
COMPUTATION-FRIENDLY SHAPE GRAMMARS

Detailed by a sub-framework over parametric  
2D rectangular shapes

KUI YUE, RAMESH KRISHNAMURTI, FRANÇOIS GROBLER* 
Carnegie Mellon University, USA 
*Construction Engineering Research Laboratory, Champaign, IL, USA

abstract: NP-hardness of parametric subshape recognition for an arbitrary number of 
open terms is proven. Guided by this understanding of the complexity of subshape 
recognition, a framework for computation-friendly parametric shape grammar interpret-
ers is proposed, which is further detailed by a sub-framework over parametric two-
dimensional rectangular shapes. As both the proof of NP-hardness and rectangular sub-
framework invoke elements in graph theory, the relationship between shape and graph 
grammars is also explored. 

keywords: Parametric subshape recognition, NP-hard, graph grammar

résumé : Il est démontré que la reconnaissance de sous-formes paramétriques pour un nombre 
arbitraire de termes ouverts est NP-difficile. En se basant sur cette analyse, nous proposons un 
cadre d’interpréteurs grammaticaux simples à calculer pour les formes paramétriques que nous 
détaillons davantage dans le cas de formes paramétriques rectangulaires bidimensionelles. 
Comme la preuve de NP-difficulté et notre sous-cas nécessitent des éléments de la théorie des 
graphes, nous explorons également la relation entre grammaires de formes et grammaires de 
graphes. 

mots-clés : Reconnaissance de sous-formes paramétriques, NP-difficulté, grammaires de 
graphes

T. Tidafi and T. Dorta (eds) 
Joining Languages, Cultures and Visions: caadFutures 2009 
© pum, 2009

CAAD Futures 2009_compile.indd   757 27/05/09   10:47:15



758 k. yue • r. krishnamurti • f. grobler

1. INTRODUCTION

As a formalism, shape grammars (Stiny 1980) have been widely applied, in 
many different fields, to analyzing designs. Computer implementation of a 
shape grammar interpreter is vital to both research and application. However, 
implementing such an interpreter is hard, especially when directed at paramet-
ric shapes defined by open terms (Chau et al. 2004), though there have been 
notable attempts (e.g., McCormack and Cagan 2002). The central difficulty is 
parametric subshape recognition. In this respect, finding a proof on how for-
mally hard this can be provides critical theoretical guidance when developing 
new algorithms where their generality and practicability can be justified.

This paper is set out as follows. We start with a review of the formal defini-
tion of a shape grammar, which is then used to analyze the complexity of 
subshape recognition for parametric two-dimensional rectilinear shapes. It 
turns out that parametric subshape recognition is computationally expensive 
even for shapes of a moderate size; indeed, parametric subshape recognition 
for an arbitrary number of open terms is NP-hard. Guided by this theoretical 
result, we propose a framework to ensure computability of shape grammars. 
This is further detailed by examining a sub-framework over parametric two-
dimensional rectangular shapes. Both the proof of NP-hardness and rectan-
gular sub-framework invoke elements in graph theory—in fact, there is a 
connection to graph grammar research, namely, collage grammars (Drewes 
and Kreowski 1999). As a consequence, the relationship between shape and 
graph grammars is explored.

2. THE COMPLEXITY OF A PARAMETRIC INTERPRETER

Various shapes have been investigated in shape grammar research. For conve-
nience and accuracy of discussion, we define shapes to belong to one of the 
eight types identified in Table 1. For example, non-parametric two-dimensional 
rectilinear shapes are of Type I.

table 1. a classification of shapes.

Rectilinear With curves

2D 3D 2D 3D

Non-parametric I II III IV

Parametric V VI VII VIII

A rigorous definition is essential to a theoretical analysis. Here, we adopt 
Stiny’s (1980) formal definition for two-dimensional rectilinear shapes (Types 
I and V). It is interesting to note that in Stiny (2006), he gives up this definition, 
because of the concern that in (architectural) design, there is no preexisting 

CAAD Futures 2009_compile.indd   758 27/05/09   10:47:15



759Computation-friendly shape grammars

fixed vocabulary, as new vocabularies emerge during the course of design. 
However, from the perspective of any implementation, the vocabulary has to 
be ‘pre-fixed’; that is, the universe of the vocabulary is known a priori. Therefore, 
with respect to implementation, a formal definition remains valid.

