
FitFeet Smart Shoe System
Dylan Vanmali

School of Electrical and Computer Engineering
Carnegie Mellon University

Email: dvanmali@andrew.cmu.edu

Chingyi Lin
School of Electrical and Computer Engineering

Carnegie Mellon University
Email: chingyil@andrew.cmu.edu

Abstract—An algorithm for developing a smart shoe sole is out-
lined. This application is intended as a health monitoring system
that would generate valuable data involving athletic abilities like
walking and running. The device is able to understand walking
patterns better than current market solution due to its location
on the body.

An embedded sensor on your feet gives unique data which
traditional sensors at their current locations on wrists or inside
pockets are unable to provide. By integrating a collection of pres-
sure sensors, positioning sensors, and wireless communications
to an online user interface, we are able to offer both health care
recommendations and activity monitoring solutions.

I. INTRODUCTION

By better understanding the positioning and stress applied
on feet with respect to the body, we hope to better classify
physical activity. Our FitFeet smart shoe solution enables users
to understand their walking patterns with higher precision and
enables us to provide recommendations for incorrect moving
patterns before future injuries ensue.

Using a network of pressure sensors around the bottom
of the foot and Inertial Measurement Units (IMUs) on the
top of the foot, users can see daily statistics that we gather
about their movement around the environment. We can then
classify each kinetic movement to determine whether or not
their daily movement patterns are healthy, otherwise we notify
them of possible solutions to improve their behavior, such as
urging them to exercise or to seek medical advice. By offering
more personalized physical monitoring and recommendation
systems, the FitFeet smart shoe enables users to accurately
understand their physical activity.

Ultimately, FitFeet serves as a more accurate activity mon-
itor by classifying activity levels like stepping, running, walk-
ing, jumping, and standing. This allows us to better segment
movement types throughout the day and provide them to a user
with this exact precision. Beyond this, we hope to categorize
more complex behavior such as injury, tiredness, swaying,
jittering, and duck-walking, and then provide feedback so that
the user is more aware of their body.

II. PREVIOUS WORK

Existing market solutions target mobility away from the feet
and rather on the wrist. Brands like Fitbit and the Apple watch
generate approximate stepping data targeting athletes and tech
enthusiasts.

On the other end of the spectra, companies that focus on
feet pressure sensing, such as the French company FeetMe,
target recovering patients by providing them with biometric
data about their weight distribution patterns. Another shoe
company, E-Vone, serves as a lifesaving solution for elderly
members by detecting their falling patterns.

Beyond health, smart shoes exist in athletic apparel such
as IOFIT Smart Shoes which has the ability to help golfers
understand their weight distributions while swinging. Even
companies like Bolt and Nike focus on running analytics to
enable athletes to achieve peak performance.

To best of our knowledge, there does not exist any
shoe company that combines performance analytics, move-
ment classification, and recommendation services so health-
conscious consumers are more aware of their physical activity.
With the growing movement for more active lifestyles, FitFeet
would offer the perfect solution to understanding both short-
term classification and long-term patterns.

Fig. 1. The main Dashboard with the ultimate statistics such as activity class-
ification gathered over time and displayed with statistics results throughout
the day.



III. APPROACH

A. Sensing target and domain

As a personalized activity monitoring system, FitFeet aims
to identify between the following types:

1) Step Counting: Since a step is determined as a burst
of force between the ground and the sole of the foot,
FitFeet can use its pressure mappings to provide a more
accurate step count as it notices this change through
time. Here we provide users daily goals to achieve and
motivate users to achieve them throughout the day.

2) Jumping: A jump is a large vertical acceleration spike
with a large delay between an initial standing position
to a jolt upon returning to the ground. Using the ac-
celerometer and pressure sensors, we can enable this
performance metric independently from the average step.

3) Running and Walking: Both the speed at which the user
accelerates forward and the rate between each step is
needed to individualize running, walking, and stationary
movements from each other, but also from other motion
within cars or planes. FitFeet maps each agility on a
timeline in order to see how much of each activity is
performed every day.

4) Inactivity: Understanding whether the user has moved
away from a specific location is done by measuring no
changes in the user’s state or steps. In other words, when
no shifts in position are signaled, the user is considered
to be inactive. Thus, we want to provide a reminder
that the user should get up and move around the space
throughout their day. Standing and sitting are subsets in
this category as the user does not move away from their
initial position.

