subject

to a stochastic output shock ~ξi due to uncertainty
involved in innovation and evaluation processes. Fol-
lowing the literature, we assume that ~ξi’s are indepen-
dent and identically distributed (i.i.d.) random
variables with E½~ξi� ¼ 0. We consider a general class of
distributions with log-concave or increasing density
functions (e.g., normal, uniform, exponential, logistic,
Weibull, and Gumbel distributions). Thus, the output
shock ~ξi ( 2 Ξ) has a density function h where either

log (h) is concave or h is increasing; a cumulative dis-
tribution H with Ξ=[s,s]. We make the following defi-
nitions related to the output shock ~ξi. Let ~ξ

N

ðjÞ be a
random variable with cumulative distribution HN

ðjÞ
and density hNðjÞ that represents the j-th highest value
among N i.i.d. output shocks. Since ~ξ

N

ðjÞ corresponds to
the (N−j+1)-st order statistic among N random vari-
ables, we have hNðjÞðsÞ¼ N!

ðj�1Þ!ðN� jÞ! 1�HðsÞð Þ j�1HðsÞN�jhðsÞ. To measure the
variance of uncertainty for a general distribution H,
we use the notion of a scale transformation (e.g., Roth-
schild and Stiglitz 1970).

Definition 1. Two distribution functions H ð�Þ and
H(�) differ by a scale transformation if there exists
parameter α such that H ðsÞ¼Hðs=αÞ (with density
h ðsÞ¼ hðs=αÞ=α) for all s 2 Ξ.

The scale transformation of the output shock ~ξi with
scale parameter α preserves the mean of zero while
multiplying its variance by α2. Thus, the variance of
uncertainty is captured by α.
Given agent i ’s effort ei and output shock ~ξi, agent i

’s output is determined as

yðei,~ξiÞ¼ rðeiÞþ~ξi: (1)

The utility of agent i, Uaðei,xiÞ :2
þ !, is defined

over the agent’s effort ei and the monetary compensa-
tion xi that the agent receives from the organizer. The
utility of the agent takes the following form:
Uaðei,xiÞ¼ xi�ψðeiÞ. We refer to the agent who pro-
duces the best output as the winner of the tourna-
ment. As is common in the literature (e.g., Candoğan
et al. 2020, Fullerton and McAfee 1999, Hu and Wang
2019, Körpeoğlu et al. 2018, Taylor 1995, Terwiesch
and Xu 2008), we focus on “winner-takes-all” tourna-
ments in which the organizer gives an award A(>)
only to the winner of the tournament. It turns out that
when the output shock ~ξi follows a log-concave or
increasing density function, the winner-takes-all
award scheme is optimal (Ales et al. 2017). Thus, each
agent i receives xi ¼A if the agent wins the tourna-
ment, or xi ¼ 0 otherwise. In section EC.3 of the Online
Appendix, we extend our results to the case in which
the organizer offers multiple awards.
The Organizer. The organizer’s utility ÛoðY,AÞ is

defined over the output vector Y¼ðy1,y2, . . .,yNÞ and
the award A. We consider the case where the
organizer benefits from K best outputs (where
1≤K≤N), and refer to those agents who produce the K
best outputs as contributors. Formally, we have the
following definition:

Definition 2. Let YðKÞ ¼ fyð1Þ½Y�, . . .,yðKÞ½Y�g where
yðjÞ½Y� represents the j-th highest output in Y - for
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ease of notation, we use yðjÞ in short for any j=1,2,..,
K. The organizer’s utility has K contributors if for all
Y∈YN ,

1. There exists a continuously differentiable func-
tion Uo so that ÛoðY,AÞ¼UoðYðKÞ,AÞ;

2. For all j=1,2,. . .,K, ∂UoðYðKÞ,AÞ
∂yðjÞ

>0.

In section 3, we use the following linear utility func-
tion for the organizer with K contributors:

UoðYðKÞ,AÞ¼E½∑
K

j¼1

yðjÞ��A, 8 Y∈Y: (2)

We consider a more general utility function in sec-
tion EC.2 of the Online Appendix. We note that Ales
et al. (2017) also use a K contributor setup in their
model, while focusing on deriving an optimal award
scheme. That study does not examine when it is opti-
mal to hold an open tournament as we do in this
study. Our model as well as theirs takes K given
exogenously. In practice, the organizer should have
an estimated value of K (e.g., K=150 in Samsung
Smart App Challenge described in section 1) before
conducting a tournament because K affects its optimal
decision on tournament rules. Our model thus allows
us to isolate the impact of K on the organizer’s and
agents’ decisions, while generalizing several prior
studies that assume K=1 or N (see section 1). In sec-
tion 4, we also discuss alternative models in which
the organizer determines K endogenously ex-ante or
ex-post.
The organizer chooses the number of agents who

participate N (where K≤N≤N) and the award A that
maximize its utility. A tournament where the orga-
nizer allows entry of all agents who can potentially
participate (i.e., chooses N=N) is called an open
tournament.
We consider a static model where N agents simulta-