2.1. Formal definition of shape grammars

A shape is a limited arrangement of straight lines defined in a Cartesian coor-
dinate system with real axes and an associated Euclidean metric. A shape is 
specified by the maximal line representation. A shape is a subshape (part) of 
another shape whenever every line of the first shape is also a line of the second 
shape. A labeled shape consists of two parts: a shape and a set of labeled points. 
A parameterized shape is obtained by allowing the coordinates of the end points 
of the maximal lines in a given shape to be variables. A parameterized labeled 
shape σ is given by s = < s,P >, where s is a parameterized shape, and P is a 
finite set of labeled parameterized points. A labeled parameterized point is a 
labeled point p where the coordinates of p are variables.

A shape grammar has four components: (i) S is a finite set of shapes; (ii) L 
is a finite set of symbols; (iii) R is a finite set of shape rules of the form a → b, 
where a is a labeled shape in (S,L)+, and b is a labeled shape in (S,L)*; and (iv) 
I is a labeled shape in (S,L)+ called the initial shape.

In non-parametric shape grammars, a shape rule a → b applies to a labeled 
shape c when there is a transformation τ such that τ(a) is a subshape of c. The 
labeled shape produced by applying the shape rule a → b to the labeled shape 
c under the transformation τ is given by [c – τ(a)] + τ(b)]. 

Parametric shape grammars are extensions of non-parametric shape gram-
mars in which shape rules are defined by filling in the open terms (point 
variables) of a general schema. A shape rule schema a → b comprise parameter-
ized labeled shapes, a and b, where no member of the family of labeled shapes 
specified by a is the empty labeled shape. Whenever specific values are given 
to all variables of a and b, by an assignment g to determine specific labeled 
shapes, a new shape rule g(a) → g(b) is defined. This shape rule can then be 
used to change a given labeled shape into a new one in the usual way. That is, 
the shape rule application is expressed as: [c – τ(g(a)] + τ(g(b)]. 

To implement an interpreter for parametric shape grammars, the crucial 
step is subshape recognition. That is, detecting the existence of subshape g(a) 
in c by automatically finding an appropriate assignment for g.

2.2. Preliminary analysis

In non-parametric subshape recognition of two-dimensional rectilinear shapes 
(Type I), the transformation  can be determined by matching three distinguish-
able points of a to three distinguishable points of c (Krishnamurti 1981). 

CAAD Futures 2009_compile.indd   759 27/05/09   10:47:15



760 k. yue • r. krishnamurti • f. grobler

However, in parametric subshape recognition, this is not necessarily the 
case. 

It is possible that the parametric labeled shape, a, has a certain number of 
fixed points (non-open terms). If there are more than three fixed points (dis-
tinguishable, by definition), the Krishnamurti 3-point algorithm is still appli-
cable, with about 

     
possibilities to test against (new auxiliary points may be 

computed and used).
For shapes with 1 or 2 fixed points, it is identical to the situation when all 

points are open as similarity is subsumed by the assignment. When all points 
are open, shape transformation may not be describable by a matrix. For exam-
ple, Figure 1a matches Figure 1b under a parametric shape rule, although there 
is no 3 × 3 matrix that describes the transformation. As a result, open terms 
have to be determined, point-by-point, for each candidate subshape in c.

figure 1. example of parametric subshape matching.

In general, when there are k open terms, there are      possibilities. Even 
assuming that testing against each possibility costs unit time (it is typically 
more expensive in reality), when k is close to n/2, the time complexity is a 
super-polynomial. To give a concrete example, the possible number of tests is 
7.5 × 107when k = 5, n = 100; 1.7 × 1013 when, k = 10, n = 100; and 1.0 × 1029 
when k = 50, n = 100. In practice, a parametric shape rule with k = 5, n = 100 
is not complicated. Note, however, that when k is more than n/2, the number 
of possible tests begins to decrease.