For more complex behaviors, FitFeet aims to distinguish
between various motion patterns and alert the user if the
system senses these abnormalities:

1) Injury: People who may be injured will have an irregular
walking patterns. Most of them may ignore these injuries
because their mind will find a way to move the stress
away from that injured point applying pressure to other
areas of the foot. FitFeet aims to detect that irregularity
and notify the user about their potential injury.

2) Tiredness: Physical fatigue is reflected by a slow body
motion or deep steps over long periods of time. For ex-
ample, people working long hours might feel exhausted
and not move around the space as much. In this case,
we want to recommend the user to sleep.

3) Swaying: A swaying motion is classified as a motion
from left to right while moving forward. For example,
people who have drank too much alcohol typically
exhibit this behavior. By figuring out this motion, we
can recommend the user to not drive.

4) Jittering: Known as Restless Leg Syndrome, a fast up-
wards and downwards motion could commonly indicates
a leg jitter. FitFeet aims to notify the user to become
more aware of this subconscious behavior and fix it if
they wish.

5) Duck-Walk: A walking posture where the feet point
away from the forward motion of the user. FitFeet
can compare its magnetometer reading on each foot
to indicate whether the user is walking forward. If the
magnetometer readings point in different directions, then
this may be an indication of an incorrect walking pattern
so FitFeet can notify the user.

6) Falling: A depressurization of the foot combined with a
gyroscopic reading that shows the user lies horizontally
or frontward could be an indication for a fall. Thus, we
can alert the user or immediate family for assistance.

Fig. 2. The Admin web-page that allows manual control of the Haptic
Controllers, the on-board LED, and a real-time visual the Machine Learning
classification interpretation.

B. Frequency domain analysis

Frequency domain analysis has been proven for its successes
in various domains such as voice recognition or ECG signal
processing. In FitFeet, we also apply the frequency domain
analysis for the sensor signal. A fixed-length of signal in time
domain will be transformed into a series of frequency-domain
components. The intuition here is based on the ubiquitous
frequency characteristic in different moving behavior. For
example, slow behavior like walk has a peak in some low-
frequency components. On the other side, intense behavior
such as running shows higher magnitude in high-frequency
components.

The transformation is achieved by Fast Fourier Transform
(FFT), which optimizes discrete Fourier Transform (DFT) on
CPU. At each timestep t, a fixed m-length signal from x[t-
m] to x[t] is evaluated by FFT, and we can obtain a complex
m-vector ft at current time t. This transformation converts a
sequence of time-domain signal into another shorter sequence
of frequency-domain signal. In the following section, we are
going to leverage those frequency components to complete the
classification task.

Before the start of classification under frequency domain,
we need to make sure that FFT helps us in our classification
task. We use Principal Component Analysis (PCA) to project
the signal into two-dimensional space. Figure 3 shows the



original distribution under the time domain, three behaviors
walk, run, inactive are scattered in an xy-plane and colored
with red, blue, green respectively. Two axes in this figure show
the projected axis after the transformation from PCA. From
this figure, we found that it’s hard to tell each data point from
its respective behavior noticing that red and blue points are
mixed together while the green dots are isolated in the scatter.

Fig. 3. Time-domain visualization

After we apply FFT, the scatter from PCA shows a more
easily classified scatter on the x-y plane. Shown in Figure 4, it
is more obvious that a decision boundary in the x-y plane can
be drawn to segment them into behavior classes. While it is
not perfect, the green dots represents inactive concentrates in
a small area, showing less variance in frequencies in overall.
On the other end, it is easy to observe the cluster zones for
both the red and blue data points after the FFT is applied.

Fig. 4. Frequency-domain visualization

C. Support Vector Machine in frequency domain

As a classic machine learning algorithm, support vector
machine (SVM) has shown its power in numerous problems.
Its good performance on higher dimensional space and high
accuracy in both binary or multiple class classification have
shown its success.

Our classification task is: Given a m-vector frequency com-
ponent, classify it into a behavior b, where b ∈ {b0, b1, ,̇bk}, k

is the total number of behaviors in our targets. This problem
matches the scenario of multi-classes SVM. We are able to
take a vector from FFT, and classify it as one of the most
likely behavior in our pool.

The classifier program will collect a fixed number of
preprocessed data points in the frequency domain. Those
frequency components run throught the SVM with linear
kernel and get the prediction from the highest score in one-vs-
rest (OVR) decision function. In this training task, we didn’t
do dimensional reduction since this application doesn’t have a
latency constraint, also we don’t want to sacrifice the accuracy.
The normalization in preprocessing prevents the scaling effect
in our SVM, which will be discussed in the next section
along with the kernel selection. We also enable the probability
calculation in our SVM, to show our confidence for each
classification task.

