A Graduate Course in Applied Cryptography

Dan Boneh and Victor Shoup

Version 0.6, Jan. 2023

Preface

Cryptography is an indispensable tool used to protect information in computing systems. It is
used everywhere and by billions of people worldwide on a daily basis. It is used to protect data at
rest and data in motion. Cryptographic systems are an integral part of standard protocols, most
notably the Transport Layer Security (TLS) protocol, making it relatively easy to incorporate
strong encryption into a wide range of applications.

While extremely useful, cryptography is also highly brittle. The most secure cryptographic
system can be rendered completely insecure by a single specification or programming error. No
amount of unit testing will uncover a security vulnerability in a cryptosystem.

Instead, to argue that a cryptosystem is secure, we rely on mathematical modeling and proofs
to show that a particular system satisfies the security properties attributed to it. We often need to
introduce certain plausible assumptions to push our security arguments through.

This book is about exactly that: constructing practical cryptosystems for which we can argue
security under plausible assumptions. The book covers many constructions for different tasks in
cryptography. For each task we define a precise security goal that we aim to achieve and then
present constructions that achieve the required goal. To analyze the constructions, we develop a
unified framework for doing cryptographic proofs. A reader who masters this framework will be
capable of applying it to new constructions that may not be covered in the book.

Throughout the book we present many case studies to survey how deployed systems operate.
We describe common mistakes to avoid as well as attacks on real-world systems that illustrate the
importance of rigor in cryptography. We end every chapter with a fun application that applies the
ideas in the chapter in some unexpected way.

Intended audience and how to use this book

The book is intended to be self contained. Some supplementary material covering basic facts from
probability theory and algebra is provided in the appendices. The book is divided into three parts.

e Part I develops symmetric encryption which explains how two parties, Alice and Bob, can
securely exchange information when they have a shared key unknown to the attacker. We
discuss data confidentiality, data integrity, and the important concept of authenticated en-
cryption.

e Part II develops the concepts of public-key encryption and digital signatures, which allow
Alice and Bob to communicate securely, without having a pre-shared secret key.

e Part III is about cryptographic protocols, such as protocols for user identification, key ex-
change, zero knowledge, and secure computation.

ii

A beginning reader can read though the book to learn how cryptographic systems work and
why they are secure. Every security theorem in the book is followed by a proof idea that explains
at a high level why the scheme is secure. On a first read one can skip over the detailed proofs
without losing continuity. A beginning reader may also skip over the mathematical details sections
that explore nuances of certain definitions.

An advanced reader may enjoy reading the detailed proofs to learn how to do proofs in cryp-
tography. At the end of every chapter you will find many exercises that explore additional aspects
of the material covered in the chapter. Some exercises rehearse what was learned, but many ex-
ercises expand on the material and present additional ideas that are not covered in the body. We
recommend that readers read through the exercises, even if they do not intend to solve them.

Status of the book

The current draft is mostly complete, although there are a few missing sections here and there.
Those sections, as well as the appendices, are forthcoming. We hope you enjoy this write-up. Please
send us comments and let us know if you find typos or mistakes. We are very grateful to all the
readers who have already sent us comments.

Citations: While the current draft is mostly complete, we have not yet included citations and
references to the many works on which this book is based. Those will be coming soon and will be
presented in the Notes section at the end of every chapter.

Dan Boneh and Victor Shoup
Jan. 2023

iii

Contents

1 Introduction

1.1
1.2

Historic ciphers
Terminology used throughout the book

Secret key cryptography

2 Encryption

2.1

2.2

2.3

2.4
2.5
2.6

3.1

3.2
3.3

Shannon ciphers and perfect securityo
2.1.1 Definition of a Shannon cipher L.
2.1.2 Perfect security
2.1.3 Thebadnews e
Computational ciphers and semantic security
2.2.1 Definition of a computational ciphero
2.2.2 Definition of semantic security L.
2.2.3 Connections to weaker notions of security
2.2.4 Consequences of semantic security
2.2.5 Bit guessing: an alternative characterization of semantic security
Mathematical details
2.3.1 Negligible, super-poly, and poly-bounded functions
2.3.2 Computational ciphers: the formalities
2.3.3 Efficient adversaries and attack games00
2.3.4 Semantic security: the formalities
A fun application: anonymous routing
Notes . . . o o e e
Exercises e

Stream ciphers

Pseudo-random generators
3.1.1 Definition of a pseudo-random generator
3.1.2 Mathematical details
Stream ciphers: encryption witha PRG
Stream cipher limitations: attacks on the one time pad
3.3.1 The two-time pad is insecure
3.3.2 The one-time pad is malleable

v

3.4 Composing PRGs e 54
3.4.1 A parallel constructiono 54
3.4.2 A sequential construction: the Blum-Micali method 59
3.4.3 Mathematical details 61
3.5 Thenext bittest e 64
3.6 Case study: the Salsa and ChaCha PRGs 67
3.7 Case study: linear generators 70
3.7.1 An example cryptanalysis: the linear congruential generator 70
3.7.2 The subset sum generator o 73
3.8 Case study: cryptanalysis of the DVD encryption system 74
3.9 Case study: cryptanalysis of the RC4 stream cipher 77
3.91 Security of RC4 78
3.10 Generating random bits in practice Lo 80
3.11 A broader perspective: computational and statistical indistinguishability 82
3.11.1 Mathematical details 87
3.12 A fun application: coin flipping and bit commitment 88
3.13 Notes e 89
3.14 EXErciSes e e e e e e 89
Block ciphers 96
4.1 Block ciphers: basic definitions and properties 96
4.1.1 Some implications of security 98
4.1.2 Efficient implementation of random permutations 101
4.1.3 Strongly secure block ciphers oo 101
4.1.4 Using a block cipher directly for encryption 102
4.1.5 Mathematical details 106
4.2 Constructing block ciphers in practice 107
421 Casestudy: DES 109
4.2.2 Exhaustive search on DES: the DES challenges 113
4.2.3 Strengthening ciphers against exhaustive search: the 3£ construction 115
424 Casestudy: AES L 117
4.3 Sophisticated attacks on block cipherso oL 122
4.3.1 Algorithmic attacks 123
4.3.2 Side-channel attacks 126
4.3.3 Fault injection attackson AES 130
4.3.4 Quantum exhaustive search attacks 131
4.4 Pseudo-random functions: basic definitions and properties 132
4.4.1 Definitions. e 132
4.4.2 Efficient implementation of random functions 133
4.4.3 When is a secure block cipher a secure PRF? 134
4.4.4 Constructing PRGs from PRFs 0. 138
4.4.5 Mathematical details 139
4.5 Constructing block ciphers from PRFs.o 141
4.6 The tree construction: from PRGsto PRFs 147
4.6.1 Variable length tree construction L0 151
4.7 The ideal cipher model Lo 154

4.8
4.9
4.10

4.7.1 Formal definitions
4.7.2 Exhaustive search in the ideal cipher model
4.7.3 The Even-Mansour block cipher and the £X construction
4.7.4 Proof of the Even-Mansour and £X theorems
A fun application: comparing information without revealingit
Notes e e e e e e
Exercises o e e

Chosen Plaintext Attack

5.1
5.2
5.3
5.4

5.5

5.6
5.7
5.8

Introduction e
Security against multi-key attacks oo
Semantic security against chosen plaintext attack
Building CPA secure ciphers
5.4.1 A generic hybrid construction oL
5.4.2 Randomized counter mode
54.3 CBCmode e
5.4.4 Case study: CBC padding in TLS 1.0
5.4.5 Concrete parameters and a comparison of counter and CBC modes
Nonce-based encryption
5.5.1 Nonce-based generic hybrid encryption
5.5.2 Nonce-based Counter mode,
5.5.3 Nonce-based CBCmode
A fun application: revocable broadcast encryption
Notes o e
Exercises

Message integrity

6.1

6.2
6.3
6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13

Definition of a message authentication code
6.1.1 Mathematical details o
MAC verification queries do not help the attacker
Constructing MACs from PRFs o
Prefix-free PRFs for long messageso oL
6.4.1 The CBC prefix-free secure PRF
6.4.2 The cascade prefix-free secure PRFo o000
6.4.3 Extension attacks: CBC and cascade are insecure MACs
From prefix-free secure PRF to fully secure PRF (method 1): encrypted PRF

6.5.1 ECBC and NMAC: MACs for variable length inputs
From prefix-free secure PRF to fully secure PRF (method 2): prefix-free encodings .
6.6.1 Prefix free encodingso
From prefix-free secure PRF to fully secure PRF (method 3): CMAC
Converting a block-wise PRF to bit-wise PRF
Case study: ANSI CBC-MAC
Case study: CMAC e
PMAC: a parallel MAC
A fun application: searching on encrypted data
Notes

vi

177
177
179
181
183
183
189
194
199
199
201
203
203
204
205
208
208

6.14 EXErcisSeso e 246

Message integrity from universal hashing 252
7.1 Universal hash functions (UHFs) 252
7.1.1 Multi-query UHFs 254
7.1.2 Mathematical details 255
7.2 Constructing UHFs 0 255
7.2.1 Construction 1: UHFs using polynomials 255
7.2.2 Construction 2: CBC and cascade are computational UHFs 258
7.2.3 Construction 3: a parallel UHF from a small PRF 260
7.3 PRF(UHF) composition: constructing MACs using UHFs 262
7.3.1 Using PRF(UHF) composition: ECBC and NMAC security 265
7.3.2 Using PRF(UHF) composition with polynomial UHFs 265
7.3.3 Using PRF(UHF) composition: PMACy security 266
7.4 The Carter-Wegman MAC 266
7.4.1 Using Carter-Wegman with polynomial UHFs 273
7.5 Nonce-based MACS e 273
7.5.1 Secure nonce-based MACs 274
7.6 Unconditionally secure one-time MACs 275
7.6.1 Pairwise unpredictable functions 275
7.6.2 Building unpredictable functionso oo o L 275
7.6.3 From PUFs to unconditionally secure one-time MACs 276
7.7 A fun application: timing attacks L o L oL 276
7.8 Notes o e 277
7.9 Exercises 277
Message integrity from collision resistant hashing 287
8.1 Definition of collision resistant hashing 290
8.1.1 Mathematical details L 290
8.2 Building a MAC for large messages 291
8.3 Birthday attacks on collision resistant hash functions 293
8.4 The Merkle-Damgard paradigm 295
8.4.1 Joux’sattack 298
8.5 Building Compression Functions o oo 299
8.5.1 A simple but inefficient compression function 299
8.5.2 Davies-Meyer compression functionso 300
8.5.3 Collision resistance of Davies-Meyer 301
8.6 Case study: SHA256 e 303
8.6.1 Other Merkle-Damgard hash functions 305
8.7 Casestudy: HMAC 307
8.7.1 Security of two-key mnesto 308
8.7.2 The HMAC standard 309
8.7.3 Davies-Meyer is a secure PRF in the ideal cipher model 310
8.8 The Sponge Construction and SHA3 313
8.8.1 The sponge constructiono oo 314
8.8.2 Case study: SHA3, SHAKE128, and SHAKE256 319

vii

8.9 Merkle trees: proving properties of a hashed list 320
8.9.1 Authenticated data structures 323

8.10 Key derivation and the random oracle model 324
8.10.1 The key derivation problem 0oL 325
8.10.2 Random oracles: a useful heuristic 327
8.10.3 Random oracles: safe modes of operation 332
8.10.4 The leftover hash lemma 334
8.10.5 Casestudy: HKDF 335

8.11 Security without collision resistance L. 336
8.11.1 Second preimage resistance Lo oo 336
8.11.2 Randomized hash functions: target collision resistance 337
8.11.3 TCR from 2nd-preimage resistance 338
8.11.4 Using target collision resistance 341

8.12 A fun application: commitments and auctions 343
8.13 Notes e e 347
8. 14 EXErcCiSes o o e e e e e e e 348
9 Authenticated Encryption 357
9.1 Authenticated encryption: definitions L. 358
9.1.1 One-time authenticated encryption 359

9.2 Implications of authenticated encryption 360
9.2.1 Chosen ciphertext attacks: a motivating example 360

9.2.2 Chosen ciphertext attacks: definitiono 362

9.2.3 Authenticated encryption implies chosen ciphertext security 363

9.3 Encryption as an abstract interface 0o oo 365
9.4 Authenticated encryption ciphers from generic composition 367
9.4.1 Encrypt-then-MAC 367

9.4.2 MAC-then-encrypt is not generally secure: padding oracle attacks on SSL . 369

9.4.3 More padding oracle attacks. L. 372

9.4.4 Secure instances of MAC-then-encrypt 373

9.4.5 Encrypt-then-MAC or MAC-then-encrypt? 377

9.5 Nonce-based authenticated encryption with associated data 377
9.6 Ome more variation: CCA-secure ciphers with associated data, 380
9.7 Case study: Galois counter mode (GCM) 381
9.8 Case study: the TLS 1.3 record protocol 383
9.9 Case study: an attack on non-atomic decryptionin SSH. 386
9.10 Case study: 802.11b WEP, a badly broken system 389
9.11 A fun application: private information retrieval 391
9.12 Notes e 391
9.13 EXEercises e e e e 391
IT Public key cryptography 398
10 Public key tools 399
10.1 A toy problem: anonymous key exchange 399

viil

10.2 One-way trapdoor functions Lo oo 400

10.2.1 Key exchange using a one-way trapdoor function scheme 401
10.2.2 Mathematical detailso oo 402

10.3 A trapdoor permutation scheme based on RSA 403
10.3.1 Key exchange based on the RSA assumption 405
10.3.2 Mathematical details 405