2.3. Parametric subshape recognition is NP-hard

We show that parametric subshape recognition, in general, is NP-hard, by 
reducing the problem to finding certain cliques in a graph. That is, if we can 
solve parametric subshape recognition in polynomial time, then we can solve 
the theoretical clique problem in polynomial time, which is known to be NP-
hard (Cormen et al. 2004).

A clique in an undirected graph G = (V, E) is a subset V'⊆ V of vertices, 
each pair of which is connected by an edge in E. In other words, a clique is a 
complete subgraph of G. The size of a clique is its number of vertices. Figure 
2c is an example of a clique of size 4. The clique problem is an optimization 
problem of finding a clique of maximum size in a graph. For example, in the 
graph of Figure 2a, the maximum clique is 4 (the bolded subgraph).

n
3)    (

n
k)    (

CAAD Futures 2009_compile.indd   760 27/05/09   10:47:15



761Computation-friendly shape grammars

First, we preprocess graph G (Figure 2a) to get G’ (Figure 2b) by treating 
vertices in G as end points of the incident edges, assigning unique 2D coordi-
nates to all vertices so that no three vertices are collinear, and enforcing all arcs 
to be straight lines. This can be done in O(|V|2) time. Note that G' is actually a 
2D shape, and we use it as c.

We next generate a complete graph Gk with k vertices (Figure 2c) and 
similarly preprocess it to obtain Gk ' (Figure 2d). This can be done in O(k2) time. 
Note that Gk 'is actually another 2D shape, and we use it as a, with all the points 
as open terms.

figure 2. example of finding a clique of size 4.

If there is an algorithm, which is capable of detecting the existence of sub-
shape g(c) in c by automatically finding an appropriate assignment of g in a 
polynomial time, then we can use the algorithm to detect the existence of 
subshape g(G') in G’ by automatically finding an appropriate assignment of g 
in a polynomial time, say, Tk. By the particular way that we processed graph G 
and Gk, the existence of subshape g(Gk ') in G’ is identical to the existence of Gk 
in G. In other words, we can use the algorithm to detect the existence of Gk in 
G in a polynomial time of Tk, plus the preprocessing time.

By doing the above preprocessing and detecting for k = {1…|V|} �������sequen-
tially until the answer is false, we can find the clique of maximum size in time 
of O((O|V|2) + ∑|V| (Tk + O(k2)))0, which is polynomial time. This is a contra-
diction as the clique problem is known to be NP-hard. 

From the above, we can conclude that, in general, it is impossible to design 
a polynomial algorithm for parametric subshape recognition for shapes of Type 
V. As a consequence, it is impossible to implement a parametric shape grammar 
interpreter for shapes of Type V with polynomial time complexity. This conclu-
sion can be extended to shapes with curves (Type VII) and to shapes in 3D 

k=1

CAAD Futures 2009_compile.indd   761 27/05/09   10:47:15



762 k. yue • r. krishnamurti • f. grobler

(Types VI and VIII), with the proviso that a straight line is a special case of a 
curve and 2D is a special case of 3D. 

As a result, algorithms, in the literature, particularly, those that deal with 
parametric shapes fall into two categories. The first category handles special 
shapes; the second category is more general, with exponential time complexity, 
which is only practical for shapes of small sizes. The implication for practice 
is that the best we can do is to design and implement a parametric shape gram-
mar interpreter, which is capable of handling a subset of grammars.