neously participate in the tournament and N is com-
mon knowledge. This modeling approach is common
in the tournament literature and seems suitable for
tournaments at platforms such as InnoCentive for two
reasons. First, our interview with a business develop-
ment manager at InnoCentive reveals that each agent
at platforms is notified by e-mail when a new tourna-
ment is posted, so the number of participants
becomes stable within a short period of time. Thus, it
may be reasonable to assume that all agents partici-
pate at once. Second, at platforms, the number of par-
ticipants N is shared with agents, so agents have a
fairly good idea about N.
The Equilibrium. As is standard in the tournament

literature, we focus on a symmetric pure-strategy
Nash equilibrium. Let e� denote the agent’s

equilibrium effort, and PN½ei,e�� denote the probability
that agent i is the winner of the tournament when
agent i exerts effort ei and all other (N−1) agents exert
the equilibrium effort e�. We can compute this proba-
bility as

PN½ei,e�� ¼
Z
s∈Ξ

Hðsþ rðeiÞ� rðe�ÞÞN�1hðsÞds: (3)

Each agent i’s problem is to choose effort ei that
maximizes the agent’s expected award APN½ei,e�� less
the agent’s cost of exerting effort ei, ψðeiÞ, by solving

max
ei∈þ

A

Z
s∈Ξ

H r eið Þ� rðe�Þþ sð ÞN�1hðsÞds�ψðeiÞ: (4)

In Lemmas EC. 1–3 of the Online Appendix, we
show the existence of a unique symmetric pure-strat-
egy Nash equilibrium effort e� that solves Equation
(4) under specified conditions on the effort function r,
cost function ψ, and output shock ~ξi. Throughout the
study, we assume that at least one of these conditions
is satisfied for all N up to N. Under these conditions,
the agent’s equilibrium effort e� satisfies the following
first-order condition of Equation (4) evaluated at
ei ¼ e�:

ψ 0ðe�Þ
r0ðe�Þ ¼AIN where IN≡

Z
s∈Ξ

N�1ð ÞHðsÞN�2hðsÞ2ds:

(5)

The IN term in Equation (5) is related to the mar-
ginal impact of additional effort on the winning prob-
ability. The left-hand side of Equation (5) is increasing

in e� because ψ 0ðe�Þ=r0ðe�Þð Þ0 ¼ ψ 00ðe�Þ
r0ðe�Þ � ψ 0ðe�Þr00ðe�Þ

r0ðe�Þð Þ2 >0, so e�

is increasing IN . The dependence of e� on IN is impor-
tant as it indicates the possibility that e� increases with
the number of participants N. We will expand on this
observation in our analysis in section 3 after we pre-
sent our main result related to when an open tourna-
ment is optimal.
In equilibrium, ei ¼ e�, so each agent’s probability of

winning is 1/N, and each agent i’s utility from the
tournament is Ua ¼ A

N�ψðe�Þ. Consistent with the
innovation contest literature, we assume that each
agent has zero outside option. Then, under the
assumption that an e� that solves Equation (4) exists,
agents obtain higher utility by exerting effort e� than
they do by exerting zero effort (which is equivalent to
not participating), so agents always find it beneficial
to participate with effort e� (i.e., Ua ≥ 0).
When each agent exerts effort e�, the j-th highest

output can be written as yðjÞ ¼ rðe�Þþ~ξ
N

ðjÞ. Therefore,
the organizer chooses N (where K≤N≤N) and A that
maximize its expected utility
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Uo ¼Kr e�ð ÞþE ∑
K

j¼1

~ξ
N

ðjÞ

" #
�A: (6)

3. Analysis

Our primary goal is to determine when the organizer
benefits from an open tournament (i.e., choose N=N)
as opposed to restricting entry of participants (i.e.,
choose N<N). To answer this question, we examine
how the number of participants (N) affects the orga-

nizer’s utility: Uo ¼Krðe�,NÞþE½∑K
j¼1

~ξ
N

ðjÞ��A�, where

A� is the optimal award and superscript N in e�,N

denotes the number of participants. When Uo is maxi-
mized under N=N, it is optimal for the organizer to
choose an open tournament. The first term in Uo,

Krðe�,NÞ, increases (resp., decreases) with N if the

agent’s equilibrium effort e�,N increases (resp.,

decreases) with N. The second term in Uo, E½∑K
j¼1

~ξ
N

ðjÞ�,
represents the expected value of the best K outcomes
from N i.i.d. random variables. It is easy to see that
this term increases with N for any K; in other words, a
more diverse set of solutions increases the expected
value of the best K outputs. The last term in Uo, A

�

does not depend on N under Assumption 1 (which is
relaxed throughout the Online Appendix including
Corollary EC.5 that extends Theorem 1). Therefore,
whether an open tournament is optimal depends on
how the first two terms change with N. Theorem 1
captures this tradeoff and characterizes when an open
tournament is optimal. All proofs are presented in the
Appendix.

THEOREM 1. Consider a scale transformation of the out-
put shock ~ξi with scale parameter α>0.