10.4 Diffie-Hellman key exchange 406
10.4.1 The key exchange protocolo oL 407
10.4.2 Security of Diffie-Hellman key exchange 407

10.5 Discrete logarithm and related assumptions 408
10.5.1 Random self-reducibility o 411
10.5.2 Mathematical details L Lo oo 413

10.6 Collision resistant hash functions from number-theoretic primitives 414
10.6.1 Collision resistance based on DL 414
10.6.2 Collision resistance based on RSA 415

10.7 Attacks on the anonymous Diffie-Hellman protocol 417
10.8 Merkle puzzles: a partial solution to key exchange using block ciphers 418
10.9 A fun application: accumulators 420
10.10 Notes o o o o e 423
10.11 EXercises o v o e e e e e e e e e e e e e 424
11 Public key encryption 434
11.1 Two further example applications 435
11.1.1 Sharing encrypted files 435
11.1.2 Key esCrow o o e e e e 435

11.2 Basic definitions e 436
11.2.1 Mathematical details 437

11.3 Implications of semantic security L Lo 438
11.3.1 The need for randomized encryption 438
11.3.2 Semantic security against chosen plaintext attack 439

11.4 Encryption based on a trapdoor function scheme 441
11.4.1 Instantiating Erpp with RSAo o oL 444

11.5 ElGamal encryption L 445
11.5.1 Semantic security of ElGamal in the random oracle model 446
11.5.2 Semantic security of ElGamal without random oracles 448

11.6 A fun application: oblivious transfer based on Diffie-Hellman 451
11.6.1 A secure OT from ElGamal encryption. 452
11.6.2 Adaptive oblivious transfer 453
11.6.3 Oblivious PRFs e 454
11.6.4 A simple adaptive OT from an oblivious PRF 456

11.7 Notes o o e 457
11.8 EXercises o o e e e e e e e e e 458

X

12 Chosen ciphertext secure public key encryption 467

12.1 Basic definitions L 467
12.2 Understanding CCA security it 469
12.2.1 CCA security and ciphertext malleability 469
12.2.2 CCA security vs. authentication 470
12.2.3 CCA security and key escrow 471
12.2.4 Encryption as an abstract interface Lo 472

12.3 CCA-secure encryption from trapdoor function schemes 474
12.3.1 Instantiating Erpe with RSA 0000000 Lo 479

12.4 CCA-secure ElGamal encryption 479
12.5 CCA security from DDH without random oracles 484
12.5.1 Universal projective hash functions 484
12.5.2 Universaly projective hash functions 487
12.5.3 The Ecg schemeo 488

12.6 CCA security via a generic transformation 494
12.6.1 A generic instantiation oL oL oL L 499
12.6.2 A concrete instantiation with E1Gamal 499

12.7 CCA-secure public-key encryption with associated data 501
12.7.1 AD-only CCA security 502

12.8 Case study: PKCS1, OAEP, OAEP+, and SAEP 503
12.8.1 Padding schemes L 504
12.8.2 PKCSlpadding. o 504
12.8.3 Bleichenbacher’s attack on the RSA-PKCS1 encryption scheme 505
12.8.4 Optimal Asymmetric Encryption Padding (OAEP) 508
12.8.5 OAEP+ and SAEP+. 510

12.9 A fun application: private set intersection 511
1210 Notes o o o o e 512
12.11 EXErciSes v o v o e e e e e e e e e e 512
13 Digital signatures 526
13.1 Definition of a digital signature 528
13.1.1 Secure signatures Lo 529
13.1.2 Mathematical details o 532

13.2 Extending the message space with collision resistant hashing 532
13.2.1 Extending the message space using TCR functions 533

13.3 Signatures from trapdoor permutations: the full domain hash 534
13.3.1 Signatures based on the RSA trapdoor permutation 536

13.4 Security analysis of full domain hash 538
13.4.1 Repeated one-way functions: a useful lemma 538
13.4.2 Proofs of Theorems 13.3 and 13.4 543

13.5 An RSA-based signature scheme with a tight security proof 544
13.6 Case study: PKCS1 signatures 546
13.6.1 Bleichenbacher’s attack on PKCS1 signatures 548

13.7 Signcryption: combining signatures and encryption 549
13.7.1 Secure signcryptiono Lo Lo 551
13.7.2 Signcryption as an abstract interfaceo 0oL 554

13.8

13.9

13.7.3 Constructions: encrypt-then-sign and sign-then-encrypt
13.7.4 A construction based on Diffie-Hellman key exchange
13.7.5 Additional desirable properties: forward secrecy and non-repudiation
Certificates and the public-key infrastructure
13.8.1 Coping with malicious or negligent certificate authorities
13.8.2 Certificate revocation
Case study: legal aspects of digital signatures.

13.10 A fun application: forward secure signatures
13. 11 Notes . . . o o e e e
13.12 EXercises o oo e e e

14 Fast hash-based signatures

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8
14.9

Basic Lamport signatureso
14.1.1 Shrinking the signature using an enhanced TCR,
A general Lamport framework
14.2.1 An explicit containment free function
Winternitz one-time signatures L L oL
14.3.1 A domination free function for Winternitz signatures
HORS: short Lamport signatures
14.4.1 Shrinking the public-key using a Merkle tree
Applications of one-time signatures
14.5.1 Online/offline signatures from one-time signatures
14.5.2 Authenticating streamed data with one-time signatures
From one-time signatures to many-time signatures
14.6.1 Indexed signatures L L Lo o
14.6.2 A many-time signature scheme from an indexed signature
14.6.3 The complete Merkle stateless signature system
14.6.4 Nonce-based Merkle signatures
A fun application: the TESLA broadcast MAC
Notes o e
Exercises

15 Elliptic curve cryptography and pairings

15.1
15.2

15.3

15.4
15.5

The group of points of an elliptic curve
Elliptic curves over finite fields Lo oL
15.2.1 Montgomery and Edwards curveso L.
Elliptic curve cryptography L
15.3.1 The curves secp256rl and secp256kl
15.3.2 A security twist
15.3.3 Curve2b519
Pairing based cryptography
Signature schemes from pairings Lo oo
15.5.1 The BLS signature scheme o 0oL
15.5.2 Signature aggregationo o
15.5.3 Secure BLS aggregation o oL
15.5.4 Signature schemes secure without random oracles

X1

583
584
585
586
588
589
592
593
594
595
595
596
596
997
598
600
602
603
606
606

15.6 Advanced encryption schemes from pairings. 643

15.6.1 Identity based encryption oo 643
15.6.2 Related security notions L L L oo 646
15.6.3 Identity based encryption from pairings 648
15.6.4 Applications e 654

15.7 The functional encryption paradigm L 658
15.7.1 Sample functional encryption schemes from pairings 662
15.7.2 Variations on functional encryption 665

15.8 Multilinear maps e 666
15.9 A fun application: fair exchange of signatures 668
15.10 Notes . . . o o o e e e e 671
15.11 Exerciseso e e e 671
16 Attacks on number theoretic assumptions 682
16.1 Analyzing the DL, CDH, and DDH assumptions 682
16.1.1 Square root time algorithms for discrete log 682
16.1.2 Discrete log in groups of composite order 684
16.1.3 Information leakage in composite order groups 686
16.1.4 An attack on static Diffie-Hellman 688
16.1.5 The relation between DL, CDH, and DDH 690

16.2 Discrete log in Z;: the general number field sieve 690
16.2.1 Discrete log records in Z, Lo o 691
16.2.2 A preprocessing attack on discrete log in Zj, 692

16.3 A lower bound on discrete log in generic prime order groups 692
16.4 Analyzing the factoring and RSA assumptions 696
16.4.1 Factoring algorithms L L o 696
16.4.2 Attacks on RSA resulting from poor key generation 698
16.4.3 A fault injection attack on optimized RSA 701
16.4.4 An attack on low secret exponent RSA 702

16.5 Quantum attacks on factoring and discrete log L 705
16.6 Notes e e e e 707
16.7 EXercises e 707
17 Post-quantum cryptography from lattices 712
17.1 Integer lattices L e 713
17.2 Hard problems on lattices L oo 713
17.2.1 The SIS problem 713
17.2.2 The learning with errors (LWE) problem 713
17.2.3 Thering LWE problem oo 713

17.3 Trapdoor sampling from a lattice 713
17.4 Signatures from lattice problems Lo o oL 713
17.5 Public-key encryption from lattices L 713
17.6 Fully homomorphic encryption o L 713
17.7 A fun application: factoring integers using lattices 713
17.8 Notes o o e 713
17.9 EXercises o o e e e e e e e 713

xii

IIT Protocols

18 Protocols for identification and login

18.1

18.2
18.3

18.4

18.5

18.6

18.7
18.8
18.9

Interactive protocols: general notions
18.1.1 Mathematical details
ID protocols: definitions
Password protocols: security against direct attacks
18.3.1 Password cracking using a dictionary attack
Making dictionary attacks harder 0oL
18.4.1 Publicsalts
18.4.2 Secret salts e
18.4.3 Slow hash functions L Lo
18.4.4 Slow memory-hard hash functions
18.4.5 More password management issues
One time passwords: security against eavesdropping
18.5.1 PRF-based one-time passwords: HOTP and TOTP
18.5.2 The S/key system
Challenge-response: security against active attacks
18.6.1 Challenge-response protocolso L.
A fun application: rainbow tables
Another fun application: hardening password storage
Notes o e e

18.10 Exercises e e e e

19 Identification and signatures from Sigma protocols

19.1

19.2

19.3
19.4

19.5

19.6

19.7

Schnorr’s identification protocol Lo
19.1.1 Honest verifier zero knowledge and security against eavesdropping
From identification protocols to signatures
19.2.1 A useful abstraction: repeated impersonation attacks
19.2.2 Security analysis of Schnorr signatures
19.2.3 A concrete implementation and an optimization
Case study: ECDSA signatures.
Sigma protocols: basic definitionso
19.4.1 Special soundnesso
19.4.2 Special honest verifier zero knowledge
Sigma protocols: examples
19.5.1 Okamoto’s protocol for representations
19.5.2 The Chaum-Pedersen protocol for DH-triples
19.5.3 A Sigma protocol for arbitrary linear relations
19.5.4 A Sigma protocol for the pre-image of a homomorphism
19.5.5 A Sigma protocol for RSA
Identification and signatures from Sigma protocols
19.6.1 The Fiat-Shamir heuristic for signatures
Combining Sigma protocols: AND and OR proofs
19.7.1 The AND-proof construction
19.7.2 The OR-proof construction

714

715
717
718
718
719
720
724
724
726
726
728
732
733
735
737
738
740
742
746
746
747

19.8 Witness independence and applications oL 789
19.8.1 Definition of witness independence 790
19.8.2 Special HVZK implies witness independence 791
19.8.3 Actively secure identification protocols 792
19.8.4 Okamoto’s identification protocol 794

19.9 Multi-extractability: another notion of “proof of knowledge” 796
19.9.1 Multi-extractable Sigma protocols oL 796
19.9.2 Applications and limitations L 801

19.10 A fun application: a two round witness independent protocol 808

19.11 Notes o o o e 808

19.12 EXercises o o i e e e e e e e 808

20 Proving properties in zero-knowledge 823

20.1 Languages and soundnesso e e 823

20.2 Proving properties on encrypted data L. 824
20.2.1 A generic protocol for non-linear relations 829

20.3 Non-interactive proof systems L L L 831
20.3.1 Example: a voting protocol Lo 831
20.3.2 Non-interactive proofs: basic syntax 0L 833
20.3.3 The Fiat-Shamir transform 833
20.3.4 Non-interactive soundnesso oo 834
20.3.5 Non-interactive zero knowledge oL 834
20.3.6 An example: applying the Fiat-Shamir transform to the Chaum-Pedersen

protocolo 837

20.4 Computational zero-knowledge and applications 838
20.4.1 Example: range proofs 839
20.4.2 Special computational HVZK 840
20.4.3 An unconstrained generic protocol for non-linear relations 841

20.5 Bulletproofs: compressed Sigma protocols L. 842

20.6 Succinct non-interactive zero-knowledge proofs (SNARKs) 842

20.7 A fun application: everything that can be proved, can be proved in zero knowledge 842

20.8 Notes o e e s 842

20.9 EXercises e e e e e e 843

21 Authenticated Key Exchange 855

21.1 Identification and AKE 857

21.2 An encryption-based protocol 858
21.2.1 Imsecure variations L 861
21.2.2 Summary o e e e 866

21.3 Perfect forward secrecy and a protocol based on ephemeral encryption 867
21.3.1 Assuming only semantically secure encryption 869

21.4 HSM security o o 869
21.4.1 A technical requirement: strongly unpredictable ciphertexts 872
21.4.2 Insecure variations e 872

21.5 Identity protection L e 876

21.6 One-sided authenticated key exchange 878

Xiv

21.6.1 A one-sided authenticated variant of AKE4 879

21.7 Deniability L 880
21.7.1 Deniability without identity protection 881
21.7.2 Deniability with identity protection. 882