3. COMPUTATION-FRIENDLY SHAPE GRAMMARS

As we have seen, interpreting parametric shape grammars in general is NP-
hard. However, there are categories of shape grammars whose implementation 
is tractable. Shape grammars, which capture certain building styles, generally 
fall into this category. Consider, for example, the Queen Anne (Flemming 1987) 
and Prairie house grammars (Koning and Eizenberg 1981). These are examples 
of parametric shape grammars, in which shape rule application does not 
depend on emergent shapes. Markers drive shape rule application, and con-
figurations are rectangular or can be approximated as such. Moreover, param-
eterization is often limited to the height or width of a room, or to the ratio of 
a room split. Shape rules typically relate to adding a room, to subdividing a 
room, or to refinements such as adding windows, doors, etc.

This, together with the conclusion drawn in Section 2.3, leads to a paradigm 
for practical, “general” parametric shape grammar interpreters, as shown in 
Figure 3. We make the assumption that interpreters for shape grammars belong-
ing to different subclasses, collectively, will cover most parametric shape gram-
mars. It should be noted that the classification is considered to be “better” when 
the number of subclasses is smaller, and when, simultaneously, the scope cov-
ered, collectively, is larger. Possible ways of classifying shape grammars needs 
further research.

Aside from the internal characteristics of shape grammars, there are other 
factors that influence their computational tractability, for example, how shape 
grammars are designed and described. Traditionally, a shape grammar is 
designed to simply and succinctly describe an underlying building style, with 
little consideration on how the grammar can be implemented. For example, as 
is often found in the literature, descriptions of the form “If the back or sides 
are wide enough, rule 2 can be used…” are inherently counter-computable. As 
a result, in order to translate this into programming code, shape rules have to 
be specified in a computation-friendly way: that is, shape rules need to be 
quantitatively specified; furthermore, there should be enough precision in the 
specification to disallow generation of ill-dimensioned configurations.

CAAD Futures 2009_compile.indd   762 27/05/09   10:47:15



763Computation-friendly shape grammars

figure 3. a paradigm for practical “general” parametric interpreters.

Closer examination also shows that there may be more than one way to describe 
a particular shape rule; it is possible that one way is easy to compute, and the 
other, might be computationally intractable. As a result, it is desirable to design 
an application program interface (API) as the framework to support the design 
of shape grammars; then, shape grammars that follow the framework are 
guaranteed to be computationally tractable. Such a framework requires an 
underlying data structure, and basic manipulation algorithms. Moreover, for 
ease of code translation, a meta-language built on top of the basic manipulation 
algorithms should also be developed. As grammars in different classes typically 
have differing underlying structures, the appropriate underlying data structure 
for the framework will be different. Ideally, the interpreter for any subclass of 
shape grammars can be supported on a single framework. Consequently, the 
overall framework for parametric shape grammars comprises a series of sub-
frameworks, one for each subclass of shape grammars, as shown in Figure 4, 
which is isomorphic to Figure 3. As the overall framework is capable of ensur-
ing computability, we term shape grammars following such a framework as 
computation-friendly.

In this paper, the concept of the overall framework will be detailed by 
examining a sub-framework. It is advantageous to select a sub-framework for 
a subclass with the largest population. It turns out that shape grammars captur-
ing building styles happen to be a good choice. Of the thirty one shape gram-
mar applications reviewed by Chau et al. (2004), about half deal with architec-
tural plans. Moreover, conventional buildings, which are buildings with 
rectangular spaces or dominated as such, are often the subjects. Consequently, 
we focus on a sub-framework for shape grammars capturing corpora of con-
ventional building types.

CAAD Futures 2009_compile.indd   763 27/05/09   10:47:15



764 k. yue • r. krishnamurti • f. grobler

figure 4. framework for parametric shape grammars: one sub-framework for each subclass

4. A SUB-FRAMEWORK OVER PARAMETRIC 2D RECTANGULAR SHAPES

Shape grammars that capture corpora of conventional building types belong 
to a special subset. Here, shape rules are parametrically specified in such a way 
as to make implementation tractable. Spaces (rooms) are central to buildings 
—whence, to shape grammars that describe building styles. Such grammars 
generally start with a rough layout; details, such as openings and staircase, are 
added at a subsequent stage. There are two main ways of generating a layout; 
space subdivision and space aggregation. Combination of the two ways is pos-
sible. Parametric subshape recognition is, typically, of searching a special room 
under certain constraints—actually, label matching.