(a) For any number of contributors K and any num-
ber of potential participants N, there exists �αK such

that Uo is maximized at N=N if and only if α ≥ �αK,
where �αK is non-decreasing in the effort function
coefficient θ.
(b) �αK is non-increasing in the number of contribu-
tors K and the cost function parameter b.
(c) If IN in Equation (5) is increasing in N up to
some N� (≥N), then �αK ¼ 0.

Theorem 1 shows that whether an open tournament
is optimal depends on output uncertainty (α), the
number of contributors (K), cost function parameter b,
the effort function coefficient θ, and how the equilib-
rium effort e� changes with N. Theorem 1(a) shows
that an open tournament is optimal if and only if α is
above threshold �αK which decreases with the effort
coefficient θ.3 Figure 1 illustrates the underlying
mechanisms of Theorem 1(a) under fixed θ. In the set-
ting of this figure, additional participants lead to a

reduction in the equilibrium effort e�,N , and hence

Krðe�,NÞ in the organizer’s utility Uo decreases with N,

whereas E½∑K
j¼1

~ξ
N

ðjÞ� in Uo increases with N. Thus, it is

not obvious how Uo changes with N. Figure 1 dis-
plays that a larger output uncertainty (α) raises

ð∑K
j¼1E½ξ̂

Nþ1

ðjÞ ��∑K
j¼1E½ξ̂

N

ðjÞ�Þ, which captures the contri-

bution of an additional participant to the organizer’s
utility from having a more diverse set of solutions.
This is intuitive. On the other hand, a larger output

uncertainty α does not change jKrðe�,Nþ1Þ�Krðe�,NÞj,
which captures the negative impact of an additional
participant on the organizer’s utility due to agents’
reduced effort. Although the latter result might also
appear intuitive, it is not necessarily true for a general
effort function r. Nevertheless, Corollary EC.5 in the
Online Appendix shows that when the variance of the
output shock is sufficiently large for any general dis-
tribution, the benefit of having a more diverse set of
solutions dominates the potentially negative incentive
effect as well as its impact on the optimal award.
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Figure 1 (a) The Impact of an Additional Participant on the Contributors’ Total Effort (i.e., K rðe�,Nþ1Þ�K rðe�,Nþ1Þ) and Shock (i.e.,
E ½∑K

j¼1ξ̂
Nþ1
ðjÞ �∑K

j¼1ξ̂
N
ðjÞ�) as a Function of Scale Parameter α ; (b) Minimum Scale Parameter �αK for an Open Tournament. Parameters

Used: ~ξi∽ Normal(0,1); ξ̂i ¼ α~ξi ; N=10; r(e)=log(e) and ψψ(e)=e.
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Thus, the benefit of having a more diverse set of solu-
tions from a larger number of participants dominates
its potentially negative incentive effect, only when
α is sufficiently large (relative to θ since �αK decreases
in θ).
Theorem 1(a) has important implications for both

tournament theory and practice. Prior literature in
economics has shown that when the organizer wants
to maximize the best output (i.e., K=1), an open tour-
nament is never optimal (e.g., Fullerton and McAfee
1999, Taylor 1995) because a larger number of partici-
pants has a negative incentive effect on agents’ effort.
Terwiesch and Xu (2008) argue that an open tourna-
ment is always optimal because the benefit of having a
more diverse set of solutions outweighs the negative
incentive effect. They derive this result under the
assumption that the output shock follows a Gumbel
distribution with a sufficiently large-scale parameter
μ. Our result sharpens existing theories by showing
that the benefit of having a diverse set of solutions
outweighs the potentially negative incentive effect if
and only if the variance of the output shock (captured
by α) relative to the impact of effort (captured by θ),
that is, the “uncertainty-effort ratio,” is sufficiently
large. Our result is corroborated with empirical evi-
dence, and seems consistent with practice. Specifi-
cally, Boudreau et al. (2011), who empirically analyze
9,661 software tournaments at Topcoder, conclude
that free entry should be encouraged in contests for
which problems are highly uncertain. In practice, this
may be the case when a tournament features large
uncertainty (e.g., InnoCentive RTP challenges).
Theorem 1(b) states that the threshold on the level

of uncertainty over which an open tournament is opti-
mal (i.e., �αK) decreases as the organizer anticipates
utilizing a larger number of solutions (i.e., larger K).
This result suggests that even when a tournament fea-
tures a low uncertainty-effort ratio, an open tourna-
ment may still be optimal if the number of
contributors K is sufficiently large; see Figure 1. Our
result provides a plausible explanation to some indus-
try examples. For example, the Samsung Smart App
Challenge was conducted as an open tournament
because a large number of contributors were antici-
pated. On the other hand, an architectural design
tournament often features restricted entry. Although
the latter tournament may involve a similar uncer-
tainty-effort ratio to the former tournament, it seeks a
single contributor, so an open tournament is less
desirable. Theorem 1(b) further shows the threshold
on the level of uncertainty over which an open tour-
nament is optimal (i.e., �αK) decreases as the cost func-
tion parameter b increases. This shows that an open
tournament is more desirable in settings where the
agent’s cost of effort increases faster; for instance,
when seeking solutions to difficult problems,