21.8 Channel bindings e 884

21.9 Formal definitions 885
21.9.1 Understanding the definition 889
21.9.2 Security of protocol AKEL 890
21.9.3 Modeling perfect forward secrecy oo 891
21.9.4 Modeling HSM security L oo 893
21.9.5 Modeling one-sided authentication 896
21.9.6 Modeling channel bindingso 897

21.10 Case study: TLS session setup o 897
21.10.1 Authenticated key exchange with preshared keys 900

21.11 Password authenticated key exchange, 903
21.11.1 Phishing attacks 903
21.11.2 PAKE: an introduction 906
21.11.3 Protocol PAKE) o o e e e e 906
21.11.4 Protocol PAKE] e e 907
21.11.5 Protocol PAKEo e 909
21.11.6 Protocol PAKES 911
21.11.7 Explicit key confirmation o oo 913
21.11.8 Phishing again Lo 913
21.11.9 Case study: PAKE used in the WiFi WPA3 protocol 914

21.12 Key exchange using an online trusted third party 914
21.12.1 A key exchange protocol with an online TTP 914
21.12.2 Insecure variations of protocol OnlineTTP 916
21.12.3 Security for protocol OnlineTTP 921

21.13 A fun application: establishing Tor channels 921

2114 Notes o o o e e e e 921

21.15 EXercises e e e e e 921

22 Threshold cryptography 924

22.1 Shamir’s secret sharing scheme o L oL 926
22.1.1 Shamir secret sharing Lo 927
22.1.2 Security of Shamir secret sharing 929

22.2 Threshold signatures e 930
22.2.1 A generic threshold signature scheme 932
22.2.2 BLS threshold signing 932
22.2.3 Threshold signature security oL 935
22.2.4 Security of threshold BLS L oo 937
22.2.5 Accountability versus privacy 938
22.2.6 BLS accountable threshold signatures 942

22.3 Threshold decryption schemeso .. 944
22.3.1 A generic threshold decryption scheme 946
22.3.2 An insecure threshold decryption scheme 947

p.q%

22.3.3 A secure threshold decryption scheme based on CDH 949

22.3.4 Threshold decryption securityo oL 951
22.3.5 Security of threshold GS L. 954
22.3.6 A pairing-free version of s -« - v v 0 e e e e e 956
22.4 Distributed key generation L L e 959
22.4.1 Defining the problemo oo 959
22.4.2 A simple DKG protocol 965
22.5 Beyond threshold: monotone access structures 975
22.5.1 The generic secret sharing construction 976
22.5.2 Linear secret sharing schemes and monotone span programs 977
22.5.3 A signature scheme from linear secret sharing 984
22.6 Gap security for threshold cryptosystems 987
22.6.1 Gap security for threshold signature schemes 988
22.6.2 Gap security for threshold decryption schemes 990
22.7 A fun application: a randomness beacon L. 992
22.8 NOteS e 992
22.9 EXErciSes e e e e e e e 992
23 Secure multi-party computation 997
23.1 The basic idea of MPC e 998
23.1.1 Informal notions of securityo oL 998
23.1.2 Assumptionso 999
23.1.3 How to define security formally o000 1001
23.1.4 Other applications of MPC 1001
23.2 Securely evaluating arithmetic circuits L o oL 1003
23.2.1 Arithmetic circuit evaluation 1003
23.2.2 Beaver’s protocol: an honest-but-curious 2.5-party protocol 1005
23.2.3 Abstracting Beaver’s 2.5-party protocol L. 1009
23.2.4 A maliciously secure version of Beaver’s 2.5-party protocol 1011
23.3 Garbled circuits: another approach to MPC 1018
23.3.1 Boolean circuit evaluation Lo 1018
23.3.2 Yao’s 2-party garbled circuit technique: basicideas 1020
23.3.3 Garbling schemes: an application to outsourcing computation 1021
23.3.4 GarbleO: a simple but efficient garbling scheme 1022
23.3.5 Garbling schemes: formally defining security properties 1027
23.3.6 A 2-party garbling-based protocol secure against honest-but-curious adver-
SATIES o o e e e e e e e 1029
23.3.7 A 3-party garbling-based protocol secure against malicious adversaries . . . 1031
23.4 Multi-party computation based on a secure distributed core 1034
23.4.1 Processing inputso 1035
23.4.2 Processing outputso 1037
23.5 Formal models for multi-party computation: the universal composability framework 1037
23.5.1 The real protocol and its execution L oL 1038
23.5.2 The ideal protocol and its execution 1041
23.5.3 Example: the ideal functionality for secure function evaluation 1043
23.5.4 Secure implementation: a strong security notion 1044

xXvi

23.5.5 Consequences of secure implementation 1046

23.5.6 Defining honest-but-curious security 1054
23.5.7 A warmup honest-but-curious security proof: a simple OT protocol 1056
23.5.8 A warmup malicious security proof: a simple OT protocol 1061
23.5.9 An example malicious security proof: Beaver’s 2.5-party protocol 1068
23.5.10 An example malicious security proof: multi-party computation based on a
secure distributed core L o 1072

23.5.11 An example malicious security proof: the 3-party garbled circuit protocol . 1074
23.6 Distributed key generation: ideal functionalities and extension to threshold MPC . 1077

23.6.1 Formal models for secure DKG 1077
23.6.2 A threshold MPC protocol 1079
23.7 OT extension o e e e e 1087
23.8 A fun application: another stab at private set intersection. 1091
23.9 Notes e 1091
23.10 EXErcisSes o e e e e e e e 1091
IV Appendices 1095
A Basic number theory 1096
A1 Cyclicgroups o e 1096
A.2 Arithmetic modulo primes 1096
A.2.1 Basicconcepts 1096
A.22 Structure of Zy;o 1097
A.2.3 Quadratic residues 1097
A24 ComputinginZ, 1098
A.2.5 Summary: arithmetic modulo primes 1099
A.3 Arithmetic modulo composites L 1099
B Basic probability theory 1101
B.1 The birthday Paradox 1101
B.1.1 More collision bounds 1103
B.1.2 A simple distinguisher oo 1103
C Basic complexity theory 1105
D Probabilistic algorithms 1106

Xvii

xviil

Part 1

Secret key cryptography

Chapter 2

Encryption

Suppose Alice and Bob share a secret key k. Alice wants to transmit a message m to Bob over a
network while maintaining the secrecy of m in the presence of an eavesdropping adversary. This
chapter begins the development of basic techniques to solve this problem. Besides transmitting a
message over a network, these same techniques allow Alice to store a file on a disk so that no one
else with access to the disk can read the file, but Alice herself can read the file at a later time.

We should stress that while the techniques we develop in this chapter to solve this fundamental
problem are important and interesting, they do not by themselves solve all problems related to
“secure communication.”

e The techniques only provide secrecy in the situation where Alice transmits a single message
per key. If Alice wants to secretly transmit several messages using the same key, then she
must use methods developed in Chapter 5.

e The techniques do not provide any assurances of message integrity: if the attacker has the
ability to modify the bits of the ciphertext while it travels from Alice to Bob, then Bob may
not realize that this happened, and accept a message other than the one that Alice sent. We
will discuss techniques for providing message integrity in Chapter 6.

e The techniques do not provide a mechanism that allow Alice and Bob to come to share a secret
key in the first place. Maybe they are able to do this using some secure network (or a physical,
face-to-face meeting) at some point in time, while the message is sent at some later time when
Alice and Bob must communicate over an insecure network. However, with an appropriate
infrastructure in place, there are also protocols that allow Alice and Bob to exchange a secret
key even over an insecure network: such protocols are discussed in Chapter 21.

2.1 Shannon ciphers and perfect security

2.1.1 Definition of a Shannon cipher

The basic mechanism for encrypting a message using a shared secret key is called a cipher (or
encryption scheme). In this section, we introduce a slightly simplified notion of a cipher, which we
call a Shannon cipher.

A Shannon cipher is a pair £ = (E, D) of functions.

e The function F (the encryption function) takes as input a key k£ and a message m (also
called a plaintext), and produces as output a ciphertext c¢. That is,

¢ = E(k,m),
and we say that c is the encryption of m under k.

e The function D (the decryption function) takes as input a key k and a ciphertext ¢, and
produces a message m. That is,
m = D(k,c),

and we say that m is the decryption of ¢ under k.

e We require that decryption “undoes” encryption; that is, the cipher must satisfy the following
correctness property: for all keys k& and all messages m, we have

D(k, E(k, m))=m.

To be slightly more formal, let us assume that K is the set of all keys (the key space), M is the
set of all messages (the message space), and that C is the set of all ciphertexts (the ciphertext
space). With this notation, we can write:

E:KxM-—=C,
D:KxC— M.

Also, we shall say that £ is defined over (K, M,C).

Suppose Alice and Bob want to use such a cipher so that Alice can send a message to Bob.
The idea is that Alice and Bob must somehow agree in advance on a key k € K. Assuming this is
done, then when Alice wants to send a message m € M to Bob, she encrypts m under k, obtaining
the ciphertext ¢ = E(k,m) € C, and then sends ¢ to Bob via some communication network. Upon
receiving ¢, Bob decrypts ¢ under k, and the correctness property ensures that D(k, ¢) is the same
as Alice’s original message m. For this to work, we have to assume that ¢ is not tampered with in
transit from Alice to Bob. Of course, the goal, intuitively, is that an eavesdropper, who may obtain
¢ while it is in transit, does not learn too much about Alice’s message m — this intuitive notion is
what the formal definition of security, which we explore below, will capture.

In practice, keys, messages, and ciphertexts are often sequences of bytes. Keys are usually
of some fixed length; for example, 16-byte (i.e., 128-bit) keys are very common. Messages and
ciphertexts may be sequences of bytes of some fixed length, or of variable length. For example, a
message may be a 1GB video file, a 10MB music file, a 1IKB email message, or even a single bit
encoding a “yes” or “no” vote in an electronic election.

Keys, messages, and ciphertexts may also be other types of mathematical objects, such as
integers, or tuples of integers (perhaps lying in some specified interval), or other, more sophisticated
types of mathematical objects (polynomials, matrices, or group elements). Regardless of how fancy
these mathematical objects are, in practice, they must at some point be represented as sequences
of bytes for purposes of storage in, and transmission between, computers.

For simplicity, in our mathematical treatment of ciphers, we shall assume that K, M, and C
are sets of finite size. While this simplifies the theory, it means that if a real-world system allows

messages of unbounded length, we will (somewhat artificially) impose a (large) upper bound on
legal message lengths.

To exercise the above terminology, we take another look at some of the example ciphers discussed
in Chapter 1.

Example 2.1. A one-time pad is a Shannon cipher £ = (E, D), where the keys, messages, and
ciphertexts are bit strings of the same length; that is, £ is defined over (K, M, C), where

K:=M:=C:={0,1}%,

for some fixed parameter L. For a key k € {0,1}* and a message m € {0,1}" the encryption
function is defined as follows:
E(k,m) :=k®m,

and for a key k € {0,1}¥ and ciphertext ¢ € {0, 1}¥, the decryption function is defined as follows:
D(k,c) =k&ec.

Here, “®” denotes bit-wise exclusive-OR, or in other words, component-wise addition modulo 2,
and satisfies the following algebraic laws: for all bit vectors z,y, z € {0, l}L, we have

tQy=y®z, rOY®2) =@y d2z, 00" =2z, and zoz=0"

These properties follow immediately from the corresponding properties for addition modulo 2.
Using these properties, it is easy to check that the correctness property holds for £: for all k,m €
{0, 1}F, we have

D(k, E(k, m))=D(k, kom)=k® (kom)=(k@k)om=0"am=m.

The encryption and decryption functions happen to be the same in this case, but of course, not all
ciphers have this property. O

Example 2.2. A variable length one-time pad is a Shannon cipher & = (E, D), where the
keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit
strings, of length at most L. Thus, £ is defined over (K, M, C), where

K:=1{0,1}Y and M :=C:={0,1}=F

for some parameter L. Here, {0, 1}=" denotes the set of all bit strings of length at most L (including
the empty string). For a key k € {0,1}* and a message m € {0,1}=F of length ¢, the encryption
function is defined as follows:

E(k,m) :=k[0..£—1] & m,

and for a key k € {0,1}" and ciphertext ¢ € {0,1}=% of length ¢, the decryption function is defined
as follows:
D(k,c) :==Ek[0..L—1]®ec.

Here, k[0..¢ — 1] denotes the truncation of k to its first ¢ bits. The reader may verify that the
correctness property holds for £. O

Example 2.3. A substitution cipher is a Shannon cipher £ = (F, D) of the following form. Let
Y. be a finite alphabet of symbols (e.g., the letters A-Z, plus a space symbol,). The message space
M and the ciphertext space C are both sequences of symbols from ¥ of some fixed length L:

M:=C:=xr.

The key space K consists of all permutations on X; that is, each k € K is a one-to-one function from
Y onto itself. Note that K is a very large set; indeed, || = |Z|! (for |2| = 27, |K| ~ 1.09 - 10%®).
Encryption of a message m € £¥ under a key k € K (a permutation on ¥) is defined as follows

E(k,m) := (k(m[0]), k(m[1]),...,k(m[L —1])),

where m[i] denotes the ith entry of m (counting from zero), and k(ml[i]) denotes the application
of the permutation k to the symbol ml[i]. Thus, to encrypt m under k, we simply apply the
permutation k component-wise to the sequence m. Decryption of a ciphertext ¢ € £ under a key
k € K is defined as follows:

D(k,c) := (k= (c[0]), k(c[1]), ...,k (c[L —1])).