4.1. Graph-like data structure

The interpreter needs a data structure to represent layouts with rectangular 
spaces; that is, the data structure contains topological information of the spaces, 
as well as concrete geometry data. A rectangular space is specified by a set of 
walls in such a way that the space is considered rectangular by the human vision 
system. In Figure 5a, among other variations, a space can be specified by four 
walls jointed to one another, four disjoint walls, three walls, or framed by four 
corners. 

A graph-like data structure is used to record such variations. There is a 
boundary node for each corner of the rectangular space, as well as a node for 
each end of a wall. Nodes are connected by either a wall edge (solid line) or an 
empty edge (dotted line). A central node represents the room corresponding 
to the space, and connects to the four corners by diagonal edges (dashed lines). 
It is needed for manipulating boundary nodes, such as dividing a wall through 
node insertion, deleting a wall by changing its edge type to empty, and so on. 
Additionally, information about the room is recorded in the room node, e.g., 
a staircase within the space. Unlike traditional graph data structures, the angle 

CAAD Futures 2009_compile.indd   764 27/05/09   10:47:16



765Computation-friendly shape grammars

at each corner is set to be a right angle. A node has at most eight neighbors. A 
set of such graph units can be combined to represent layouts comprising rect-
angular rooms (Figure 5b).

It is necessary for the data structure to support geometric transformations. 
For layout of rectangular spaces, applicable transformations are translation, 
rotation, reflection, glide reflection, and scale (uniform and non-uniform). 
Moreover, rotations are multiples of 90˚ and reflections are about the either 
horizontal or vertical.

The transformations are easily implemented on the data structure through 
manipulating indices. Each neighbor of a node is assigned an index from 0 to 
7; indices are transformed using simple modulo arithmetic (Figure 5c). For 
example, index+2 (modulo 8), rotates, ccw, neighbor vertices through 90˚. 
Other rotations and reflections are likewise achieved. By viewing the original 
neighbor relationship for each node with the transformed indices, we obtain 
the same transformation of the whole graph. Moreover, we need manipulate 
only the interior layout instead of the left side of a shape rule. This gives the 
same result, albeit simpler. Thus, we only need to consider how to apply shape 
rules in the case of translation, which is automatically applicable to the con-
figuration under different possible transformations.

4.2. Common functions and meta-language

Application of shape rules is achieved by manipulating the data structure. 
Examples of common manipulations include finding a room with a given name, 
finding the north neighbor of a given room, finding the shared wall of two 
given rooms, subdividing and merging rooms, etc. Among these functions, 

figure 5. graph-like data structure for rectangular spaces.

CAAD Futures 2009_compile.indd   765 27/05/09   10:47:16



766 k. yue • r. krishnamurti • f. grobler

some are easier to implement, others need careful design of the underlying 
algorithms. The following is the reasoning of the algorithm backing the func-
tion of finding the shared wall of two given rooms:

figure 6. finding wstart and wend.

In the data structure, the shared wall of two given rooms is represented as a list 
of nodes connected by edges; the simplest form of a shared wall is given by two 
nodes connected by an edge. For two given input room nodes, A and B, in general, 
A and B may not be neighboring rooms at all. If, however, A and B are real neigh-
bors, B can be in any one of four directions from A. Therefore, it is necessary for 
the algorithm to test all four sides of A; for each particular side, it is simply to 
test whether B is in the north neighbors under a given transformation T. If B is 
determined as a neighbor of A at a given side, the exact start node, wStart, and 
end node, wEnd, need to be further determined. The edge from the north-east 
node, nodeNE, to the north-west node, nodeNW, of room A under transformation 
T is guaranteed to be the wall of room A, but not necessarily the wall of room B 
(Figure 6a). As a result, wStart may be actually a node to the right of nodeNE. 
This node is found by traversing from nodeNE to nodeNW, testing whether B is 
its north-west neighbor or not. Similarly, wEnd may be actually a node to the left 
of nodeNW. This node is found by traversing from nodeNW to nodeNE and 
testing whether B is its north-east neighbor or not.

figure 7. two sample rules and their meta-language.