improving solution quality requires a significant
increase in the agent’s cost of effort.
We note that our finding related to the number of

contributors K contrasts sharply with the result in the
literature. To capture cases where the organizer aims
to utilize multiple solutions, Terwiesch and Xu (2008)
consider a weighted combination of the performance
of the best solution and the average performance of
all solutions, while noting on page 1534 that “[i]t
seems plausible that the seeker might be interested in
the best K submitted solutions. These cases lead to
qualitatively similar results, yet are analytically
intractable.” We complement Terwiesch and Xu
(2008) by modeling the organizer’s utility as an expli-
cit function of “the best K submitted solutions” and
still conducting a tractable analysis of this model. We
show that a larger number of contributors reinforces
the diversity effect and increases the value of an open
tournament. This is qualitatively different from the
result of Terwiesch and Xu (2008) that an open tour-
nament is less likely to be optimal when the orga-
nizer’s weight on the best solution decreases, or
equivalently, when the weight on the average solu-
tion increases. A primary reason for these seemingly
opposite results is that their model approximates “the
best K submitted solutions” because the average per-
formance is computed by averaging the performance
of all solutions including poor solutions (which do not
belong to the best K submitted solutions).
Theorem 1(c) shows that an open tournament is

optimal when IN in Equation (5) is increasing in N
(which means e� is increasing in N as discussed below
Equation (5)) up to some N� (≥N). In this case, more
participants to the tournament not only provide a
more diverse set of solutions to the organizer, but also
induce higher effort from participants. Thus, an orga-
nizer can benefit from an open tournament even
when the output uncertainty is so low that there is lit-
tle diversity among agents’ solutions. This is also true
when the organizer’s objective is to maximize the av-
erage output of all agents, where the impact of diver-
sity disappears completely.

COROLLARY 1. Suppose that IN in Equation (5) is
increasing in N up to some N� (≥N). When the orga-
nizer maximizes the average output of all agents, an open
tournament is optimal.

Our results also have implications about when it is
optimal to restrict entry to a tournament. Specifically,
Theorem 1 shows that there are two conditions for
restricting entry. First, the threshold �αK should be pos-
itive. This is guaranteed when IN in Equation (5) is
decreasing in N for all N (≤N). Second, the uncer-
tainty-effort ratio and the number of contributors
should be sufficiently small (i.e., α<�αK). In this case,
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as Theorem 1 formally shows and Figure 1 illustrates,
the organizer may choose to restrict entry. The follow-
ing corollary formally presents the two conditions for
the optimality of restricted entry.4

COROLLARY 2. Suppose that IN in Equation (5) is
decreasing for all N (≤N). Then, �αK>0, and for any scale
transformation of the output shock ~ξi with scale parame-
ter α∈ð0,�αKÞ, restricted entry is optimal.

We next analyze how the equilibrium effort e�

changes with the number of participants N. This anal-
ysis will help us better understand the conditions
given in Theorem 1(c) and Corollaries 1 and 2. As dis-

cussed earlier below Equation (5), whether e�,N

increases or decreases with N depends on whether IN
defined in Equation (5) increases or decreases with N.
How IN changes with N depends on the distribution
of agent’s uncertainty. For instance, when the output

shock ~ξi follows a Gumbel distribution with mean 0

and scale parameter μ, IN ¼ N�1
μN2 is decreasing in N,

and so is e�. In contrast, when ~ξi follows a Weibull
distribution with mean 0, shape parameter β=1, and

scale parameter μ (i.e., hðsÞ¼ 1
μexp �ðμ�s

μ Þ
n o

as in the

literature on extreme-value distributions and new
product development (e.g., Dahan and Mendelson

2001), IN ¼ N�1
μN as well as e� is increasing in N.5 This

example illustrates a counter-intuitive result that
more participants can induce larger effort from
agents. The reason is as follows. From Equation (4),
the agent’s marginal benefit of increasing effort is

A ∂PN ½ei,e��
∂ei

� �
ei¼e�

¼Ar0ðe�ÞIN . For any given award A,

this increases with ∂PN ½ei,e��
∂ei

� �
ei¼e�

¼ r0ðe�ÞIN , which rep-

resents the marginal impact of additional effort on
the winning probability. When INþ1> IN (i.e., IN

increases with N), ∂PNþ1½ei ,e��
∂ei

� �
ei¼e�

> ∂PN ½ei ,e��
∂ei

� �
ei¼e�

,

implying that one unit of effort increases the winning
probability more when there are (N+1) participants
than when there are N participants; consequently,
agents exert larger effort with (N+1) participants than
with N participants. Thus, although more partici-
pants always lower the probability of winning for

agents under any distribution of the output shock ~ξi,
more participants do not always lead agents to reduce
their effort.6

Building on this observation, Proposition 1(a) pre-
sents a necessary and sufficient condition on the out-
put shock ~ξi under which more participants induce
(weakly) lower effort, and Proposition 1(b) presents
sufficient conditions under which more participants
induce higher effort.

PROPOSITION 1.