Here, k! is the inverse permutation of k, and to decrypt ¢ under k, we simply apply k! component-
wise to the sequence c. The correctness property is easily verified: for a message m € ¥ and key
k € K, we have

D(k, E(k, m))= D(k, (k(m[0]), k(m[1]),...,k(m[L —1]))
— (K~ (k(ml0])), K~ (k(m[1)), ...k~ (k(m[L — 1]))
= (m[0],m[1],...,m[L —1]) =m. O
Ezxzample 2.4 (additive one-time pad). We may also define a “addition mod n” variation of
the one-time pad. This is a cipher & = (E, D), defined over (K, M,C), where K := M = C :=
{0,...,mn — 1}, where n is a positive integer. Encryption and decryption are defined as follows:

E(k,m):=m+k modn D(k,c) := ¢ — k mod n.

The reader may easily verify that the correctness property holds for £. O

2.1.2 Perfect security

So far, we have just defined the basic syntax and correctness requirements of a Shannon cipher.
Next, we address the question: what is a “secure” cipher? Intuitively, the answer is that a secure
cipher is one for which an encrypted message remains “well hidden,” even after seeing its encryp-
tion. However, turning this intuitive answer into one that is both mathematically meaningful and
practically relevant is a real challenge. Indeed, although ciphers have been used for centuries, it
is only in the last few decades that mathematically acceptable definitions of security have been
developed.

In this section, we develop the mathematical notion of perfect security — this is the “gold
standard” for security (at least, when we are only worried about encrypting a single message and
do not care about integrity). We will also see that it is possible to achieve this level of security;
indeed, we will show that the one-time pad satisfies the definition. However, the one-time pad is

7

not very practical, in the sense that the keys must be as long as the messages: if Alice wants to
send a 1GB file to Bob, they must already share a 1GB key! Unfortunately, this cannot be avoided:
we will also prove that any perfectly secure cipher must have a key space at least as large as its
message space. This fact provides the motivation for developing a definition of security that is
weaker, but that is acceptable from a practical point of view, and which allows one to encrypt long
messages using short keys.

If Alice encrypts a message m under a key k, and an eavesdropping adversary obtains the
ciphertext ¢, Alice only has a hope of keeping m secret if the key k is hard to guess, and that
means, at the very least, that the key k should be chosen at random from a large key space. To
say that m is “well hidden” must at least mean that it is hard to completely determine m from
¢, without knowledge of k; however, this is not really enough. Even though the adversary may
not know k, we assume that he does know the encryption algorithm and the distribution of k. In
fact, we will assume that when a message is encrypted, the key k is always chosen at random,
uniformly from among all keys in the key space. The adversary may also have some knowledge of
the message encrypted — because of circumstances, he may know that the set of possible messages
is quite small, and he may know something about how likely each possible message is. For example,
suppose he knows the message m is either mg = "ATTACK_AT_DAWN" or m, = "ATTACK_ AT _DUSK",
and that based on the adversary’s available intelligence, Alice is equally likely to choose either one
of these two messages. Without seeing the ciphertext ¢, the adversary would only have a 50%
chance of guessing which message Alice sent. But we are assuming the adversary does know c.
Even with this knowledge, both messages may be possible; that is, there may exist keys kg and
k1 such that E(kg,mg) = ¢ and E(k1,m1) = ¢, so he cannot be sure if m = mg or m = my.
However, he can still guess. Perhaps it is a property of the cipher that there are 800 keys kg such
that E(ko,mg) = ¢, and 600 keys k1 such that E(k1,mq) = c. If that is the case, the adversary’s
best guess would be that m = mg. Indeed, the probability that this guess is correct is equal to
800/(800 + 600) ~ 57%, which is better than the 50% chance he would have without knowledge
of the ciphertext. Our formal definition of perfect security expressly rules out the possibility that
knowledge of the ciphertext increases the probability of guessing the encrypted message, or for that
matter, determining any property of the message whatsoever.

Without further ado, we formally define perfect security. In this definition, we will consider a
probabilistic experiment in which the key is drawn uniformly from the key space. We write k to
denote the random variable representing this random key. For a message m, F(k,m) is another
random variable, which represents the application of the encryption function to our random key
and the message m. Thus, every message m gives rise to a different random variable E(k,m).

Definition 2.1 (perfect security). Let £ = (E, D) be a Shannon cipher defined over (K, M,C).
Consider a probabilistic experiment in which the random variable k is uniformly distributed over K.
If for all mg,m1 € M, and all c € C, we have

Pr[E(k,mg) = ¢|] = Pr[E(k,m1) = ¢],
then we say that € is a perfectly secure Shannon cipher.

There are a number of equivalent formulations of perfect security that we shall explore. We
state a couple of these here.

Theorem 2.1. Let £ = (E, D) be a Shannon cipher defined over (K, M,C). The following are
equivalent:

(i) & is perfectly secure.

(ii) For every c € C, there exists an integer N, (possibly depending on c) such that for allm € M,
we have

|{k € K : E(k,m) = c}| = N..

(iii) If the random variable k is uniformly distributed over IC, then each of the random variables
E(k,m), for m € M, has the same distribution.

Proof. To begin with, let us restate (ii) as follows: for every ¢ € C, there exists a number P,
(depending on ¢) such that for all m € M, we have Pr[E(k,m) = ¢] = P.. Here, k is a random
variable uniformly distributed over K. Note that P. = N./|K|, where N, is as in the original
statement of (ii).

This version of (ii) is clearly the same as (iii).

(i) = (ii). We prove (ii) assuming (i). To prove (ii), let ¢ € C be some fixed ciphertext.
Pick some arbitrary message my € M, and let P. := Pr[E(k,mg) = ¢|. By (i), we know that for all
m € M, we have Pr[E(k,m) = ¢] = Pr[E(k, mg) = ¢| = P.. That proves (ii).

(ii) = (i). We prove (i) assuming (ii). Consider any fixed mg, m; € M and ¢ € C. (ii) says
that Pr[E(k, mg) = ¢] = P. = Pr[E(k,m1) = ¢], which proves (i). O

As promised, we give a proof that the one-time pad (see Example 2.1) is perfectly secure.
Theorem 2.2. The one-time pad is a perfectly secure Shannon cipher.

Proof. Suppose that the Shannon cipher £ = (E, D) is a one-time pad, and is defined over (I, M, C),
where K := M := C := {0,1}*. For any fixed message m € {0,1}" and ciphertext ¢ € {0,1}%,
there is a unique key k € {0, 1} satisfying the equation

kdm =c,

namely, k := m @ c. Therefore, £ satisfies condition (ii) in Theorem 2.1 (with N, = 1 for each c¢).
g

Ezxample 2.5. Consider again the variable length one-time pad, defined in Example 2.2. This
does not satisfy our definition of perfect security, since a ciphertext has the same length as the
corresponding plaintext. Indeed, let us choose an arbitrary string of length 1, call it mg, and an
arbitrary string of length 2, call it m;. In addition, suppose that c is an arbitrary length 1 string,
and that k is a random variable that is uniformly distributed over the key space. Then we have

Pr[E(k,mgp) =c¢] =1/2 and Pr[E(k,m1)=c|] =0,

which provides a direct counter-example to Definition 2.1.

Intuitively, the variable length one-time pad cannot satisfy our definition of perfect security
simply because any ciphertext leaks the length of the corresponding plaintext. However, in some
sense (which we do not make precise right now), this is the only information leaked. It is perhaps not
clear whether this should be viewed as a problem with the cipher or with our definition of perfect
security. On the one hand, one can imagine scenarios where the length of a message may vary
greatly, and while we could always “pad” short messages to effectively make all messages equally
long, this may be unacceptable from a practical point of view, as it is a waste of bandwidth. On

the other hand, one must be aware of the fact that in certain applications, leaking just the length
of a message may be dangerous: if you are encrypting a “yes” or “no” answer to a question, just
the length of the obvious ASCII encoding of these strings leaks everything, so you better pad
out to three characters. O

Ezxzample 2.6. Consider again the substitution cipher defined in Example 2.3. There are a couple
of different ways to see that this cipher is not perfectly secure.

For example, choose a pair of messages mg, m; € 3% such that the first two components of my
are equal, yet the first two components of m; are not equal; that is,

mo[0] = mo[l] and my[0] # mq[1].

Then for each key k, which is a permutation on ¥, if ¢ = E(k,mg), then c[0] = ¢[1], while if
¢ = E(k,m1), then ¢[0] # ¢[1]. In particular, it follows that if k is uniformly distributed over the
key space, then the distributions of E(k,mg) and E(k,m;) will not be the same.

Even the weakness described in the previous paragraph may seem somewhat artificial. Another,
perhaps more realistic, type of attack on the substitution cipher works as follows. Suppose the
substitution cipher is used to encrypt email messages. As anyone knows, an email starts with a
“standard header,” such as "FROM". Suppose the ciphertext is ¢ € % is intercepted by an adversary.
The secret key is actually a permutation k£ on ¥. The adversary knows that

c[0...3] = (k(F), k(R), k(0), k(M)).

Thus, if the original message is m € X, the adversary can now locate all positions in m where
an F occurs, where an R occurs, where an 0 occurs, and where an M occurs. Based just on this
information, along with specific, contextual information about the message, together with general
information about letter frequencies, the adversary may be able to deduce quite a bit about the
original message. O

Example 2.7. Consider the additive one-time pad, defined in Example 2.4. It is easy to verify
that this is perfectly secure. Indeed, it satisfies condition (ii) in Theorem 2.1 (with N, = 1 for each
¢). O

The next two theorems develop two more alternative characterizations of perfect security. For
the first, suppose an eavesdropping adversary applies some predicate ¢ to a ciphertext he has
obtained. The predicate ¢ (which is a boolean-valued function on the ciphertext space) may be
something very simple, like the parity function (i.e., whether the number of 1 bits in the ciphertext
is even or odd), or it might be some more elaborate type of statistical test. Regardless of how clever
or complicated the predicate ¢ is, perfect security guarantees that the value of this predicate on
the ciphertext reveals nothing about the message.

Theorem 2.3. Let £ = (E, D) be a Shannon cipher defined over (IC, M,C). Consider a probabilistic
experiment in which k is a random variable uniformly distributed over K. Then £ is perfectly secure
if and only if for every predicate ¢ on C, for all mg,m; € M, we have

Pr(¢(E(k,mo))] = Pr[¢(E(k,m1))].

Proof. This is really just a simple calculation. On the one hand, suppose £ is perfectly secure, and
let ¢, mo, and m; be given. Let S :={ce C: qb(c)}. Then we have

Pr(¢(E(k,mo))] = Y _ Pr[E(k,mo) = Pr[E(k,m1) =] = Pr[¢(E(k,m1))].

ceS ceS

10

Here, we use the assumption that £ is perfectly secure in establishing the second equality. On the
other hand, suppose £ is not perfectly secure, so there exist mg, m1, and ¢ such that

Pr[E(k,mg) = ¢| # Pr[E(k,m1) = c|.

Defining ¢ to be the predicate that is true for this particular ¢, and false for all other ciphertexts,
we see that

Pr(¢(E(k,mo))] = Pr[E(k,mo) = c] # Pr[E(k,m1) =] = Pr[¢(E(k,m1))]. B

The next theorem states in yet another way that perfect security guarantees that the ciphertext
reveals nothing about the message. Suppose that m is a random variable distributed over the
message space M. We do not assume that m is uniformly distributed over M. Now suppose k
is a random variable uniformly distributed over the key space K, independently of m, and define
¢ := E(k,m), which is a random variable distributed over the ciphertext space C. The following
theorem says that perfect security guarantees that ¢ and m are independent random variables.

One way of characterizing this independence is to say that for each ciphertext ¢ € C that occurs
with nonzero probability, and each message m € M, we have

Prim=m | c= ¢/ = Prlm =m].

Intuitively, this means that after seeing a ciphertext, we have no more information about the
message than we did before seeing the ciphertext.

Another way of characterizing this independence is to say that for each message m € M that
occurs with nonzero probability, and each ciphertext ¢ € C, we have

Prle=c¢|m=m] =Prlc=(|.

Intuitively, this means that the choice of message has no impact on the distribution of the ciphertext.

The restriction that m and k are independent random variables is sensible: in using any cipher,
it is a very bad idea to choose the key in a way that depends on the message, or vice versa (see
Exercise 2.16).

Theorem 2.4. Let £ = (E, D) be a Shannon cipher defined over (IC, M,C). Consider a random
experiment in which k and m are random variables, such that

o k is uniformly distributed over KC,
o m is distributed over M, and
e k and m are independent.
Define the random variable ¢ := E(k,m). Then we have:
o if £ is perfectly secure, then ¢ and m are independent;

e conversely, if c and m are independent, and each message in M occurs with nonzero proba-
bility, then & is perfectly secure.

11

Proof. For the first implication, assume that £ is perfectly secure. Consider any fixed m € M and
¢ € C. We want to show that

Prlc = ¢ Am = m] = Prlc = ¢| Pr[m = m].

