Introduction to Computational Fluid Dynamics (CFD)
---------------------------------------------------------------------
|
Week 1
|
The need for CFD, applications, historic perspective, different methods for CFD, state-of-the-art, challenges, future directions
Introduction to Navier-Stokes (NS) equations, physical and mathematical classification of PDEs, system of equations, some key PDEs of interest in CFD
|
---------------------------------------------------------------------
Basics of Finite Difference Method (FDM))
---------------------------------------------------------------------
|
Week 2
|
Numerical approximation of derivatives using Taylor series, order-of-accuracy, modified wavenumber analysis of numerical derivatives, finite difference representation of a PDE, truncation error, consistency, stability
|
---------------------------------------------------------------------
FDM for Parabolic PDEs
---------------------------------------------------------------------
|
Week 3
|
Numerical solution of 1-D transient diffusion equation, explicit methods, modified wavenumber analysis, von Neumann stability analysis, modified equation method for accuracy and consistency, DuFort Frankel method, implicit methods, types of boundary conditions and their implementation
|
Week 4
|
Crank-Nicolson method, 2-D and 3-D transient diffusion equations, approximate factorization and alternate direction implicit (ADI) methods for computational efficiency
|
---------------------------------------------------------------------
FDM for Hyperbolic PDEs
---------------------------------------------------------------------
|
Week 5
|
Numerical solution of 1-D advection equation, upwind explicit and FTCS implicit methods, Courant condition, von Neumann stability analysis, amplitude and phase errors
|
Week 6
|
Lax-Friedrichs method, Lax-Wendroff method, trapezoidal method, boundary conditions, linear Burger's equation, advection-diffusion equation, matrix structure for implicit method in 2-D
|
Week 7
|
Review for Midterm exam
Midterm exam
|
---------------------------------------------------------------------
FDM for Elliptic Partial Differential Equations
---------------------------------------------------------------------
|
Week 8
|
Some common elliptic PDEs, solution using direct methods such as Gauss elimination, iterative methods: point Jacobi, Gauss Seidel, SOR, boundary conditions
Line-SOR, method of steepest descent, multigrid acceleration
|
---------------------------------------------------------------------
FDM for Navier-Stokes (NS) Equations
---------------------------------------------------------------------
|
Week 9
|
Derivation of mass, momentum and energy equations, macroscopic and microscopic views
Conservative vs non-conservative forms of NS equations, some other simple fluids equations, FDM for incompressible NS equations
|
Week 10
|
FDM for incompressible NS equations, vorticity-stream function formulation for 2-D incompressible flows
|
Week 11
|
FDM for incompressible NS equations, premitive variable formulation
|
Week 12
|
Introduction to Direct Numerical Simulations (DNS), Reynolds-Averaged Navier Stokes (RANS) and large-eddy simulation (LES) techniques for modeling of incompressible turbulent flows, introduction to numerical methods for compressible flows
|
---------------------------------------------------------------------
Unstructured Grids and Finite Volume Method (FVM)
---------------------------------------------------------------------
|
Week 13
|
Introduction to complex geometry and grids, need for unstructured grids, grid generation and storage of grid connectivity, implimentation of boundary conditions, conversion of PDE into numerical equations using FVM
|
---------------------------------------------------------------------
Project Office Hours
---------------------------------------------------------------------
|
Week 14
|
In-class help with projects
|
---------------------------------------------------------------------
Project Presentations and Submission of Project Reports
---------------------------------------------------------------------
|
Week 15
|
15-20 minutes presentation to the class
|
---------------------------------------------------------------------