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Chapter 4

Component Failure Analysis

4.1 Mechanical Failure
Most broadly, failure of a mechanical component occurs when its function has
been compromised beyond use. Some common examples in the design of me-
chanical components include:

• Breaking of a part into two or more pieces (fracture);

• Permanent distortion of a part (plastic deformation);

• Reduced reliability, e.g. due to wear or the presence of cracks; and

• Unacceptable displacement of a key point (even if it is elastic).

Failure analysis therefore encompasses stress analysis, but also a wide range of
additional domain-specific analyses. In this course, we will use analytical mod-
eling approaches [covered in detail in, e.g. Budynas and Nisbett, 2006] that you
have learned in prior Mechanical Engineering courses to address:

• Failure due to static stress exceeding the yield strength of a material;

• Failure due to excessive displacement;

• Failure due to buckling, a special combined case; and

• Failure due to cyclic loading, i.e. fatigue.

4.2 Failure Due to Excessive Static Stress
A static load is a force or moment that does not change in magnitude, point or
points of application, or direction over time. A static load can produce axial ten-
sion or compression, shear, bending, torsion, or any combination of these.
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Figure 1. Examples of parts that failed under single applications of a large load.
Left: A lawn mower blade driver hub that failed during impact with another struc-
ture. Right: A valve spring that failed during a surge of force in an over-sped
engine. From Budynas and Nisbett [2006].

Failure due to excessive stress under static loads can be classified as:

• Fracture, which occurs if ultimate stress, or Su, is exceeded.

• Plastic deformation, which occurs if yield stress, or Sy, is exceeded.

Ductility refers to the amount of plastic deformation that occurs prior to breakage.
Ductile materials undergo significant deformation, like a piece of taffy, prior to
finally breaking. Brittle materials, by contrast, undergo very little deformation
before they snap. More precisely, using the fracture strain, ε f , or the engineering
strain at the moment of part fracture:

• Ductile materials exhibit ε f > 0.05, and are characterized by Sy and Su
• Brittle materials exhibit ε f < 0.05, and are characterized only by Su

4.2.1 General Rule: Compare Sy to σm or von Mises
Plastic deformation will usually constitute failure for parts you design. In this
course, we will use experimentally-determined yield strengths (or stresses) of ma-
terials, denoted Sy (or σy). These strengths are typically determined in well-
defined tests (standardized by the ASTM) in which a part is subjected to, e.g.,
pure axial loading (axial strength) or pure bending (flexural strength). Results are
interpreted using the same simple models you learned in the prior chapter, i.e.
σ = F/A and σ = My/I, respectively. Therefore, strength values can be cleanly
compared to maximum stress, σm, determined by hand analysis. Similarly, the
von Mises equivalent stress, a common default output of FEA stress analyses, is
equivalent to the hand-calculated stress values for idealized material strength ex-
periments. If the material in question is brittle, simply substitute Su for Sy.
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4.2.2 Other Stress Failure Models

In some design domains (not in this course) you may need to have a more accurate
failure model for a particular material or load scenario. Perhaps high accuracy is
required, or plastic deformation is acceptable, or even desired. Perhaps the ma-
terial has extreme properties, qualitatively different from the common robotics
materials we will use. Perhaps the scale is very small or very large, or, if you like,
very fast or very long. Where to look then? There are many models that could be
applied in such situations, and some of these are covered in detail in analysis texts
such as Ch. 5 of Budynas and Nisbett [2006]. We will touch on these only very
briefly below. In practice, experiments with prototypes or material samples will
provide the best data for accurate failure prediction.

Figure 2. Failure model selection flow chart [Budynas and Nisbett, 2006]. Note
that the von Mises equivalent we will use is derived from Distortion Energy theory.

