
18-330 Cryptography Notes: Symmetric Encryption

Note: This is provided as a resource and is not meant to include all material from lectures or recitations.

The proofs shown, however, are good models for your homework and exams.

1 IND-CPA Security

1.1 IND-CPA Adversarial Game

Definition 1. Let E = (KeyGen,E,D) be defined over (K,M, C). The IND-CPA game is defined as follows:

1. The experiment takes as input bit b ∈ {0, 1}, chosen uniformly at random.

2. The Challenger runs k ← KeyGen(λ) for security parameter λ.

3. The Adversary runs some logic to select any two messages m0,m1 ∈ M, where |m0| = |m1|. It then

sends (m0,m1) to the Challenger.

4. The Challenger replies to the Adversary with E(k,mb).

5. Repeat steps 3 through 4 some poly(log|K|) number of times.

6. The Adversary runs some logic to output b′, which is the output of the experiment.

Note that k and b remain fixed for the duration of the experiment, so the challenger always encrypts the

first message from the adversary (if b = 0) or always encrypts the second message (if b = 1).

1.2 IND-CPA Security Advantage

Definition 2. Let E be an encryption scheme, and let A be an adversary. We define A’s semantic security

advantage as:

AdvIND-CPA[A, E ] := Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]

1.3 IND-CPA Security

In class, we define IND-CPA security as follows:

Definition 3. An encryption algorithm E is IND-CPA secure if for all efficient adversaries A:

AdvIND-CPA[A, E ] < ε ≤ negl(log |K|)

Intuitively, the encryption algorithm is IND secure if the probability that any adversary wins the IND-CPA

game is no better than the probability of winning the game by simply guessing.

In this class, we will use IND-CPA security and “semantic security” interchangeably. As the textbook notes,

these are formally different notions, but they are provably equivalent.
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2 Stateful Counter Mode

Counter mode allows us to construct a variable-length IND-CPA secure encryption scheme from a secure

PRF F .

Definition 4. Let F be a secure PRF. Then we define counter mode:

• Encryption

Algorithm 1: Encryption Algorithm Ek(M)

1 M [1]...M [m]←M

2 C[0]← ctr

3 for i = 1, ...,m do

4 P [i]← FK(ctr + i)

5 C[i]← P [i]⊕M [i]

6 end

7 ctr ← ctr +m

8 return C

• Decryption

Algorithm 2: Decryption Algorithm Dk(M)

1 C[0]...C[m]← C

2 ctr ← C[0]

3 for i = 1, ...,m do

4 P [i]← FK(ctr + i)

5 M [i]← P [i]⊕ C[i]

6 end

7 return M

2.1 Proof of Semantic Security

We prove that counter mode encryption is semantically secure via a reduction.

Proof. Let E = (KeyGen,E,D) be counter-mode encryption defined over (K,M, C), based on the secure

PRF f . Suppose for the sake of contradiction that E is not semantically secure. Then there exists an

efficient adversary AIND that wins the IND-CPA (semantic) security game with non-negligible probability.

Using AIND, we can construct an adversary APRF that can win the PRF security game with non-negligible

probability:
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Algorithm 3: Adversary APRF

1 Select d from {0,1}
2 Call AIND

3 while AIND queries (m0,m1) do

4 Query ChallengerPRF to obtain sufficient Fk(ctr + i)’s to calculate E(md).

5 Reply to AIND with E(md)

6 end

7 Receive d′ from AIND

8 if d′ = d then

9 return 0

10 else

11 return 1

12 end

We show that APRF is an efficient adversary with non-negligible advantage.

As a first step to calculating the advantage of APRF, we argue that APRF perfectly simulates the challenger

for AIND when the PRF challenger for APRF uses a PRF (i.e., when the PRF challenger’s bit is 0, meaning

that it uses the PRF F ). In this case, AIND will send a message pair (m0,m1) ∈M×M to ChallengerIND

(which is APRF). APRF will respond with E(k,md). The exchange repeats a polynomial number of times.

Then, AIND outputs a guess d′. So, this adheres to the IND-CPA game perfectly.

Based on this argument, we can calculate the first part of APRF’s advantage, namely the probability that

APRF outputs 1 when the challenge game is run with bit 0; i.e., Pr[b′PRF = 1 | b = 0].

Pr[b′PRF = 1 | b = 0] = 1− Pr[AIND wins with CTR + PRF] (1)

= 1−
(

1

2
Pr[d′ = 1 | d = 1] +

1

2
Pr[d′ = 0 | d = 0]

)
(2)

= 1−
(

1

2
Pr[d′ = 1 | d = 1] +

1

2
(1− Pr[d′ = 1 | d = 0])

)
(3)

= 1−
(

1

2
(1 + Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0])

)
(4)

= 1−
(

1

2
(1 +AdvIND[AIND, E ])

)
(5)

=
1

2
− 1

2
AdvIND[AIND, E ] (6)

Some brief justification: APRF outputs 1 (on line 11 of the algorithm) only when d′ 6= d (i.e., when AIND

guesses incorrectly about which message(s) were encrypted). The probability that this happens is simply

one minus the probability that AIND guesses correctly, which gives us line 1 above. Line 2 expands “guess

correctly” into the two possible conditions in which AIND can be correct: Either the game has bit 1 and

AIND says 1, or the game has bit 0 and AIND says 0. These two possible settings for the bit each occur

with 50% probability. Line 3 simply says that the probability that the game outputs 0 is one minus the

probability that it outputs 1 (since there are only two possible outputs). Line 4 just rearranges terms. Line

5 observes that the last two terms in Line 4 are the definition of AdvIND[AIND, E ].
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Next, we need to calculate the second part of APRF’s advantage, namely the probability that APRF outputs