1. The equilibrium effort e� is non-increasing for
any N≥2 if and only if the density h of the out-
put shock ~ξi satisfiesZ

s∈Ξ
ð1�HðsÞÞHðsÞh0ðsÞds≤ 0: (7)

When the inequality in Equation (7) is satisfied
strictly, e� is decreasing for any N≥2.

2. e� is increasing up to some N� if

E½ðh0=hÞð~ξN
�

ð1ÞÞ� ≥ 0 (where N� ¼∞ if h is increas-

ing) or if h is a symmetric function of some
density function hr with respect to y-axis (i.e.,
hðsÞ≡hrð�sÞ for all s) where hr satisfies Equa-
tion (7) strictly.

Condition (7) is satisfied by any symmetric log-con-
cave density (e.g., normal, logistic) as well as Gumbel
and exponential densities (see Remark EC.2 in the
Online Appendix). This implies that when agents
have roughly symmetric or right-skewed distribu-
tions for output uncertainty, they tend to decrease
effort with more participants.
Whenever the necessary and sufficient condition

given in Equation (7) is violated, the equilibrium
effort e� is increasing in N up to some N�. Proposition
1(b) shows that this condition is violated by any den-
sity with E½ðh0=hÞð~ξNð1ÞÞ�≥ 0 or any density h(s) of which
the symmetric function with respect to y-axis, h(−s),
satisfies Equation (7) strictly. For example, when the
output shock has an increasing density function such
as the Weibull distribution in the above example
(which satisfies the former condition for any N) or a
left-skewed density function as in Figure 2 (which sat-
isfies the latter condition), agents’ uncertainty is likely
to contribute a positive value to their solutions, so the
equilibrium effort e� may increase with more partici-
pants. The intuition is as follows. The equilibrium
effort e� depends on the marginal impact of effort on
winning an award, and more participants have two
opposing effects on the marginal impact of effort.
When the number of participants increases, addi-
tional effort gives the agent an edge against more
competitors, pushing the marginal impact of effort
up; yet the overall probability of winning decreases,
pulling the marginal impact of effort down. When the
agent’s uncertainty is likely to contribute a positive
value to the agent’s solution, the agent is likely to
receive a favorable output, so more participants
decrease the agent’s probability of winning slowly.
Thus, the agent increases effort to gain an edge
against more competitors, and in this case, by Theo-
rem 1, an open tournament is optimal for the orga-
nizer.
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Our results indicate that when agents’ output
uncertainty is likely to contribute a positive value to
their solutions, more participants may induce agents
to increase effort. We may examine the problem in a
tournament to see if the output uncertainty has this
property or not. For instance, as discussed in section
1, a left-skewed density function such as the Weibull
distribution is suitable for modeling innovation pro-
cesses where the upside potential for a solution is lim-
ited (Dahan and Mendelson 2001). In practice, this
property can be satisfied by Topcoder coding chal-
lenges such as the Arcelik Exploratory Testing Chal-
lenge where the upside potential of agents’ output is
limited. Our result may offer a plausible explanation
for why such Topcoder coding challenges are open
tournaments.
Our findings not only help explain some open tour-

naments in practice, but also are supported by experi-
mental results. Specifically, List et al. (2020) observed
that participants increased their effort level when the
number of participants in a tournament increased
from 2 to 4, and participants knew that they had a
high probability of receiving a good draw. List et al.
(2020) interpret skewness of the density function as
an indicator for agents’ beliefs of good outcomes in
their experiment. This insight is in line with our find-
ings. (For a detailed review of other experimental
studies, we refer the reader to Dechenaux et al. 2015).
List et al. (2020) also have an analytical result under a
linear effort function and an output shock with a
monotonic density function over a symmetric finite
support. They show that when the density function
has a positive (resp., negative) slope in the entire sup-
port, more participants induce higher (resp., lower)
effort from agents. (Gerchak and He 2003, also show
the same analytical result. They further show that
when the density function is symmetric, more partici-
pants induce lower effort from agents). Our Proposi-
tion 1 generalizes their analysis to a general class of
distributions, and highlights how the outcomes

observed in their experiments are not anomalies but
the outcome of rational decision-making.

4. Conclusion

In this study, we examine tournaments in which a
tournament organizer seeks solutions to an innova-
tion-related problem from a group of agents. The
organizer faces a key tradeoff concerning the number
of participants to admit in a tournament. Running an
open tournament, which allows anyone who wishes
to participate to do so, not only increases the diversity
of solutions, but might also induce agents to reduce
their effort. Possibly for that reason, we observe
mixed policies in practice, where some tournaments
are open and others restrict entry.
Our modeling approach is quite general allowing

for a general class of distributions (with either a log-
concave or increasing density function) to describe
the uncertainty faced by participants. We also allow
the utility of the organizer to depend on a general
number of contributors. The generality of our model
is key as our main finding highlights the importance
of the level of uncertainty relative to the impact of
effort (i.e., uncertainty-effort ratio), the skewness of
uncertainty, and the number of contributors in deter-
mining whether to run an open tournament. Specifi-
cally, we find that a tournament should be open when
an innovation problem involves a large uncertainty-
effort ratio, when the tournament features a small
uncertainty-effort ratio but many contributors, or
when agents increase effort with more participants in
the tournament. We show that agents may increase
effort with more participants when they face a high
likelihood that their uncertainty contributes a positive
value to their solutions (i.e., their uncertainty has a
left-skewed distribution). We further show that
restricted entry is optimal when a tournament fea-
tures a low uncertainty-effort ratio, a small number of
contributors, and a symmetric or right-skewed