Ductile materials normally have an identifiable yield strength that is often the
same in compression as in tension (Syt = Syc = Sy). They exhibit significant
plastic deformation before finally breaking. The microscopic mechanism of duc-
tile failure is the deformation by motion of atomistic defects [Steif, 2012] and this
type of failure depends on shear stress. Some generally accepted theories of yield
criteria for ductile materials include Maximum Shear Stress (MSS), Distortion
Energy (DE) and Ductile Coulomb-Mohr (DCM).
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Brittle materials do not exhibit an identifiable yield strength and are typically
classified by ultimate tensile and compressive strengths, Sut and Suc respectively.
They break with no evidence of plastic deformation, like glass. The microscopic
mechanism of brittle failure is the opening up and propagation of small cracks
and it depends on normal stress. Generally accepted theories of fracture criteria
of brittle materials include Maximum Normal Stress (MNS), Brittle Coulomb-
Mohr (BCM), and Modified Mohr (MM).

4.2.3 Failure Due to Excessive Deflection

Excessive stretching of a structure, without reaching the yield stress of the ma-
terial, can also make the structure unsuitable to a task. Compression, tension,
torsion and bending loads can all lead to excessive deflection. Here are some
common deflection modes and the corresponding simple mathematical models
for calculating peak deflection.

Axial loading: δ =
FL
AE

, where δ is axial endpoint displacement

Cantilevered beam: δe =
FL3

3EI
, where δe is orthogonal endpoint displacement

Torsion rod: θ =
T L
JG

, where θ is angular displacement of the rod end

For each of the above, F is the applied force, L is the axial length, A is cross-
sectional area, E is (tensile) elastic modulus , I is area moment of inertia (about
the centroid), T is applied torque, J is polar moment of area (about the axis), and
G is shear (elastic) modulus.

4.2.4 Failure Due to Buckling

A special case of unstable deflection leading to catastrophic failure is buckling.
Buckling typically occurs in long, thin “columns” under compression, but can
also occur in any shape of component or feature under compression. Buckling
occurs because (infinitesimally) small deflections lead to increased leverage of
the applied loads, resulting in even more deflection, creating a positive-feedback
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loop. Failure can be estimated using the Euler buckling model:

Fcr =
Cπ2EI

L2

where Fcr is the critical load, i.e. the load at which the column becomes unstable
and buckling is expected, C is a boundary constraint constant (see the figure on
the next page), E is the modulus of elasticity, I is the cross-sectional area moment
of inertia, and L is the length of the column.

Figure 3. Buckling model boundaries and corresponding constants.

4.3 Failure Due to Fatigue under Cyclic Loading

Mechanical parts frequently experience stresses that vary with time. Often, ma-
chine components are found to have failed under the action of repeated or fluctu-
ating stresses, yet careful analysis reveals that maximum stresses were well below
the yield strength. These failures usually occur after the stresses have been re-
peated a very large number of times. This is called fatigue failure.

Fatigue usually involves three stages of development (for your curiosity):

• Stage I: the initiation of one or more micro-cracks, due to cyclic plastic
deformation followed by crystallographic propagation.
• Stage II: micro-cracks progress into macro-cracks, forming parallel plateau-

like fracture surfaces separated by longitudinal ridges.
• Stage III: during the final stress cycle the remaining material cannot support

loads, resulting in a sudden, fast fracture.
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4.3.1 Fatigue Life and Strength

To determine whether a part will fail under cyclic loading, it is no longer suffi-
cient to compare the maximum expected stress to the static yield strength of the
material, Sy. We must include information about the expected number of loading
cycles, N. As the number of cycles increases the sustainable stress, S, decreases.
N = 1 for static loading and the sustainable stress, S, is equal to Sy. For N > 1,
S will be less than Sy. Fatigue analysis is often based on charts of S vs. N, for a
particular material and set of conditions, an example of which is shown in Figure
4 for carbon steel.

Figure 4. Examples of allowable stress (S or fatigue strength) as a function of the
number of loading cycles (N). Top: One grade of carbon steel. If we expect the
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component to undergo 104 cycles, the allowable stress would be around 70 ksi. Notice
that below 50 ksi, the fatigue life (N at failure) is approximately infinite. The “endurance
limit”, Se, or stress below which fatigue is not expected, for this material is therefore about
50 ksi. Bottom: An aluminum alloy, formed using various manufacturing methods. Both
low surface quality and the presence of asperities accelerate the early stages of fatigue.
Aluminum (and most materials other than steel) generally does not have an endurance
limit, i.e. with enough cycles aluminum will typically fail. However, below 14 ksi, this
grade of wrought aluminum will persist for more than 108 cycles, which is often used to
define “fatigue strength”. Reproduced from [Budynas and Nisbett, 2006].