1 when the challenge game is run with bit 1; i.e., Pr[b′ = 1 | b = 1]:

Pr[b′ = 1 | b = 1] = 1− Pr[AIND wins with CTR + Rand F] (7)

= 1− 1

2
(8)

=
1

2
(9)

Line 7 is justified in the same way as in the previous calculation. Line 8 is much more subtle and requires

reasoning about how CTR mode operates. In particular, note that by design CTR mode never invokes the

underlying function (whether it is a PRF or a random function) with the same input twice. Hence, when

we encrypt using a truly random function, this means that each call to encrypt chooses a uniformly random

element (call it p) from the range of F (this is the definition of a random function) and XORs it with the

message. Hence, we can view the scheme as exactly a one-time pad scheme (recall that a OTP randomly

selects a key and XORs it with the message). Because a OTP is perfectly secret, the output of AIND is

perfectly random with respect to the actual choice of bit d, and hence the probability that AIND wins is 1
2 .

Now we calculate the advantage of APRF and show that it is non-negligible.

AdvPRF[APRF, f ] := |Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1]| (10)

=

∣∣∣∣12 − 1

2
AdvIND[AIND, E ]− 1

2

∣∣∣∣ (11)

=
1

2
AdvIND[AIND, E ] (12)

Since AdvIND[AIND, E ] is non-negligible, so is 1
2AdvIND[AIND, E ]. Hence, APRF has non-negligible advantage.

Because APRF has non-negligible advantage, f cannot be a secure PRF. But this contradicts our initial

assumption that f is a secure PRF. So by contradiction, counter mode encryption, when based on a secure

PRF f , must be semantically secure.

3 PR-CPA Security

3.1 PR-CPA Adversarial Game

Definition 5. Let E = (KeyGen,E,D) defined over (K,M, C). The PR-CPA game is defined as follows:

1. The Challenger runs k ← KeyGen(λ) and samples m from M uniformly at random. Give E(k,m) to

the Adversary.

2. The Adversary runs some logic and selects a message mi from M.

3. The Challenger replies with E(k,mi).

4. Repeat steps 2 through 3 for some poly(log|K|) number of times.

5. Finally, the Adversary runs some logic to output m′ ∈M, which is the output of the experiment.
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3.2 PR-CPA Advantage

Definition 6. Let E = (KeyGen,E,D) be defined over (K,M, C), and let A be an poly-time adversary. The

PR-CPA advantage is defined as:

AdvPR-CPA[A, E ] := Pr[m = m′]

where m′ is the output of the experiment.

3.3 PR-CPA Security

Definition 7. An encryption scheme E is PR-CPA secure if for all efficient A:

AdvPR-CPA[A, E ] < ε

4 IND-CPA Secure implies PR-CPA Secure

Proof. We will show that if an encryption scheme is IND-CPA (semantically) secure, then it must also be

PR-CPA secure via a proof by reduction.

Let E = (KeyGen,E,D) be an IND-CPA secure encryption scheme defined over (K,M, C). Suppose for the

sake of contradiction that E is not PR-CPA secure. Then there exists an efficient adversary APR that can

recover the plaintext with non-negligible PR advantage. Given APR, we can construct an adversary AIND

that has a non-negligible semantic security advantage. AIND is as follows:

Algorithm 4: Adversary AIND

1 Choose m0 from M and m1 from M\ {m0}.
2 Send ChallengerIND (m0,m1) and receive c.

3 Execute APR

4 Send APR the ciphertext c.

5 while APR queries x ∈M do

6 Send ChallengerIND (x, x) and receive E(k, x) = c′.

7 Reply to APR with c′.

8 end

9 m′ = output of APR.

10 if m′ = m1 then

11 return 1.

12 else

13 return 0.

14 end

We show that AIND is an efficient adversary with a non-negligible advantage.

First, we argue that AIND perfectly simulates the challenger for APR. On line 4 of our definition of AIND,

we send APR a ciphertext. Then APR queries AIND for a message x. We use the ChallengerIND to generate

c = E(k, x) and reply to APR with c. We repeat this exchange a polynomial number of times, and then APR
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finally outputs a guess m′. So, this matches the definition of the PR-CPA security game.

Now we calculate the advantage of AIND and show that it is noticeable (non-negligible). Here is our definition

of CPA/semantic security advantage:

AdvIND-CPA[AIND, E ] := |Pr[b′IND = 1 | b = 1]− Pr[b′IND = 1 | b = 0]|

By construction of AIND, we have:

Pr[b′IND = 1 | b = 0] ≤ 1

2|M |
= negl (13)

Pr[b′IND = 1 | b = 1] = AdvPR[A, E ] (14)

The first probability is based on the observation that when the challenger for AIND is given a 0 bit, it always

encrypts the first message it is sent, which means in step 2 of the algorithm above, we have c = E(k,m0).

This implies that APR has no information at all about m1. Hence, the only time that AIND will output 1 is

when APR happens to randomly guess m1, which happens at most 1
2|M| of the time.

The second probability is based on the observation that when the challenger for AIND is given a 0 bit, then

we are perfectly playing the PR game with APR.

Plugging all of this into our equation that defines an adversary’s CPA advantage, we have:

AdvIND−CPA[AIND, E ] := |Pr[b′IND = 1 | b = 1]− Pr[b′IND = 1 | b = 0]|

≥ AdvPR[A, E ]− 1

2|M |

Because we assumed AdvPR[A, E ] is non-negligible, the advantage of AIND is non-negligible, so E is not

IND-CPA (semantically) secure. But this contradicts our initial assumption that E is IND-CPA secure. So

by contradiction, E must be PR secure. Hence, IND-CPA security implies PR-CPA security.
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