-1.1 0 0.9 2 3 4 5 6 7 8 9 10
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Figure 2 The Density Function h(s) and the Equilibrium Effort e� When the Output Shock eξi Follows a Weibull Distribution with Mean 0, Scale
Parameter 1, and Shape Parameter 1.1. Parameters Used: θ=b=c=1
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distribution of uncertainty. This result may help
explain why some tournaments restrict entry in prac-
tice. Taken together, our results have a clear implica-
tion for practitioners: in designing a tournament,
organizers should take into account the level and type
of agents’ uncertainty and the number of contribu-
tors.
Our study may lead to several interesting future

research directions. First, our study considers the
number of contributors as exogenous, and as a
future research avenue, one may consider a different
case in which the number of contributors is deter-
mined endogenously either before or after the tour-
nament. In one approach, the organizer determines
the optimal number of contributors ex-ante before
conducting a tournament. This approach can be han-
dled by extending our current model: The organizer
can choose ex-ante the optimal value of contributors
that results in the highest expected utility. As an
alternative approach, the organizer may choose a
rule about how to select contributors before conduct-
ing a tournament, and determine the number of con-
tributors ex-post after collecting all solutions. Second,
while our study focuses on when it is optimal for the
organizer to run an open tournament or to restrict
entry, one may extend it further by examining speci-
fic approaches to restricting entry. For example, the
organizer may (i) restrict the number of participants
to a certain number and accept participants in a first-
come-first-served basis, (ii) invite only a certain
group of agents to participate, (iii) restrict partici-
pants to a certain geographical region, or (iv) apply
some preselection mechanism with possibly a noisy
performance threshold. The first three approaches
can be directly captured in our current model and
analysis; the fourth one may require a different
model and analysis, so we leave it for future
research. Third, while our study assumes homoge-
nous agents to tease out the impact of output uncer-
tainty on agents’ effort and the organizer’s incentive
to hold an open tournament, there are some studies
in the literature that analyze the impact of agents’
heterogeneity by assuming that heterogeneous
agents produce deterministic outputs (e.g.,
Körpeoğlu and Cho 2018). Recently, Ales et al. (2019)
develop a framework that integrates both agent
heterogeneity and uncertainty into a general form.
Yet, characterizing equilibrium in such a general
model remains challenging and such an endeavor
can be an important future research direction.
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Appendix Proofs

Proof of Theorem 1. (a) To prove that an open tourna-
ment is optimal, we show that for any finite N and D
(>N), there exists a scale transformation such that the
organizer’s utility with D participants is higher than that
with N participants. Thus, we need

UD�N
o ≡ Krðe�,DÞþ ∑

K

j¼1

E½~ξDðjÞ��A�,D
 !

� Krðe�,NÞþ ∑
K

j¼1

E½~ξNðjÞ��A�,N
 !

≥ 0, (A1)

where e�,N is the equilibrium effort when there are
N participants and the winner award is optimally
chosen as A�,N . Under Assumption 2, for any num-
ber of participants N, we can show that A�,N ¼ Kθ

b

and e�,N ¼ Kθ2IN
cb2

� �1
b
. Thus, for some scale transforma-

tion ξ
i
¼ α~ξi of the output shock ~ξi with scale parame-

ter α, Equation (A1) can be written as

UD�N
o ðαÞ¼Kθ

b
log

ID
IN

� �
þα ∑

K

j¼1

E½~ξDðjÞ �~ξ
N

ðjÞ�≥ 0, (A2)

which is satisfied if α ≥ Kθ
b log IN=IDð Þ=

∑K
j¼1E½~ξ

D

ðjÞ �~ξ
N

ðjÞ�. Thus, the organizer’s utility is maxi-
mized at N=N if and only if α≥ �αK, where

�αK≡max
Kθ

b
max

N∈fK,Kþ1, ..., �Ng
flog IN=I �Nð Þ= ∑

K

j¼1

E½~ξ �NðjÞ �~ξ
N

ðjÞ�g,0
( )

: (A3)

(b) From Equation (A3), we see that �αK is non-decreas-
ing in θ and non-increasing in b. To show that �αK is
non-increasing in K, it suffices to prove that for any scale
parameter α such that an open tournament is optimal for
K (<N) contributors, an open tournament is also optimal
for (K+1) contributors. Suppose that an open tournament
is optimal for K contributors and for some scale transfor-
mation ξ

i
¼ α~ξi of the output shock ~ξi. Then, from Equa-

tion (A2), we obtain that for all N<N,

U
�N�N
o ½K� ¼Kθ

b
log

I �N
IN

� �
þ ∑

K

j¼1

E½ ξ
ðjÞ

�N� ξ
ðjÞ
N�≥ 0, (A4)

where U
�N�N
o ½K� is the difference in the organizer’s

utility with K contributors when the number of par-
ticipants increases from N to N. Furthermore, for
K+1 contributors,