We have
Prlce=cAm=m]|=Pr[E(k,m) =cAm=m]
= Pr[E(k,m) =cAm=m]
= Pr[E(k,m) = ¢|Pr[m =m] (by independence of k and m).

So it will suffice to show that Pr[E(k,m) = ¢] = Pr[c = ¢]. But we have

Pr[c = ¢] = Pr[E(k,m) = (]
= Z Pr[E(k,m) = c Am=m'] (by total probability)

m/eM

= Z Pr[E(k,m') = c Am=m]
m/eM

= Z Pr[E(k,m’) = ¢| Prlm = m/] (by independence of k and m)
m/eM

= Z Pr[E(k,m) = c|Pr[m = m’] (by definition of perfect security)
m/eM

=Pr[E(k,m) =c| Y Prlm=m/

m/eM
= Pr[E(k,m) =] (probabilities sum to 1).

For the second implication, assume that ¢ and m are independent, and each message in M occurs
with nonzero probability. Let m € M and ¢ € C. We will show that Pr[E(k,m) = ¢] = Prlc = ¢],
from which perfect security immediately follows. Since Pr[m = m] # 0, this is seen thusly:

Pr[E(k,m) = ¢|Prlm = m] = Pr[E(k,m) = ¢ Am=m] (by independence of k and m)

[
= Pr[E(k,m) = cAm=m)]
=Prlc=cAm=m]
= Pr[c = | Prlm = m| (by independence of ¢ and m). O

2.1.3 The bad news

We have saved the bad news for last. The next theorem shows that perfect security is such a
powerful notion that one can really do no better than the one-time pad: keys must be at least as
long as messages. As a result, it is almost impossible to use perfectly secure ciphers in practice: if
Alice wants to send Bob a 1GB video file, then Alice and Bob have to agree on a 1GB secret key
in advance.

Theorem 2.5 (Shannon’s theorem). Let £ = (E,D) be a Shannon cipher defined over
(K, M, C). If € is perfectly secure, then || > | M]|.

12

Proof. Assume that || < |M|. We want to show that £ is not perfectly secure. To this end, we
show that there exist messages mg and m;, and a ciphertext c, such that

Pr[E(k,mg) = ¢] >0, and (2.1)

Here, k is a random variable, uniformly distributed over K.
To do this, choose any message mg € M, and any key kg € K. Let ¢ := E(kg, mg). It is clear
that (2.1) holds.
Next, let
S :={D(ki,c) : k1 € K}.

Clearly,
S| < IK] < IM],

and so we can choose a message m; € M\ S.

To prove (2.2), we need to show that there is no key ky such that E(kj,m;) = c¢. Assume to
the contrary that E(ki, m1) = c for some ki; then for this key k1, by the correctness property for
ciphers, we would have

D(kl,c) = D(kl, E(kl, ml)) =mai,

which would imply that m; belongs to S, which is not the case. That proves (2.2), and the theorem
follows. O

2.2 Computational ciphers and semantic security

As we have seen in Shannon’s theorem (Theorem 2.5), the only way to achieve perfect security is
to have keys that are as long as messages. However, this is quite impractical: we would like to be
able to encrypt a long message (say, a document of several megabytes) using a short key (say, a few
hundred bits). The only way around Shannon’s theorem is to relax our security requirements. The
way we shall do this is to consider not all possible adversaries, but only computationally feasible
adversaries, that is, “real world” adversaries that must perform their calculations on real computers
using a reasonable amount of time and memory. This will lead to a weaker definition of security
called semantic security. Furthermore, our definition of security will be flexible enough to allow
ciphers with variable length message spaces to be considered secure so long as they do not leak
any useful information about an encrypted message to an adversary other than the length of the
message. Also, since our focus is now on the “practical,” instead of the “mathematically possible,”
we shall also insist that the encryption and decryption functions are themselves efficient algorithms,
and not just arbitrary functions.

2.2.1 Definition of a computational cipher

A computational cipher £ = (F, D) is a pair of efficient algorithms, F and D. The encryption
algorithm F takes as input a key k, along with a message m, and produces as output a ciphertext c.
The decryption algorithm D takes as input a key k, a ciphertext ¢, and outputs a message m. Keys
lie in some finite key space K, messages lie in a finite message space M, and ciphertexts lie in some
finite ciphertext space C. Just as for a Shannon cipher, we say that £ is defined over (K, M, C).

13

Although it is not really necessary for our purposes in this chapter, we will allow the encryption
function E to be a probabilistic algorithm. This means that for fixed inputs k£ and m, the output of
E(k,m) may be one of many values. Probabilistic algorithms are discussed further in Appendix D.
To emphasize the probabilistic nature of encryption we write

c < E(k,m)

to denote the process of executing F(k, m) and assigning the output to the program variable c¢. We
shall use this notation throughout the book whenever we use probabilistic algorithms. Similarly,
we write

k&K

to denote the process of assigning to the program variable k a random, uniformly distributed
element from the key space K. We shall use the analogous notation to sample uniformly from any
finite set.

We will not see any examples of probabilistic encryption algorithms in this chapter (we will see
our first examples of this in Chapter 5). Although one could allow the decryption algorithm to
be probabilistic, we will have no need for this, and so will only discuss ciphers with deterministic
decryption algorithms. However, it will be occasionally be convenient to allow the decryption
algorithm to return a special reject value (distinct from all messages), indicating some kind of error
occurred during the decryption process.

Since the encryption algorithm is probabilistic, for a given key k and message m, the encryption
algorithm may output one of many possible ciphertexts; however, each of these possible ciphertexts
should decrypt to m. We can state this correctness requirement more formally as follows: for
all keys k € K and messages m € M, if we execute

c& E(k,m), m + D(k,c),

then m = m/ with probability 1.

From now on, whenever we refer to a cipher, we shall mean a computational cipher,
as defined above. Moreover, if the encryption algorithm happens to be deterministic, then
we may call the cipher a deterministic cipher.

Observe that any deterministic cipher is a Shannon cipher; however, a computational cipher
need not be a Shannon cipher (if it has a probabilistic encryption algorithm), and a Shannon
cipher need not be a computational cipher (if its encryption or decryption operations have no
efficient implementations).

Example 2.8. The one-time pad (see Example 2.1) and the variable length one-time pad (see
Example 2.2) are both deterministic ciphers, since their encryption and decryption operations may
be trivially implemented as efficient, deterministic algorithms. The same holds for the substitution
cipher (see Example 2.3), provided the alphabet ¥ is not too large. Indeed, in the obvious imple-
mentation, a key — which is a permutation on ¥ — will be represented by an array indexed by %,
and so we will require O(|X|) space just to store a key. This will only be practical for reasonably
sized . The additive one-time pad discussed in Example 2.4 is also a deterministic cipher, since
both encryption and decryption operations may be efficiently implemented (if n is large, special
software to do arithmetic with large integers may be necessary). O

14

2.2.2 Definition of semantic security

To motivate the definition of semantic security, consider a deterministic cipher £ = (F, D), defined
over (K, M, C). Consider again the formulation of perfect security in Theorem 2.3. This says that
for all predicates ¢ on the ciphertext space, and all messages mg, m1, we have

Pr[¢(E(k,m0))] = Pr[¢<E(k7m1))]7 (23)

where k is a random variable uniformly distributed over the key space K. Instead of insisting that
these probabilities are equal, we shall only require that they are very close; that is,

Prg(E(k,mo))] — Prgp(E(k,m1))]| <, (2.4)

for some very small, or negligible, value of e. By itself, this relaxation does not help very much
(see Exercise 2.5). However, instead of requiring that (2.4) holds for every possible ¢, mg, and
mq, we only require that (2.4) holds for all messages mg and m; that can be generated by some
efficient algorithm, and all predicates ¢ that can be computed by some efficient algorithm (these
algorithms could be probabilistic). For example, suppose it were the case that using the best
possible algorithms for generating mg and m;, and for testing some predicate ¢, and using (say)
10,000 computers in parallel for 10 years to perform these calculations, (2.4) holds for ¢ = 27109,
While not perfectly secure, we might be willing to say that the cipher is secure for all practical
PuUTrposes.

Also, in defining semantic security, we address an issue raised in Example 2.5. In that example,
we saw that the variable length one-time pad did not satisfy the definition of perfect security.
However, we want our definition to be flexible enough so that ciphers like the variable length one-
time pad, which effectively leak no information about an encrypted message other than its length,
may be considered secure as well.

Now the details. To precisely formulate the definition of semantic security, we shall describe
an attack game played between two parties, a challenger and an adversary. Throughout this
book, we shall formulate many attack games that capture various notions of security for different
types of cryptographic primitives. In general, the challenger follows a very simple, fixed protocol.
However, an adversary may follow an arbitrary (but still efficient) protocol. The challenger and the
adversary send messages back and forth to each other, as specified by their protocols, and at the
end of the game, the adversary may output some value. The attack game also defines a probability
space, and this in turn defines the adversary’s advantage, which is determined by the probability
of one or more events.

Some attack games, such as the one defining the semantic security of a cipher, comprise two
alternative “sub-games,” or “experiments” — in both experiments, the adversary follows the same
protocol, while the challenger behaves differently in each experiment. Specifically, in our attack
game defining the semantic security of a cipher, the adversary generates two messages mg and m;y
(of the same length), and sends both messages to the challenger. In one experiment, the challenger
encrypts mo under a random key, while in the other experiment, the challenger encrypts mi, again,
under a random key. In both experiments, the challenger sends the resulting ciphertext ¢ back to
the adversary. After examining ¢, the adversary outputs a bit b e {0,1}. The advantage of the
adversary is defined to be the absolute difference between the probability the adversary outputs
b =1 in one experiment and the probability that it outputs b =1 the other experiment. We state
this more formally as follows:

15

Challenger A
(Experiment b) 3 mo, M1 € M
k&K
c & E(k,my) ¢ >
be{0,1}

Figure 2.1: Experiment b of Attack Game 2.1

Attack Game 2.1 (semantic security). For a given cipher £ = (F, D), defined over (I, M, C),
and for a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For
b=0,1, we define

Experiment b:

e The adversary computes mg, m; € M, of the same length, and sends them to the challenger.
e The challenger computes k <- I, ¢ <+ E(k,my), and sends ¢ to the adversary.

e The adversary outputs a bit b € {0,1}.

For b = 0,1, let W} be the event that A outputs 1 in Experiment b. We define A’s semantic
security advantage with respect to £ as

SSadv|A, &] := |Pr[Wy] — Pr[W4]|. O

Note that in the above game, the events W and W are defined with respect to the probability
space determined by the random choice of k, the random choices made (if any) by the encryption
algorithm, and the random choices made (if any) by the adversary. The value SSadv[A, €] is a
number between 0 and 1.

See Fig. 2.1 for a schematic diagram of Attack Game 2.1. As indicated in the diagram, A’s
“output” is really just a final message to the challenger.

Definition 2.2 (semantic security). A cipher £ is semantically secure if for all efficient
adversaries A, the value SSadv[A, &] is negligible.

As a formal definition, this is not quite complete, as we have yet to define what we mean by
“messages of the same length”, “efficient adversaries”, and “negligible”. We will come back to this
shortly.

Let us relate this formal definition to the discussion preceding it. Suppose that the adversary
A in Attack Game 2.1 is deterministic. First, the adversary computes in a deterministic fashion

16

messages mg, m1, and then evaluates a predicate ¢ on the ciphertext ¢, outputting 1 if true and
0 if false. Semantic security says that the value e in (2.4) is negligible. In the case where A is
probabilistic, we can view A as being structured as follows: it generates a random value r from
some appropriate set, and deterministically computes messages mér), mY), which depend on r, and
evaluates a predicate ¢ on ¢, which also depends on r. Here, semantic security says that the value
€ in (2.4), with mg, m1, ¢ replaced by mg), mgr), (") is negligible — but where now the probability

is with respect to a randomly chosen key and a randomly chosen value of 7.

Remark 2.1. Let us now say a few words about the requirement that the messages mg and my
computed by the adversary Attack Game 2.1 be of the same length.

e First, the notion of the “length” of a message is specific to the particular message space M;
in other words, in specifying a message space, one must specify a rule that associates a length
(which is a non-negative integer) with any given message. For most concrete message spaces,
this will be clear: for example, for the message space {0, 1}= (as in Example 2.2), the length
of a message m € {0,1}=F is simply its length, |m/|, as a bit string. However, to make our
definition somewhat general, we leave the notion of length as an abstraction. Indeed, some
message spaces may have no particular notion of length, in which case all messages may be
viewed as having length 0.

e Second, the requirement that mg and my be of the same length means that the adversary is not
deemed to have broken the system just because he can effectively distinguish an encryption
of a message of one length from an encryption of a message of a different length. This is how
our formal definition captures the notion that an encryption of a message is allowed to leak
the length of the message (but nothing else).