D. Website
The data-visualizer used to display our results is run using

languages like HTML, CSS, JS, and JQuery and calls many
APIs such as bootstrap for responsive dynamic layouts, chart.js
for the graphs, and Paho and Mosquitto for MQTT.

In order to not overwhelm our long-term server and create
a scalable system that does not break our interactions, the
Website only updates its values every two seconds. While the
data to be stored is reacted immediately when data can be
process, we restrict this half of the system to not overwhelm
the server and the user can still obtain almost immediate
response time back.

E. Data storage with circular buffer
A sub-sequence of frequency components are required from

the analysis with frequency-domain SVM. These most recent
n data points from sensor should be stored into some data
structure. Theoretically, we can create a dynamic array and
put all the data in one sequence. With the pointer of the last
element, we can extract the sub-sequence consists from x[t-n]
to x[t]. However, this dynamic array increases the storage size
as more and more data are collected. This poor scalability uses
the storage inefficiently and makes it impractical.

We leverage circular buffer instead of a dynamic array. With
pre-defined length n, the circular buffer stores the data points
in order from the first element. Once the counter overflows,
the pointer goes back to the start of data. This technique utilize
the limited storage in a more efficient way, which preserves
the most recent data and release the usage for those out-dated
data.

Under circular buffer, extracting the last n data points is
easy. Since n is already known, we can define this n as the
length of the circular buffer. In the n-length circular buffer, all
the elements are required in analysis. The order begins from
the current pointer to the last, and restart from the start to the
element before the pointer.

F. MQTT protocol
Connecting all the components above, MQTT protocol is

used as the communication. Its publication/subscription model



gives convenience for the micro-controller and classification
program to exchange the data. The dataflow will be discussed
in the next section.

IV. EXPERIMENTAL SETUP AND RESULTS

A. System Overview

Our system consists of a micro controller (Particle Argon)
attached to the IMU sensor previously mentioned, a local
classification server, and an user interface used to display
important user behavior. All of these components are con-
nected between each other using an MQTT relay broker which
handles where the data needs to be sent.

The data of our device begins where the sensors get the
measured signal from our FitFeet device. The micro controller
then uses MQTT protocol over a WiFi antenna to send its
raw data to the classification server. After the classification
completes using the frequency-domain SVM algorithms, the
prediction and the probability of that prediction is then sent to
the long term-storage center which keeps the data for future
use whenever needed. Acting like a database, this server is
specialized using MQTT to input data in time frames based on
classification. Thus while the entire system sees current data
classifications, this long-term storage allows us to generate
statistics catered to the user’s needs. Finally, the display can
then access any live or long-term data simply by connecting
to the MQTT broker that communicates between all these
devices.

Fig. 5. System overview

B. Sensors selection

1) 9-axis IMU sensor: Using its built-in 3-axis gyroscope,
3-axis accelerometer, and 3-axis magnetometer, our IMU, the
MPU-9250, can help us obtain lots of useful physical data.
With the accelerometer, we can see the speed at which the user
is moving. With the gyroscope, we can track the orientation

of the foot in space. With the magnetometer, we can tell the
intended direction of walking through the world.

Currently, our system can receive data from a single IMU on
the server and display the stream of values on the Notifications
web-page. This achievement is important because the system
needs to take this upstream of data from the device and
perform its high-intense computations on the server.

Fig. 6. FitFeet Shoe on a printed circuit board with attached battery, IMU,
and Haptic controller attached

2) Force-Sensitive Resistor: A Force-Sensitive Resistor
(FSR) is a great way to collect points of pressure throughout
the foot. By mapping multiple pressure points at known posi-
tions, we can then generate an approximate map personalized
towards that person’s foot weight distribution. The magnitude
of each pressure point is simply determined as a ratio between
the varying resistor and a specified resistor. Each FSR can
support up to 20 lbs (about 100 Newtons) each and we can
read this value as an analog value so we can approximate
whether a step has contact with the ground or is above the air.
While a normal user weighs considerably more than 20 lbs,
the distribution of these points at various locations gives us
the variability of contacts points needed to better determine
a physical step. It is not important to determine the user’s
weight at a given point but rather to understand whether a
binary result of a force-applied or force-not-applied was taken
at each contact point: two FSRs in the back of the foot and
two FSRs towards the front of the foot.