Precondition:  
‘Rff’ exists, and is three-bay 
(2 windows and 1 door).
Transformation: N/A
This rule adds to the front block a hall 
way centered about the front door.

if 
roomExists(‘Rff’) && room(‘Rff’).threeBays() 

then 
a = room(‘Rff’).horSplit(‘*’,’doorCentral’)
b = room(‘Rfb’).horSplit(‘*’,’doorCentral’)

roomMerge(a, b).name(‘Hf’)

CAAD Futures 2009_compile.indd   766 27/05/09   10:47:16



767Computation-friendly shape grammars

(a) Rule 1 and its meta-language

Explicit condition:  
No staircase. ‘Rfb’ and ‘Rff’ exist and are 
neighbors.
Implicit condition: No ‘SfS.’ 
Width of front block is ≤ 18'.
Overall condition:  
stairFront is false. ‘Rfb’ exist. No ‘SfS.’ 
Width of front block is ≤ 18'. 
Transformation: N/A
Add a staircase to room ‘Rfb.’

if 
get(‘stairFront’)=false && roomExists(‘Rfb’) && 

roomExists(‘SfS’)=false && get(‘widthOfFrontBlock’)≤18 
then 

room(‘Rff’).addStair(
position=‘lowerRightCorner’, width=4, height=6)

(b) Rule 2 and its meta-language

All these functions collectively form an API, which grammar designers can 
apply to ensure computability of their designed grammars. Moreover, these 
functions support describing grammars in a meta-language so that shape rules 
can be easily translated into pieces of code. Figure 7 shows two such examples. 
The meta-language is in the form of if-then; the if-part determines whether the 
rule is applicable or not and the then-part is how to do the rewriting. Essentially, 
the meta-language is a set of function calls.

5. SHAPE AND GRAPH GRAMMARS

Graphs provide a natural way of describing complex situations on an intuitive 
level. Graph grammars (Brouno 1990 ; Rozenberg 1997) are rule-based modifica-
tion of graphs through graph rule application. Graph grammars have been 
developed as an extension to graphs of formal string grammars. Among string 
grammars, context-free grammars have proven extremely useful in practical 
applications and powerful enough to generate a wide spectrum of interesting 
formal languages. Analogously, most research focuses on ‘context-free’ graph 
grammars, which typically means local modifications of graphs without ‘global’ 
constraints. Rule application on graphs is, typically, label-driven. The two basic 
choices for rewriting a graph are: node replacement and hyperedge replacement.

Shape grammars are rule-based rewriting system of shapes. In many ways, 
it can be viewed as an extension to shapes of formal string grammars. The 
shared root implies the close connection between graph and shape grammars. 

CAAD Futures 2009_compile.indd   767 27/05/09   10:47:16



768 k. yue • r. krishnamurti • f. grobler

As an example, Drews and Kreowski (1999) used collage grammars to generate 
pictures, e.g., Sierpinski gasket. This suggests that there is an intersection 
between both graph and shape grammars.

Consequentially, shape grammars can take advantage of graph grammar 
research results, especially for those ‘context-free’ shape grammars; that is, the 
shape rewriting happens locally. For example, as shown in Figure 8, the ice-ray 
grammar (Stiny 1977), which is essentially a process of polygon subdivision, 
can be implemented as a graph grammar. Each point correspond a vertex and 
each polygon is decorated with a hyperedge (the vertices drawn in squares 
together with dashed tentacles). Figure 9 shows a sample rule applied in Figure 
8: the right-hand hyperedges are labeled either S as candidates for further rule 
application or T for no more rule application; this is based on certain criteria, 
for example, on the area of the underlying polygon.