We already discussed in Example 2.5 how in certain applications, leaking the length of the
message can be catastrophic. However, since there is no general solution to this problem, most
real-world encryption schemes (for example, TLS) do not make any attempt at all to hide the
length of the message. This can lead to real attacks. For example, Chen et al. [41] show that
the lengths of encrypted messages can reveal considerable information about private data that
a user supplies to a cloud application. They use an online tax filing system as their example,
but other works show attacks of this type on many other systems. O

Example 2.9. Let £ be a deterministic cipher that is perfectly secure. Then it is easy to see that
for every adversary A (efficient or not), we have SSadv[A, £] = 0. This follows almost immediately
from Theorem 2.3 (the only slight complication is that our adversary A in Attack Game 2.1 may
be probabilistic, but this is easily dealt with). In particular, £ is semantically secure. Thus, if £ is
the one-time pad (see Example 2.1), we have SSadv[A, £] = 0 for all adversaries A; in particular,
the one-time pad is semantically secure. Because the definition of semantic security is a bit more
forgiving with regard to variable length message spaces, it is also easy to see that if £ is the variable
length one-time pad (see Example 2.2), then SSadv[A,] = 0 for all adversaries A; in particular,
the variable length one-time pad is also semantically secure. O

We need to say a few words about the terms “efficient” and “negligible”. Below in Section 2.3

we will fill in the remaining details (they are somewhat tedious, and not really very enlightening).
Intuitively, negligible means so small as to be “zero for all practical purposes”: think of a number
like 27109 — if the probability that you spontaneously combust in the next year is 271%°, then you

17

would not worry about such an event occurring any more than you would an event that occurred
with probability 0. We also use the following terms:

e An efficient adversary is one that runs in a “reasonable” amount time.
e A value N is called super-poly if 1/N is negligible.

o A poly-bounded value is a “reasonably” sized number. In particular, we can say that the
running time of an efficient adversary is poly-bounded.

Fact 2.6. If € and € are negligible values, and QQ and Q' are poly-bounded values, then:
(1) €+ € is a negligible value,
(it) Q+ Q' and Q - Q' are poly-bounded values, and

(i1i) Q - € is a negligible value.

For now, the reader can just take these facts as axioms. Instead of dwelling on these technical
issues, we discuss an example that illustrates how one typically uses this definition in analyzing the
security of a larger system that uses a semantically secure cipher.

2.2.3 Connections to weaker notions of security
2.2.3.1 Message recovery attacks

Intuitively, in a message recovery attack, an adversary is given an encryption of a random message,
and is able to recover the message from the ciphertext with probability significantly better than
random guessing, that is, probability 1/|M]. Of course, any reasonable notion of security should
rule out such an attack, and indeed, semantic security does.

While this may seem intuitively obvious, we give a formal proof of this. One of our motivations
for doing this is to illustrate in detail the notion of a security reduction, which is the main technique
used to reason about the security of systems. Basically, the proof will argue that any efficient
adversary A that can effectively mount a message recovery attack on £ can be used to build an
efficient adversary B that breaks the semantic security of £; since semantic security implies that no
such B exists, we may conclude that no such A exists.

To formulate this proof in more detail, we need a formal definition of a message recovery
attack. As before, this is done by giving attack game, which is a protocol between a challenger and
an adversary.

Attack Game 2.2 (message recovery). For a given cipher £ = (E, D), defined over (K, M,C),
and for a given adversary A, the attack game proceeds as follows:

e The challenger computes m <~ M, k <+ IC, ¢ < E(k,m), and sends ¢ to the adversary.
e The adversary outputs a message m € M.

Let W be the event that m = m. We say that A wins the game in this case, and we define A’s
message recovery advantage with respect to £ as

MRadv[A4,&] := |Pr[W] - 1/|M||. O

18

Definition 2.3 (security against message recovery). A cipher £ is secure against message
recovery if for all efficient adversaries A, the value MRadv[A, &] is negligible.

Theorem 2.7. Let £ = (E, D) be a cipher defined over (K, M,C). If £ is semantically secure then
€ is secure against message recovery.

Proof. Assume that £ is semantically secure. Our goal is to show that £ is secure against message
recovery.

To prove that £ is secure against message recovery, we have to show that every efficient ad-
versary A has negligible advantage in Attack Game 2.2. To show this, we let an arbitrary but
efficient adversary A be given, and our goal now is to show that A’s message recovery advantage,
MRadv|A,], is negligible. Let p denote the probability that A wins the message recovery game,
so that

MRadv[A4, &] = |p— 1/|M]|.

We shall show how to construct an efficient adversary B whose semantic security advantage in
Attack Game 2.1 is related to A’s message recovery advantage as follows:

MRadv|A, £] < SSadv[B, £]. (2.5)

Since B is efficient, and since we are assuming that £ is semantically secure, the right-hand side of
(2.5) is negligible, and so we conclude that MRadv|A, £] is negligible.

So all that remains to complete the proof is to show how to construct an efficient B that satisfies
(2.5). The idea is to use A as a “black box” — we do not have to understand the inner workings
of A at all.

Here is how B works. Adversary B generates two random messages, mg and m; in M, and
sends these to its own SS challenger. This challenger sends B a ciphertext ¢, which B forwards
to A, as if it were coming from A’s MR challenger. When A outputs a message m, our adversary 3
outputs b=1if i = my, and outputs b = 0 otherwise.

That completes the description of B. Note that the running time of B is essentially the same
as that of A. We now analyze the B’s SS advantage, and relate this to A’s MR advantage.

For b = 0,1, let p, be the probability that B outputs 1 if B’s SS challenger encrypts mg. So by
definition

SSQdV[B,g] = ‘pl —p0|.

On the one hand, when ¢ is an encryption of m;y, the probability p; is precisely equal to A’s
probability of winning the message recovery game, so p; = p. On the other hand, when ¢ is an
encryption of myg, the adversary A’s output is independent of my, and so pg = 1/|M|. It follows
that

SSadv[B,&] = [p1 — po| = |p — 1/|M|| = MRadv[A4, £].

This proves (2.5). In fact, equality holds in (2.5), but that is not essential to the proof. O

The reader should make sure that he or she understands the logic of this proof, as this type of
proof will be used over and over again throughout the book. We shall review the important parts
of the proof here, and give another way of thinking about it.

The core of the proof was establishing the following fact: for every efficient MR adversary A
that attacks £ as in Attack Game 2.2, there exists an efficient SS adversary B that attacks £ as in
Attack Game 2.1 such that

MRadv[A, £] < SSadv[B, &]. (2.6)

19

We are trying to prove that if £ is semantically secure, then £ is secure against message recovery.
In the above proof, we argued that if £ is semantically secure, then the right-hand side of (2.6)
must be negligible, and hence so must the left-hand side; since this holds for all efficient A, we
conclude that £ is secure against message recovery.

Another way to approach the proof of the theorem is to prove the contrapositive: if £ is not
secure against message recovery, then £ is not semantically secure. So, let us assume that £ is not
secure against message recovery. This means there exists an efficient adversary A whose message
recovery advantage is non-negligible. Using A we build an efficient adversary B that satisfies (2.6).
By assumption, MRadv[A, £] is non-negligible, and (2.6) implies that SSadv|[B, £] is non-negligible.
From this, we conclude that £ is not semantically secure.

Said even more briefly: to prove that semantic security implies security against message recovery,
we show how to turn an efficient adversary that breaks message recovery into an efficient adversary
that breaks semantic security.

We also stress that the adversary B constructed in the proof just uses A as a “black box.” In
fact, almost all of the constructions we shall see are of this type: B is essentially just a wrapper
around A, consisting of some simple and efficient “interface layer” between B’s challenger and a
single running instance of A. Ideally, we want the computational complexity of the interface layer
to not depend on the computational complexity of A; however, some dependence is unavoidable:
if an attack game allows A to make multiple queries to its challenger, the more queries A makes,
the more work must be performed by the interface layer, but this work should just depend on the
number of such queries and not on the running time of A.

Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an efficient interface interacting with A. The salient properties are:

e If B is an elementary wrapper around A, and A is efficient, then B is efficient.

e If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around A.

These notions are formalized in Section 2.3 (but again, they are extremely tedious).

2.2.3.2 Computing individual bits of a message

If an encryption scheme is secure, not only should it be hard to recover the whole message, but it
should be hard to compute any partial information about the message.

We will not prove a completely general theorem here, but rather, consider a specific example.

Suppose € = (E, D) is a cipher defined over (K, M,C), where M = {0,1}. For m € M, we
define parity(m) to be 1 if the number of 1’s in m is odd, and 0 otherwise. Equivalently, parity(m)
is the exclusive-OR of all the individual bits of m.

We will show that if £ is semantically secure, then given an encryption ¢ of a random message
m, it is hard to predict parity(m). Now, since parity(m) is a single bit, any adversary can predict
this value correctly with probability 1/2 just by random guessing. But what we want to show is
that no efficient adversary can do significantly better than random guessing.

As a warm up, suppose there were an efficient adversary 4 that could predict parity(m) with
probability 1. This means that for every message m, every key k, and every encryption ¢ of m,
when we give A the ciphertext ¢, it outputs the parity of m. So we could use A to build an SS
adversary B that works as follows. Our adversary chooses two messages, mg and mq, arbitrarily,

20

but with parity(mg) = 0 and parity(m;) = 1. Then it hands these two messages to its own SS
challenger, obtaining a ciphertext ¢, which it then forwards to A. After receiving ¢, adversary A
outputs a bit b and B outputs this same bit b as its own output. It is easy to see that B’s SS
advantage is precisely 1: when its SS challenger encrypts my, it always outputs 0, and when its SS
challenger encrypts mq, it always outputs 1.

This shows that if £ is semantically secure, there is no efficient adversary that can predict
parity with probability 1. However, we can say even more: if £ is semantically secure, there is no
efficient adversary that can predict parity with probability significantly better than 1/2. To make
this precise, we give an attack game:

Attack Game 2.3 (parity prediction). For a given cipher £ = (F, D), defined over (K, M,C),
and for a given adversary A, the attack game proceeds as follows:

e The challenger computes m <+ M, k < K, ¢ < E(k,m), and sends ¢ to the adversary.
e The adversary outputs b € {0,1}.

Let W be the event that b = parity(m). We define A’s parity prediction advantage with
respect to £ as

Parityadv[A,] := [Pr[W] —1/2|. O

Definition 2.4 (parity prediction). A cipher £ is secure against parity prediction if for all
efficient adversaries A, the value Parityadv|.A, &] is negligible.

Theorem 2.8. Let £ = (E,D) be a cipher defined over (K, M,C), and M = {0,1}. If £ is
semantically secure, then &£ is secure against parity prediction.

Proof. As in the proof of Theorem 2.7, we give a proof by reduction. In particular, we will show
that for every parity prediction adversary A that attacks £ as in Attack Game 2.3, there exists an
SS adversary B that attacks £ as in Attack Game 2.1, where B is an elementary wrapper around
A, such that

1
Parityadv|A,] = % SSadv[B, &].

Let A be a parity prediction adversary that predicts parity with probability 1/2 + €, so
Parityadv]A, £] = |e|.

Here is how we construct our SS adversary B.

Our adversary B generates a random message mg, and sets mj < mg @ (0¥~ || 1); that is,
mq is the same as myg, except that the last bit is flipped. In particular, my and m; have opposite
parity.

Our adversary B sends the pair mg, m; to its own SS challenger, receives a ciphertext ¢ from
that challenger, and forwards ¢ to A. When A outputs a bit I;, our adversary B outputs 1 if
b= parity(mg), and outputs 0, otherwise.

For b = 0,1, let p;, be the probability that B outputs 1 if B’s SS challenger encrypts mg. So by
definition

SSadv[B, 5] = |p1 —p0|.

We claim that pg = 1/2 4+ € and p; = 1/2 — e. This is because regardless of whether my
or my is encrypted, the distribution of my is uniform over M, and so in case b = 0, our parity
predictor A will output parity(mg) with probability 1/2 + €, and when b = 1, our parity predictor

21

A will output parity(m;) with probability 1/2 4 €, and so outputs parity(mg) with probability
1—(1/24€¢) =1/2—e.
Therefore,
SSadv([B,] = |p1 — po| = 2|e| = 2 - Parityadv[A, &],

which proves the theorem. O

We have shown that if an adversary can effectively predict the parity of a message, then it can
be used to break semantic security. Conversely, it turns out that if an adversary can break semantic
security, he can effectively predict some predicate of the message (see Exercise 3.16).

2.2.4 Consequences of semantic security

In this section, we examine the consequences of semantic security in the context of a specific
example, namely, electronic gambling. The specific details of the example are not so important, but
the example illustrates how one typically uses the assumption of semantic security in applications.
Consider the following extremely simplified version of roulette, which is a game between the
house and a player. The player gives the house 1 dollar. He may place one of two kinds of bets:

e “high or low,” or

e “ecven or odd.”

After placing his bet, the house chooses a random number r € {0,1,...,36}. The player wins if
r # 0, and if

e he bet “high” and r > 18,
e he bet “low” and r < 18,
e he bet “even” and r is even,

e he bet “odd” and r is odd.

If the player wins, the house pays him 2 dollars (for a net win of 1 dollar), and if the player loses, the
house pays nothing (for a net loss of 1 dollar). Clearly, the house has a small, but not insignificant
advantage in this game: the probability that the player wins is 18/37 ~ 48.65%.