Currently, our system can receive data from all pressure
sensors on the server and display the stream of values on the
Notifications webpage. This achievement is important because
users favor visualizing data, and this allows the webpage to
display important statistics, as an upstream from the device to
the server.

3) Haptic motor: Since walking is an unconscious be-
havior, we attempt to alert our user’s walking patterns in a
similar matter. Through conditioning, FitFeet provides haptic
feedback beyond the visual feedback. This allows a faster
approach in targeting the issue while it occurs. Our walking
behavior should be corrected in a short time since changing



your walking patterns are not intentional. To drive a haptic
motor, we use a haptic motor controller DRV2605L. With I2C
interface, Particle Argon can send the control signal on I2C
bus and trigger the haptic feedback to the user.

Currently, our system can signal the device from the Ad-
min webpage and manually turn on the Haptic Motor. This
achievement is important when the server needs to signal the
user for incorrect behavior after running its algorithm, in other
words a downstream from the server to the device. We are
able to trigger the Haptic response back to the user whenever
a jitter motion is classified, which can later be applied to
any other feedback notification response previously mentioned
when other classification categories become available.

4) Battery: As a wearable device, portable power supply
is a factor to a practical product. We have chosen a 3.7V
2000mAh Li-Po battery instead of a typical power bank
because it is both thin (6.6mm) and light-weight (39g), thus
providing good power to power our circuit board in a small
form-factor.

C. Local MQTT server

The question occurs about where should the various com-
ponents of this system compute its data. Using IoT edge
computing methods, FitFeet aims to compute this data as
efficiently as possible to obtain close to real-time behavior.

By default, the Particle device has a cloud server that en-
ables users to publish and subscribe to obtain and receive data,
respectively, from edge devices. However, as a moving pattern
classification, sampling frequency is a hard constraint in our
application. With a 2-packet-per-second bandwidth limitation
from Particle Cloud Server, the default system model cannot
satisfy the speed requirement for our application.

MQTT is a well-known lightweight protocol known in mod-
ern IoT infrastructures. With a similar publish/subscribe model
as the original Particle Cloud Server, MQTT can communicate
between IoT endpoint devices without a need to communicate
to a cloud system. With the ability to control the speed of
the MQTT server ourselves, we can ensure the data is stored
within the local network and is interpreted properly.

Numerous public MQTT server are available on the Internet.
Their convenience gives us a benefit to prototype our system.
However, its unpredictable traffic makes our system unstable
and not always real-time. In our experience, we usually got a
range of 30-second to 2-minute delays from sensor to subscrip-
tion because of other users using the network. While packets
on this network are reliable due to the MQTT framework being
built upon the TCP protocol, this delay cannot be ignored.

To prevent those unstable factor from other users, we create
a local MQTT server by our own. Connected with the wired
network in our campus, this local server provides negligible
latency. With our FitFeet sensors securely attached to our
designed shoes and publishing to the local network, our system
can organize the locations to compute its data according to its
computing availability.

The FitFeet sensor can be attached to our designed shoes
and publish the data it senses. Meanwhile, a powerful com-
puter can subscribe this channel to get the instant data.

D. Data Packeting

Numerous packets are sent throughout the network in order
to perform computation on available processors.

The format of the packet begins by gathering various data
points on the FitFeet sensors. This raw data is then grouped
together in one packet then is sent along the network to
a more powerful computer for more complex computation.
This computer then runs this data through the trained neural
network previously mentioned and outputs the classification
of the incoming results.

When the Machine Learning model provides its response,
this classification data is then sent to the server for long-term
provisions for our user. The data is then organized in terms of
date and classification type per user for displaying purposes.
Ultimately, without storing the raw data of the FitFeet sensors
itself we solve the unnecessary need to recompute our data
multiple times and store only the data needed on the server.

The final long term storage of our device only has the
classification of the data and the time of the packet’s arrival.
This part of the system from the sensors, classifier, to the long
term server reacts as the data arrives in order to prevent losses
in data. This minimal data eventually stored on our long-term
server allows us to display the statistics data needed for users
on our external website.

E. SVM design

1) Preprocessing by normalization: Sending the raw data to
the SVM naively results in a bad accuracy. The primary reason
is the heterogeneity in each data dimension. For example, the
value of accelerometer ranges from -50 to 50, but gyroscope is
-500 to 500. This magnitude difference will still be preserved
after FFT. Thus, a scalar is applied to make each dimension
ranges from -1 to +1. Shown in figure 7, dashed line represents
the value of each frequency component, which is divided by
global maximum to make it fit into the plot. The solid line
with normalization eliminates the bias caused from the unit of
measurement or the sensitivity of the sensor.