4.3.2 Analysis of the Endurance Limit

Many materials will survive a number of load cycles, N, approaching infinity as long as
the applied stress is below a maximum value known as the endurance limit. The endurance
limit of an ideal sample, S′e, is shown in Figure 4 Top at the point where the curve becomes
horizontal approaching infinite loads (approximately 50 kpsi in this case). The ( ′ ) denotes
that this endurance limit is for an ideal specimen only. The endurance limit, Se of an
unideal machine part can be calculated using many methods, each may be more or less
accurate depending on part geometry and loading. A method is shown here for calculating
the endurance limit of a cylinder in bending as an example, but it is recommended that
students find other sources to determine the most accurate methods for their particular
problems. For useful parts that are not well represented by an ideal specimen, we must
apply modifying factors as shown in the equation below:

Se = kakbkcS′e

Here ka represents the surface condition modification factor. It is calculated using the
ultimate tensile strength of the material, Su, and factors a and b found in Table 6-2 of
Shigley’s Mechanical Engineering Design [Budynas and Nisbett, 2006]. Factors a and b
are dependent on the type of surface finish (ground, machined, hot-rolled, etc.) and the
system of measurement being used (SI or English). The equation for ka is shown below:

ka = aSb
u

The size modification factor, kb acounts for differences in part sizes compared to those
used in experiements. For axial loading kb = 1. For bending and torsion, kb depends on
the size of the part. Equations shown here are only accurate for diameters, d, measured in
inches [Budynas and Nisbett, 2006].
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kb =

(
d

0.3

)−0.107

= 0.879 ·d−0.107 for 0.11≤ d ≤ 2.0 in

kb = 0.91d−0.0157 for 2.0 < d < 10.0 in

Kc is the loading factor. The endurance limit proves to be different for each kind of load-

ing. We adjust for this by including a loading factor in our calculations.

kc = 1.0 bending

kc = 0.85 axial

kc = 0.59 pure torsion

Example of endurance limit analysis:

• Material: Alum 7075-T6, S′e = 23 ksi. This is the endurance strength under ideal
conditions. Ultimate tensile strength, used for some calculations below, Su = 83 ksi.

• Fatigue strength modification factors:

– loading, bending with kc = 1;
– surface, ground, a = 1.34, b =−0.08, ka = aSb

u = 0.94;
– size, diameter d = 1 in., kb = 0.879d−0.107 = 0.88.

• Part stress: peak bending stress σmax = 9 ksi, no concentrators.

• Synthesis: Se = kakbkcS′e = 18 ksi, thus, F.O.S.= Se/σmax = 2 for unlimited cycles.

Note: This example is not representative of fatigue analysis for any given part. Many
more modification factors for calculating Se exist for different operating conditions which
should be considered. Other methods not shown here may be more useful depending on
the problem. The endurance limit is an important value to calculate for parts experiencing
extremely large numbers of cycles, but not for parts experiencing for few cycles. A more
compelte list of methods and modification factors can be found in other sources such as
Shigley’s Mechanical Engineering Design[Budynas and Nisbett, 2006].

4.3.3 Fatigue Concepts for Design
With cyclic loading, peak stress matters, but is compared to an adjusted allowable stress.
Get a rough idea of the factors that affect this allowable stress in your design domain and
avoid designs that exacerbate such factors. When the qualitative design is set, estimate S
and optimize the design, then check S with the final parameter values. Fatigue is harder
to predict than static failure, so adjust the factor of safety of your design accordingly.
In life-critical applications, always perform tests on a physical prototype before going to
production. Remember that:
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• Material matters

• Stress concentrations matter

• Other factors (e.g. surface, size, temperature, etc.) matter some
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