Now suppose that this game is played over the Internet. Also, suppose that for various technical
reasons, the house publishes an encryption of r before the player places his bet (perhaps to be
decrypted by some regulatory agency that shares a key with the house). The player is free to analyze
this encryption before placing his bet, and of course, by doing so, the player could conceivably
increase his chances of winning. However, if the cipher is any good, the player’s chances should not
increase by much. Let us prove this, assuming r is encrypted using a semantically secure cipher
& = (E, D), defined over (K, M,C), where M = {0,1,...,36} (we shall view all messages in M
as having the same length in this example). Also, from now on, let us call the player A, to stress
the adversarial nature of the player, and assume that A’s strategy can be modeled as an efficient
algorithm. The game is illustrated in Fig. 2.2. Here, bet denotes one of “high,” “low,” “even,”
“odd.” Player A sends bet to the house, who evaluates the function W (r, bet), which is 1 if bet is a
winning bet with respect to r, and 0 otherwise. Let us define

IRadv[A] := |Pr[W (r, bet) = 1] — 18/37|.

Our goal is to prove the following theorem.

22

House A
r < {0,1,...,36}
k<K
c & E(k,r) c

bet

A

outcome «— W (r, bet)

outcome

Figure 2.2: Internet roulette

Theorem 2.9. If £ is semantically secure, then for every efficient player A, the quantity IRadv|.A]
1s negligible.

As we did in Section 2.2.3, we prove this by reduction. More concretely, we shall show that for
every player A, there exists an SS adversary B, where B is an elementary wrapper around A, such
that

IRadv[A] = SSadv[B, &]. (2.7)

Thus, if there were an efficient player A with a non-negligible advantage, we would obtain an
efficient SS adversary B that breaks the semantic security of £, which we are assuming is impossible.
Therefore, there is no such A.

To motivate and analyze our new adversary B, consider an “idealized” version of Internet
roulette, in which instead of publishing an encryption of the actual value r, the house instead
publishes an encryption of a “dummy”value, say 0. The logic of the ideal Internet roulette game is
illustrated in Fig. 2.3. Note, however, that in the ideal Internet roulette game, the house still uses
the actual value of r to determine the outcome of the game. Let pg be the probability that A wins
at Internet roulette, and let p; be the probability that A wins at ideal Internet roulette.

Our adversary B is designed to play in Attack Game 2.1 so that if b denotes B’s output in that
game, then we have:

e if B is placed in Experiment 0, then Pr[Z) = 1] = po;

e if B is placed in Experiment 1, then Pr[i) 1] = p1.

The logic of adversary B is illustrated in Fig. 2.4. It is clear by construction that B satisfies the
properties claimed above, and so in particular,

SSadv[B, €] = [p1 — pol- (2.8)

Now, consider the probability p; that A wins at ideal Internet roulette. No matter how clever
A’s strategy is, he wins with probability 18/37, since in this ideal Internet roulette game, the value

23

House
r<{0,1,...,36}
EEK
c & E(k,0)

bet

outcome — W (r, bet)

outcome

Figure 2.3:

ideal Internet roulette

i
1
1
! B
1
Challenger
oo & , L r&001,...,36)
(Experiment b) g
mg,myp | mi < 0
k&K c !
C <£ E(k‘, mb) ; het —>
:
b ! .
! b« W (r, bet)

Figure 2.4: The SS adversary B in Attack Game 2.1

24

of bet is computed from ¢, which is statistically independent of the value of . That is, ideal Internet
roulette is equivalent to physical roulette. Therefore,

IRadv[A] = |p1 — pol- (2.9)
Combining (2.8) and (2.9), we obtain (2.7).

The approach we have used to analyze Internet roulette is one that we will see again and again.
The basic idea is to replace a system component by an idealized version of that component, and
then analyze the behavior of this new, idealized version of the system.

Another lesson to take away from the above example is that in reasoning about the security of
a system, what we view as “the adversary” depends on what we are trying to do. In the above
analysis, we cobbled together a new adversary B out of several components: one component was
the original adversary A, while other components were scavenged from other parts of the system
(the algorithm of “the house,” in this example). This will be very typical in our security analyses
throughout this text. Intuitively, if we imagine a diagram of the system, at different points in the
security analysis, we will draw a circle around different components of the system to identify what
we consider to be “the adversary” at that point in the analysis.

2.2.5 Bit guessing: an alternative characterization of semantic security

The example in Section 2.2.4 was a typical example of how one could use the definition of semantic
security to analyze the security properties of a larger system that makes use of a semantically
secure cipher. However, there is another characterization of semantic security that is typically more
convenient to work with when one is trying to prove that a given cipher satisfies the definition. In
this alternative characterization, we define a new attack game. The role played by the adversary
is exactly the same as before. However, instead of having two different experiments, there is just
a single experiment. In this bit-guessing version of the attack game, the challenger chooses
b € {0,1} at random and runs Experiment b of Attack Game 2.1; it is the adversary’s goal to guess
the bit b with probability significantly better than 1/2. Here are the details:

Attack Game 2.j (semantic security: bit-guessing version). For a given cipher £ = (E, D),
defined over (K, M,C), and for a given adversary A, the attack game runs as follows:

e The adversary computes mg, m; € M, of the same length, and sends them to the challenger.
e The challenger computes b <+ {0, 1}, k <~ IC, ¢ <+ E(k,my), and sends c¢ to the adversary.

e The adversary outputs a bit b € {0,1}.
We say that A wins the game if b=>b. O

Fig. 2.5 illustrates Attack Game 2.4. Note that in this game, the event that the A wins the
game is defined with respect to the probability space determined by the random choice of b and k,
the random choices made (if any) of the encryption algorithm, and the random choices made (if
any) by the adversary.

Of course, any adversary can win the game with probability 1 /2, simply by ignoring ¢ completely
and choosing b at random (or alternatively, always choosing b to be 0, or always choosing it to be

1). What we are interested in is how much better than random guessing an adversary can do. If
W denotes the event that the adversary wins the bit-guessing version of the attack game, then we
are interested in the quantity |Pr[W] — 1/2|, which we denote by SSadv*[A, £]. Then we have:

25

Challenger A

mo, My S M
b & {0,1} “
k&K
c & E(k,my) c .
be{0,1}

Figure 2.5: Attack Game 2.4

Theorem 2.10. For every cipher £ and every adversary A, we have
SSadv[A, &] =2 - SSadv*[A4,£]. (2.10)

Proof. This is just a simple calculation. Let pg be the probability that the adversary outputs 1 in
Experiment 0 of Attack Game 2.1, and let p; be the probability that the adversary outputs 1 in
Experiment 1 of Attack Game 2.1.

Now consider Attack Game 2.4. From now on, all events and probabilities are with respect to
this game. If we condition on the event that b = 0, then in this conditional probability space, all
of the other random choices made by the challenger and the adversary are distributed in exactly
the same way as the corresponding values in Experiment 0 of Attack Game 2.1. Therefore, if b is
the output of the adversary in Attack Game 2.4, we have

Pr[b

1‘1):0]:]?0.

By a similar argument, we see that

So we have
Prlb=b] =Prlb=0|b=0]Pr[b=0]+Prlb=0b|b=1]Prjb=1]
=Prb=0|b=0]- 1 +Prb=1[b=1]-1
:%(1—Pr[3:1|b:0]+Pr[B:1|b:1]>
=3(1—po+p1)
Therefore,

SSadv*[A, €] = |Pr[b = b] — | = L[p1 — po| = & - SSadv[A, £].

That proves the theorem. O

Just as it is convenient to refer to SSadv[A,&] as A’s “SS advantage,” we shall refer to
SSadv*[A, £] as A’s “bit-guessing SS advantage.”

26

2.2.5.1 A generalization

As it turns out, the above situation is quite generic. Although we do not need it in this chapter, for
future reference we indicate here how the above situation generalizes. There will be a number of
situations we shall encounter where some particular security property, call it “X,” for some crypto-
graphic system, call it “S,” can be defined in terms of an attack game involving two experiments,
Experiment 0 and Experiment 1, where the adversary A’s protocol is the same in both experiments,
while that of the challenger is different. For b = 0,1, we define W}, to be the event that A outputs
1 in Experiment b, and we define

Xadv[A,S] =

Pr{Wo] — Pr[Wl])

to be A’s “X advantage.” Just as above, we can always define a “bit-guessing” version of the attack
game, in which the challenger chooses b € {0,1} at random, and then runs Experiment b as its
protocol. If W is the event that the adversary’s output is equal to b, then we define

Xadv*[A,S] = |Pr[W] —1/2

to be A’s “bit-guessing X advantage.”
Using exactly the same calculation as in the proof of Theorem 2.10, we have

Xadv[A, S| =2 - Xadv*[A4, S]. (2.11)

2.3 Mathematical details

Up until now, we have used the terms efficient and negligible rather loosely, without a formal
mathematical definition:

e we required that a computational cipher have efficient encryption and decryption algorithms;

e for a semantically secure cipher, we required that any efficient adversary have a negligible
advantage in Attack Game 2.1.

The goal of this section is to provide precise mathematical definitions for these terms. While
these definitions lead to a satisfying theoretical framework for the study of cryptography as a
mathematical discipline, we should warn the reader:

e the definitions are rather complicated, requiring an unfortunate amount of notation; and
e the definitions model our intuitive understanding of these terms only very crudely.

We stress that the reader may safely skip this section without suffering a significant loss in under-
standing. Before marching headlong into the formal definitions, let us remind the reader of what
we are trying to capture in these definitions.

e First, when we speak of an efficient encryption or decryption algorithm, we usually mean one
that runs very quickly, encrypting data at a rate of, say, 10-100 computer cycles per byte of
data.

27

e Second, when we speak of an efficient adversary, we usually mean an algorithm that runs in
some large, but still feasible amount of time (and other resources). Typically, one assumes
that an adversary that is trying to break a cryptosystem is willing to expend many more
resources than a user of the cryptosystem. Thus, 10,000 computers running in parallel for
10 years may be viewed as an upper limit on what is feasibly computable by a determined,
patient, and financially well-off adversary. However, in some settings, like the Internet roulette
example in Section 2.2.4, the adversary may have a much more limited amount of time to
perform its computations before they become irrelevant.

e Third, when we speak of an adversary’s advantage as being negligible, we mean that it is so
small that it may as well be regarded as being equal to zero for all practical purposes. As
we saw in the Internet roulette example, if no efficient adversary has an advantage better
than 27100 in Attack Game 2.1, then no player can in practice improve his odds at winning
Internet roulette by more than 2719 relative to physical roulette.

Even though our intuitive understanding of the term efficient depends on the context, our
formal definition will not make any such distinction. Indeed, we shall adopt the computational
complexity theorist’s habit of equating the notion of an efficient algorithm with that of a (proba-
bilistic) polynomial-time algorithm. For better and for worse, this gives us a formal framework that
is independent of the specific details of any particular model of computation.

2.3.1 Negligible, super-poly, and poly-bounded functions

We begin by defining the notions of negligible, super-poly, and poly-bounded functions.
Intuitively, a negligible function f : Z>o — R is one that not only tends to zero as n — oo, but
does so faster than the inverse of any polynomial.

Definition 2.5. A function f : Z>1 — R is called negligible if for all ¢ € R there exists
no € Z>1 such that for all integers n > ng, we have |f(n)| < 1/n°.

An alternative characterization of a negligible function, which is perhaps easier to work with,
is the following:

Theorem 2.11. A function f : Z>1 — R 1is negligible if and only if for all ¢ > 0, we have
. c
nh_)rgo f(n)n®=0.
Proof. Exercise. O
Ezxample 2.10. Some examples of negligible functions:

2—717 2—\/ﬁ7 n- logn‘

Some examples of non-negligible functions:

1 1
1000n* + n2logn’ nl00”

|

Once we have the term “negligible” formally defined, defining “super-poly” is easy:

Definition 2.6. A function f : Z>1 — R is called super-poly if 1/ f is negligible.

28

Essentially, a poly-bounded function f : Z>; — R is one that is bounded (in absolute value) by
some polynomial. Formally:

Definition 2.7. A function f : Z>1 — R is called poly-bounded, if there exists c,d € Rsg such
that for all integers n > 0, we have |f(n)] < n®+d.

Note that if f is a poly-bounded function, then 1/f is definitely not a negligible function.
However, as the following example illustrates, one must take care not to draw erroneous inferences.

Ezxzample 2.11. Define f : Z>1 — R so that f(n) = 1/n for all even integers n and f(n) = 27"
for all odd integers n. Then f is not negligible, and 1/ f is neither poly-bounded nor super-poly. O

2.3.2 Computational ciphers: the formalities

Now the formalities. We begin by admitting a lie: when we said a computational cipher £ = (E, D)
is defined over (I, M, C), where K is the key space, M is the message space, and C is the ciphertext
space, and with each of these spaces being finite sets, we were not telling the whole truth. In the
mathematical model (though not always in real-world systems), we associate with £ families of key,
message, and ciphertext spaces, indexed by

e a security parameter, which is a positive integer, and is denoted by A, and
e a system parameter, which is a bit string, and is denoted by A.

Thus, instead of just finite sets IC, M, and C, we have families of finite sets

{Kaataa, {Maataa, and {Cxalra,

which for the purposes of this definition, we view as sets of bit strings (which may represent
mathematical objects by way of some canonical encoding functions).

The idea is that when the cipher £ is deployed, the security parameter A is fixed to some value.
Generally speaking, larger values of A imply higher levels of security (i.e., resistance against adver-
saries with more computational resources), but also larger key sizes, as well as slower encryption
and decryption speeds. Thus, the security parameter is like a “dial” we can turn, setting a trade-off
between security and efficiency.