U
�N�N
o ½Kþ1� ¼ Kþ1ð Þθ

b
log

I �N
IN

� �
þ ∑

Kþ1

j¼1

E½ ξ
ðjÞ

�N� ξ
ðjÞ
N�
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¼ θ

b
log

I �N
IN

� �
þE½ ξ

ðKþ1Þ
�N� ξ

ðKþ1Þ
N�þU

�N�N
o ½K�:

By Lemma EC.4 in the Online Appendix,
E½ ξ

ðKþ1Þ
�N� ξ

ðKþ1Þ
N�>E½ ξ

ðjÞ
�N� ξ

ðjÞ
N� for any j<K+1; so,

E½ ξ
ðKþ1Þ

�N� ξ
ðKþ1Þ

N�> 1

K
∑
K

j¼1

E½ ξ
ðjÞ

�N� ξ
ðjÞ
N�≥ �θ

b
log

I �N
IN

� �
,

(A5)

where the last inequality follows from Equation
(A4). The combination of Equations (A4) and (A5)
yields the desired result that U

�N�N
o ½Kþ1�>0 for any

N.
(c) Suppose IN is increasing in N up to some N�

(≥N). Then log IN=I �Nð Þ≤ 0 for all N 2 {K,K+1,. . .,N}.
We also have E½ ξ

ðjÞ
�N� ξ

ðjÞ
N�>0. Thus, from Equation

(A3), �αK ¼ 0.

Proof of Corollary 1. A sufficient condition for an
open tournament to be optimal is that the organizer’s uti-
lity, which can be written as
Uo ¼ð1=NÞ∑N

i¼1yi�A¼ rðe∗,NÞ�A, is increasing in N
up to N. Under the stated assumptions on r and ψ, for
any number of participants N (<N), it is easy to show
that the optimal award is A�,N ¼ θ and the equilibrium
effort is e�,N ¼ θ2IN

c . If the organizer maximizes the average
output of all agents, the change in the organizer utility
when the number of participants increases from N to
N+1 can be written as UðNþ1Þ�N

o ≡θlog INþ1

IN

� �
: By defini-

tion of N�, for all N<N�, INþ1> IN, and hence
UðNþ1Þ�N

o >0. Thus, since �N ≤N�, an open tournament
is optimal.

Proof of Proposition 1. Recall from section 3 that
equilibrium effort e� satisfies ψ 0ðe�Þ

r0ðe�Þ ¼AIN, and that e� is
decreasing (resp., increasing) in N if IN is decreasing
(resp., increasing) in N. (a) Suppose that Equation (7)
holds. We will show that INþ1 ≤ IN for any N≥2. Apply-
ing integration by parts on Equation (7) yields the fol-
lowing difference equation:

INþ1� IN ¼
Z �s

s
1�HðsÞð ÞHðsÞN�1h0ðsÞds, 8N ≥ 2:

(A6)

Since both H(s) and (1−H(s)) are positive, Equation
(A6) implies that when h(s) is decreasing, constant
or increasing, IN is decreasing, constant or increas-
ing in N, respectively. (This also proves the result
about increasing density h(s) in part (b)). Thus, we
will prove part (a) when h is non-monotonic and
log-concave, which implies that there exists s0∈ðs,�sÞ,

such that h0 ≥ 0 for s<s0, and h0 ≤ 0 for s>s0 (i.e., h
is unimodal; see, e.g., Cule et al. 2010). When N≥2,

INþ1� IN ¼ R s0s 1�HðsÞð ÞHðsÞN�1h0ðsÞdsþR �ss0 1�HðsÞð ÞHðsÞN�1h0ðsÞds
≤
R s0
s 1�HðsÞð ÞHðsÞH s0ð ÞN�2h0ðsÞdsþR �ss0 1�HðsÞð ÞHðsÞH s0ð ÞN�2h0ðsÞds

¼H s0ð ÞN�2R �s
s 1�HðsÞð ÞHðsÞh0ðsÞds≤ 0,

where the first inequality holds because density h is
unimodal and non-monotonic, and the last inequal-
ity holds from Equation (7).
Suppose that the effort e� is non-increasing for any

N≥2. Then, Equation (A6) is non-positive for all N≥2. The
right-hand side of Equation (A6) is the same as the left-
hand side of Equation (7) for N=2, so Equation (7) holds.
(b) Suppose that E½ðh0=hÞð~ξN

�

ðjÞ Þ�>0 for some N�. Note
that when h(s) is increasing, E½ðh0=hÞð~ξN

�

ðjÞ Þ�>0 is always
satisfied so N� ¼þ∞. In this case, as we prove in part
(a), e� is increasing. Suppose h is log-concave. Using
integration by parts, we can write IN as follows:

IN ¼ R �ss ðN�1ÞHðsÞN�2hðsÞ2ds

¼ HðsÞN�1hðsÞ
� ��s

s
�
Z �s

s
HðsÞN�1h0ðsÞds

¼ lim
s!�s

hðsÞ� 1

N

Z �s

s
NHðsÞN�1hðsÞh

0ðsÞ
hðsÞ ds

¼ lim
s!�s

hðsÞ� 1

N
E

h0

h
ð~ξNð1ÞÞ

� �
:

Then, for any N, we can write the following differ-
ence equation:

INþ1� IN ¼ 1

N
E

h0

h
ð~ξNð1ÞÞ

� �
� 1

Nþ1
E

h0

h
ð~ξNþ1

ð1Þ Þ
� �

: (A7)

Note that ðh0=hÞ is decreasing because h is log-con-

cave. Thus, because ~ξ
Nþ1

ð1Þ first-order stochastically

dominates ~ξ
N

ð1Þ and not vice versa, by Theorem 1.A.3

of Shaked and Shanthikumar (2007),

E½h0h ð~ξ
N

ð1ÞÞ�>E h0
h ð~ξ

Nþ1

ð1Þ Þ
h i

. Then, from Equation (A7),

whenever E h0
h ð~ξ

Nþ1

ðjÞ Þ
h i

≥ 0, we have INþ1> IN . Simi-

larly, when E h0
h ð~ξ

N�

ðjÞ Þ
h i

≥ 0, we have

E h0
h ð~ξ

2

ðjÞÞ
h i

>E h0
h ð~ξ

3

ðjÞÞ
h i

>⋯>E h0
h ð~ξ

N�

ðjÞ Þ
h i

≥ 0, which

implies from Equation (A7) that IN� > IN��1>⋯> I2.
Therefore, e� is increasing up to N�.
Let the density function hr be the symmetric function

of h with respect to y-axis; that is, hrðsÞ¼ hð�sÞ for all s.
Let H(s) and HrðsÞ be the corresponding distribution func-
tions and Ξ=[s,s] and Ξr ¼ sr,�sr½ � be the supports for h(s)
and hrðsÞ, respectively. By definition, we have
1�Hð�sÞ¼HrðsÞ, �h0ð�sÞ¼ h0rðsÞ, �s¼�sr, and s¼��sr.
Suppose that hr satisfies Equation (7) strictly; that is,
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Z �sr

sr

ð1�HrðsÞÞHrðsÞh0rðsÞds<0: (A8)

Using symmetry of hr and h, Equation (A8) can be
written as:Z �sr

sr

�Hð�sÞð1�Hð�sÞÞh0ð�sÞds<0: (A9)

Making a change of variables as t=−s, and noting
that ds=−dt, (A9) becomesZ ��sr

�sr

HðtÞð1�HðtÞÞh0ðtÞdt¼�
Z �sr

��sr
HðtÞð1�HðtÞÞh0ðtÞdt<0:

(A10)

Thus, h(s) violates (7) because (A10) can be rewritten
as
R �s
s ð1�HðtÞÞHðtÞh0ðtÞdt>0: Because the left-hand

side of Equation (7) equals I3� I2, IN as well as e� is
increasing up to some N� ≥ 3.

Notes
1It is worth noting that not all coding challenges feature
small variance or limited upside potential. For instance, in
a bug-hunt challenge where very serious issues (e.g., secu-
rity vulnerabilities) can be revealed, the upside potential
can be high and the quality of solutions could be highly
variable.
2Broadly speaking, innovation tournaments can be used as
a tool to outsource some or all stages of product develop-
ment. We refer the reader to Krishnan and Ulrich (2001),
Kalkanci et al. (2019), and Rahmani and Ramachandran
(2020) for a detailed review of the broader product-devel-
opment literature. Also, for recent developments in empir-
ical research on crowdsourcing, we refer the reader to
Hwang et al. (2019), Aggarwal et al. (2020) and references
therein.
3Theorem 1(a) is derived under the organizer’s objective
of maximizing the best K outputs (see section 2). While
this objective is suitable for innovation tournaments,
there are other types of tournaments in which the orga-
nizer is purely interested in the agents’ effort (e.g., Tul-
lock 1980).
4When the organizer restricts entry (i.e., N<N), there exist
multiple equilibria where N agents participate and (N−N)
agents do not. The analysis of any of these equilibria
yields the same insights, because the organizer’s utility is
the same under any of these equilibria.
5The Weibull distribution has an alternative version with
a density function hðsÞ¼ ðβ=μÞðs=μÞβ�1expf�ðs=μÞβg. Under
this alternative Weibull distribution, IN is decreasing in N.
6When the organizer maximizes the average output and
the shock ~ξi follows a Gumbel distribution, Terwiesch and
Xu (2008) show that an open tournament is always subop-
timal (i.e., restricted entry is always optimal). Corollary 1
together with Proposition 1 indicates that this result may
not hold under a general distribution of ~ξi.
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Körpeoğlu, E., S. Cho. 2018. Incentives in contests with heteroge-
neous solvers. Management Sci. 64(6), 2473–2972.
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