2) Accuracy/Delay trade-off in SVM design: Accuracy and
delay are two of the crucial components in the evaluation of
this algorithm. However, there is a trade-off in this algorithm
approach. As the previous section said, we designed an n-
length circular buffer to store the incoming data. This length
shows how long the signal is before, but on other side, it would
involve a transient behavior change in response time. Shown
in figure 8, when the user is walking (left figure), the circular
buffer fills with the signal indicating a walking behavior. Once
this user begins to run (right figure), the sensor generates a
running signal and push it into the circular buffer. An ideal
classification comes from a circular buffer filled with all the
data corresponding to a run. However, this element-by-element
overwriting spends some time replacing the whole buffer. This



Fig. 7. Signal normalization

Fig. 8. Accuracy/Delay trade off

difference in time is considered the delay in response to the
transient behavior change.

The responsive delay has an upper-bound. With the sam-
pling frequency fs, filling a n-length circular buffer takes n∗ 1

fs
seconds. In our configuration, fs is 5 Hz, n = 16. In other
words, we can interpret this as: when I begin to run from walk,
I need 3.2 seconds for the classification to detect the change.

3) Accuracy versus window size: Intuitively, the larger win-
dow size gives more information and make the classification
more accurate. In figure 9, we show the accuracy numbers
by exploring different window size and training the model
on each configuration. Each bar in the figure represents an
average of 50 training sets to reduce the variance between each
training. This results prove our hypothesis that larger window
sizes have higher accuracy. Thus, given an application scenario
(e.g. real-time, long-term), we can select a proper window size.
In our case, we chose a window size of 16 to balance both
computation time and accuracy.

4) Kernel selection: Using a kernel method in SVM gives a
non-linear curve in high-dimensional space. For each point, we
train our SVM model 10 times and then average the accuracy.
This result shown in the following table gives us a reference
of which kernel we need to pick for our application I. Here,
the linear kernel performs the best out of the four kernels.
We can also notice that the radial basis function (RBF) and
sigmoid kernel also have good accuracy but not nearly enough
accuracy as the linear model, and the polynomial kernel is the
worst performing of our choices.

Fig. 9. Accuracy versus window size

4 8 16 32
linear 76.38 82.68 88.79 94.03

rbf 74.80 81.34 86.73 89.73
poly 33.96 35.99 40.75 41.78

sigmoid 71.74 79.39 83.51 88.64
TABLE I

SVM KERNEL EXPLORATION

V. CONCLUSION AND FUTURE PLANS

Overall, this project aims to create a prototype that com-
bines pressure sensors and a 9-axis IMU to sense activity
types, categorize them, and provide recommendations on bad
mobility patterns. The results of our findings have proven
that categorization of some mobility patterns such as running,
walking, and standing can be done with great accuracy using
our combined Machine Learning and FFT combined class-
ification models.

The future steps in our design process is to make the device
more physically appealing to our users for production. The
pressure mapping system and analysis of the more complex
behaviors can only be done after integrating a Pressure sensor
network. This additional system can only be done with a solid
design of the shoe itself because standard component are easily
breakable and manual creation of an FSR network is very time-
consuming to do precisely. Lastly, we aim to test our model on
an entire system to ensure that each subsystem can be scaled
to the customer market we envision.

Contributions and questions that refer to the entire system
interaction including computation locations, networking pro-
tocols, data visualization, and physical device construction,
please contact author Dylan Vanmali.

Contributions and questions towards the analysis and class-
ification models for our system such as the FFT principles and
the Machine Learning SVM, please contact author Chingyi
Lin.

REFERENCES

[1] https://en.wikipedia.org/wiki/Motion
[2] https://www.nanalyze.com/2019/02/smart-shoes-digitally-

connected/?fbclid=IwAR3ZP5NlQGIsWpjKg4WdVavqlfdGuJhWZIRze
TZWYcSu4mHC6nr9AkkNODA

[3] https://create.arduino.cc/projecthub/380/smartinsoles
-a42e49?ref=tag&ref id=wearables&offset=46

[4] https://create.arduino.cc/projecthub/Juliette/a-diy-smart-insole-to-check-
your-pressure-distribution-a5ceae?ref=tag&ref idw̄earables&offset=10



Dylan Vanmali



Chingyi Lin