Graph and shape grammars deal with differing fields of application. For 
example, graph grammars are found in computer science related applications, 
while shape grammars apply mainly to (architectural or mechanical) design. 
Approaches by which graph grammars are investigated could be instructive to 
shape grammar research. For instance, context-freeness could be an important 
criterion to classify shape grammars.

On the other hand, shapes differ significantly from graphs and so do their 
grammars. Shape grammars do not deal solely with pure pictures; they are usu-
ally imbued with semantics, and represent designs in reality. In this respect, 
dimension is typically important. Graph grammars, however, are inherently 
dimensionless. Semantics make most shape grammars context-sensitive; this 
limits whatever advantages provided by the nice theorems in graph grammars. 

figure 8. implementing the ice-ray grammar as a graph grammar.

CAAD Futures 2009_compile.indd   768 27/05/09   10:47:16



769Computation-friendly shape grammars

figure 10. subshape recognition in a grid figure.

figure 9. the shape and graph rules applied.

Graph grammars are essentially label-driven; however, this does not offer 
much help in solving the fundamental problem of subshape recognition in 
shape grammars. As a classical example (Figure 10), there are many, actually 
an uncountable, number of square subshapes. Converting the grid figure to a 
graph does not change the basic characteristic of the problem.

6. REMARKS

It is clear that appropriate classification of shape grammars is critical to the 
success of the framework proposed. In this respect, approaches in graph gram-
mar research appear to be instructive—similar approaches might prove useful 
in investigating shape grammars for such classification. Equally important is 
to enrich the framework with additional sub-frameworks so that its generality 
can be further investigated.

ACKNOWLEDGEMENTS

This research was supported in part by a grant from US Army Corps of Engi-
neers, Engineer Research and Development Center – Champaign. Any opin-
ions, findings, conclusions or recommendations presented in this paper are 
those of the authors and do not necessarily reflect the views of CERL.

CAAD Futures 2009_compile.indd   769 27/05/09   10:47:17



770 k. yue • r. krishnamurti • f. grobler

REFERENCES

Brouno, C., 1990, Graph Rewriting: An Algebraic and Logic Approach, Handbook of Theo-
retical Computer Science, vol. B: Formal Models and Semantics, MIT Press.

Chau, H.H., Chen, X., McKay, A. and Pennington, A., 2004, Evaluation of a 3D Shape Gram-
mar Implementation, in J.S. Gero (ed.), Design Computing and Cognition ‘04. Boston.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., 2004, Introduction to Algorithms, 
Second Edition, The MIT Press.

Drewes, F. and Kreowski, H.J., 1999, Picture Generation by Collage Grammars, Handbook of 
Graph Grammars and Computing by Graph Transformation, vol. 2, Applications, Lan-
guages, and Tools, World Scientific Publishing Co.

Flemming, U., 1987, More than the Sum of Parts: the Grammar of Queen Anne Houses, 
Environment and Planning B: Planning and Design, 14, 323-350.

Koning, H. and Eizenberg, J., 1981, The Language of the Prairie: Frank Lloyd Wright’s Prairie 
houses, Environment and Planning B: Planning and Design, 8, 295-323.

Krishnamurti, R., 1981, The construction of shapes, Environment and Planning B: Planning 
and Design, 8, 5-40.

McCormack, J.P. and Cagan, J., 2002, Supporting Designer’s Hierarchies through Parametric 
Shape Recognition, Environment and Planning B: Planning and Design, 29, 913-931.

Rozenberg, G. (ed.), 1997, Handbook of Graph Grammars and Computing by Graph Transfor-
mation, vol. I., Foundations, World Scientific Publishing Co.

Stiny, G., 1977, Ice-ray: a note on Chinese Lattice Designs. Environment and Planning B: 
Planning and Design, 4, 89-98.

Stiny, G., 1980, Introduction to Shape and Shape Grammars. Environment and Planning B: 
Planning and Design, 7, 343-351.

Stiny, G., 2006, Shape: Talking about Seeing and Doing, MIT Press, Cambridge.

CAAD Futures 2009_compile.indd   770 27/05/09   10:47:17