Once A is chosen, a system parameter A is generated using an algorithm specific to the cipher.
The idea is that the system parameter A (together with \) gives a detailed description of a fixed
instance of the cipher, with

(I, M, C) = (Kxa, Maa, Can)-

This one, fixed instance may be deployed in a larger system and used by many parties — the values
of A and A are public and known to everyone (including the adversary).

Example 2.12. Consider the additive one-time pad discussed in Example 2.4. This cipher was
described in terms of a modulus n. To deploy such a cipher, a suitable modulus n is generated,
and is made public (possibly just “hardwired” into the software that implements the cipher). The
modulus n is the system parameter for this cipher. Each specific value of the security parameter
determines the length, in bits, of n. The value n itself is generated by some algorithm that may be
probabilistic and whose output distribution may depend on the intended application. For example,
we may want to insist that n is a prime in some applications. O

29

Before going further, we define the notion of an efficient algorithm. For the purposes of this
definition, we shall only consider algorithms A that take as input a security parameter A, as well as
other parameters whose total length is bounded by some fixed polynomial in A. Basically, we want
to say that the running time of A is bounded by a polynomial in A, but things are complicated if
A is probabilistic:

Definition 2.8 (efficient algorithm). Let A be an algorithm (possibly probabilistic) that takes
as input a security parameter X € Z>1, as well as other parameters encoded as a bit string x €
{0, 1}3’()‘) for some fized polynomial p. We call A an efficient algorithm if there exist a poly-
bounded function t and a negligible function € such that for all X € Z>1, and all x € {0, 1}9’()‘),
the probability that the running time of A on input (A, x) exceeds t(\) is at most €(N).

We stress that the probability in the above definition is with respect to the coin tosses of A:
this bound on the probability must hold for all possible inputs x.!

Here is a formal definition that captures the basic requirements of systems that are parameter-
ized by a security and system parameter, and introduces some more terminology. In the following
definition we use the notation Supp(P())) to refer to the support of the distribution P(\), which
is the set of all possible outputs of algorithm P on input A.

Definition 2.9. A system parameterization is an efficient probabilistic algorithm P that given
a security parameter \ € Z>1 as input, outputs a bit string A, called a system parameter, whose
length is always bounded by a polynomial in A\. We also define the following terminology:

o A collection S = {Sx a}aa of finite sets of bits strings, where X runs over Z>1 and A runs over
Supp(P(A)), is called a family of spaces with system parameterization P, provided the
lengths of all the strings in each of the sets Sy p are bounded by some polynomial p in X.

o We say that S is efficiently recognizable if there is an efficient deterministic algorithm
that on input X\ € Z>1, A € Supp(P(N)), and s € {0, 1}=PN) | determines if s € SAA-

o We say that S is efficiently sampleable if there is an efficient probabilistic algorithm that
on input X € Z>1 and A € Supp(P(N)), outputs an element uniformly distributed over Sy A.

o We say that S has an effective length function if there is an efficient deterministic
algorithm that on input X € Z>1, A € Supp(P(X)), and s € Sy, outputs a non-negative
integer, called the length of s.

We can now state the complete, formal definition of a computational cipher:

!By not insisting that a probabilistic algorithm halts in a specified time bound with probability 1, we give ourselves
a little “wiggle room,” which allows us to easily do certain types of random sampling procedure that have no a priori
running time bound, but are very unlikely to run for too long (e.g., think of flipping a coin until it comes up “heads”).
An alternative approach would be to bound the expected running time, but this turns out to be somewhat problematic
for technical reasons.

Note that this definition of an efficient algorithm does not require that the algorithm halt with probability 1 on
all inputs. An algorithm that with probability 27> entered an infinite loop would satisfy the definition, even though
it does not halt with probability 1. These issues are rather orthogonal. In general, we shall only consider algorithms
that halt with probability 1 on all inputs: this can more naturally be seen as a requirement on the output distribution
of the algorithm, rather than on its running time.

30

Definition 2.10 (computational cipher). A computational cipher consists of a pair of algo-
rithms E and D, along with three families of spaces with system parameterization P:

K={Kalan, M={Myatra, and C={Cia}lra.
such that
1. K, M, and C are efficiently recognizable.
2. K is efficiently sampleable.
3. M has an effective length function.

4. Algorithm E is an efficient probabilistic algorithm that on input X\, A, k,m, where A\ € Z>1,
A € Supp(P(N)), k € Kxa, and m € My p, always outputs an element of Cy 5.

5. Algorithm D is an efficient deterministic algorithm that on input X\, A, k,c, where X € Z>1,
A € Supp(P(N)), k € Ky, and ¢ € Cya, outputs either an element of Mz, or a special
symbol reject & M z.

6. For all \,A,k,m,c, where A\ € Z>1, A € Supp(P(N)), k € Kxa, m € My, and ¢ €
Supp(E (X, A; k,m)), we have DA\, A; k,c) = m.

Note that in the above definition, the encryption and decryption algorithms take A and A
as auxiliary inputs. So as to be somewhat consistent with the notation already introduced in
Section 2.2.1, we write this as F(\,A;---) and D(AA;---).

Exzample 2.13. Consider the additive one-time pad (see Example 2.12). In our formal framework,
the security parameter A determines the bit length L(A) of the modulus n, which is the system
parameter. The system parameter generation algorithm takes as input A and generates a modulus
n of length L(\). The function L(-) should be polynomially bounded. With this assumption, it is
clear that the system parameter generation algorithm satisfies its requirements. The requirements
on the key, message, and ciphertext spaces are also satisfied:

1. Elements of these spaces have polynomially bounded lengths: this again follows from our
assumption that L(-) is polynomially bounded.

2. The key space is efficiently sampleable: just choose k <+ {0,...,n —1}.

3. The key, message, and ciphertext spaces are efficiently recognizable: just test if a bit string s
is the binary encoding of an integer between 0 and n — 1.

4. The message space also has an effective length function: just output (say) 0. O

We note that some ciphers (for example the one-time pad) may not need a system parameter.
In this case, we can just pretend that the system parameter is, say, the empty string. We also note
that some ciphers do not really have a security parameter either; indeed, many industry-standard
ciphers simply come ready-made with a fixed key size, with no security parameter that can be
tuned. This is simply mismatch between theory and practice — that is just the way it is.

31

That completes our formal mathematical description of a computational cipher, in all its glo-
rious detail.? The reader should hopefully appreciate that while these formalities may allow us
to make mathematically precise and meaningful statements, they are not very enlightening, and
mostly serve to obscure what is really going on. Therefore, in the main body of the text, we will
continue to discuss ciphers using the simplified terminology and notation of Section 2.2.1, with the
understanding that all statements made have a proper and natural interpretation in the formal
framework discussed in this section. This will be a pattern that is repeated in the sequel: we shall
mainly discuss various types of cryptographic schemes using a simplified terminology, without men-
tion of security parameters and system parameters — these mathematical details will be discussed
in a separate section, but will generally follow the same general pattern established here.

2.3.3 Efficient adversaries and attack games

In defining the notion of semantic security, we have to define what we mean by an efficient adversary.
Since this concept will be used extensively throughout the text, we present a more general framework
here.

For any type of cryptographic scheme, security will be defined using an attack game, played
between an adversary A and a challenger: A follows an arbitrary protocol, while the challenger
follows some simple, fixed protocol determined by the cryptographic scheme and the notion of
security under discussion. Furthermore, both adversary and challenger take as input a common
security parameter A, and the challenger starts the game by computing a corresponding system
parameter A, and sending this to the adversary.

To model these types of interactions, we introduce the notion of an interactive machine.
Before such a machine M starts, it always gets the security parameter A written in a special buffer,
and the rest of its internal state is initialized to some default value. Machine M has two other
special buffers: an incoming message buffer and an outgoing message buffer. Machine M may be
invoked many times: each invocation starts when M’s external environment writes a string to M’s
incoming message buffer; M reads the message, performs some computation, updates its internal
state, and writes a string on its outgoing message buffer, ending the invocation, and the outgoing
message is passed to the environment. Thus, M interacts with its environment via a simple message
passing system. We assume that M may indicate that it has halted by including some signal in its
last outgoing message, and M will essentially ignore any further attempts to invoke it.

We shall assume messages to and from the machine M are restricted to be of constant length.
This is not a real restriction: we can always simulate the transmission of one long message by
sending many shorter ones. However, making a restriction of this type simplifies some of the
technicalities. We assume this restriction from now on, for adversaries as well as for any other type
of interactive machine.

For any given environment, we can measure the total running time of M by counting the
number of steps it performs across all invocations until it signals that it has halted. This running
time depends not only on M and its random choices, but also on the environment in which M
runs.’

?Note that the definition of a Shannon cipher in Section 2.1.1 remains unchanged. The claim made at the end of
Section 2.2.1 that any deterministic computational cipher is also a Shannon cipher needs to be properly interpreted:
for each A and A, we get a Shannon cipher defined over (JCx a, Maxa,Cxn).

3 Analogous to the discussion in footnote 1 on page 30, our definition of an efficient interactive machine will not
require that it halts with probability 1 for all environments. This is an orthogonal issue, but it will be an implicit

32

Definition 2.11 (efficient interactive machine). We say that M is an efficient interactive
machine if there exist a poly-bounded function t and a negligible function €, such that for all
environments (not even computationally unbounded ones), the probability that the total running
time of M exceeds t(\) is at most €(N).

We naturally model an adversary as an interactive machine. An efficient adversary is simply
an efficient interactive machine.

We can connect two interactive machines together, say M’ and M, to create a new interactive
machine M"” = (M', M). Messages from the environment to M” always get routed to M’. The
machine M’ may send a message to the environment, or to M; in the latter case, the output
message sent by M gets sent to M’'. We assume that if M halts, then M’ does not send it any
more messages.

Thus, when M” is invoked, its incoming message is routed to M’, and then M’ and M may
interact some number of times, and then the invocation of M” ends when M’ sends a message to
the environment. We call M’ the “open” machine (which interacts with the outside world), and M
the “closed” machine (which interacts only with M’).

Naturally, we can model the interaction of a challenger and an adversary by connecting two
such machines together as above: the challenger becomes the open machine, and the adversary
becomes the closed machine.

In our security reductions, we typically show how to use an adversary A that breaks some
system to build an adversary B that breaks some other system. The essential property that we
want is that if A is efficient, then so is B. However, our reductions are almost always of a very
special form, where B is a wrapper around A, consisting of some simple and efficient “interface
layer” between B’s challenger and a single running instance of A.

Ideally, we want the computational complexity of the interface layer to not depend on the
computational complexity of A; however, some dependence is unavoidable: the more queries A
makes to its challenger, the more work must be performed by the interface layer, but this work
should just depend on the number of such queries and not on the running time of A.

To formalize this, we build B as a composed machine (M’ M), where M’ represents the interface
layer (the “open” machine), and M represents the instance of A (the “closed” machine). This leads
us to the following definition.

Definition 2.12 (elementary wrapper). An interactive machine M' is called an efficient
interface if there exists a poly-bounded function t and a negligible function €, such that for all
M (not necessarily computationally bounded), when we execute the composed machine (M', M) in
an arbitrary environment (again, not necessarily computationally bounded), the following property

holds:

at every point in the execution of (M’ M), if I is the number of interactions between
M' and M up to at that point, and T is the total running time of M' up to that point,
then the probability that T > t(\+ I) is at most €(X).

If M' is an efficient interface, and M is any machine, then we say (M', M) is an elementary
wrapper around M.

requirement of any machines we consider.

33

Thus, we will say adversary B is an elementary wrapper around adversary A when it can be
structured as above, as an efficient interface interacting with A. Our definitions were designed to
work well together. The salient properties are:

e If B is an elementary wrapper around A, and A is efficient, then B is efficient.

e If C is an elementary wrapper around B and B is an elementary wrapper around A, then C is
an elementary wrapper around .A.

Also note that in our attack games, the challenger typically satisfies our definition of an efficient
interface. For such a challenger and any efficient adversary A, we can view their entire interaction
as a that of a single, efficient machine.

Query bounded adversaries. In the attack games we have seen so far, the adversary makes
just a fixed number of queries. Later in the text, we will see attack games in which the adversary
A is allowed to make many queries — even though there is no a priori bound on the number of
queries it is allowed to make, if A is efficient, the number of queries will be bounded by some
poly-bounded value @ (at least with all but negligible probability). In proving security for such
attack games, in designing an elementary wrapper B from A, it will usually be convenient to tell
B in advance an upper bound @ on how many queries A will ultimately make. To fit this into our
formal framework, we can set things up so that A starts out by sending a sequence of () special
messages to “signal” this query bound to B. If we do this, then not only can B use the value @ in its
logic, it is also allowed to run in time that depends on (), without violating the time constraints in
Definition 2.12. This is convenient, as then B is allowed to initialize data structures whose size may
depend on). Of course, all of this is just a legalistic “hack” to work around technical constraints
that would otherwise be too restrictive, and should not be taken too seriously. We will never make
this “signaling” explicit in any of our presentations.

2.3.4 Semantic security: the formalities

In defining any type of security, we will define the adversary’s advantage in the attack game as
a function Adv(\). This will be defined in terms of probabilities of certain events in the attack
game: for each value of \ we get a different probability space, determined by the random choices of
the challenger, and the random choices of the adversary. Security will mean that for every efficient
adversary, the function Adv(-) is negligible.

Turning now to the specific situation of semantic security of a cipher, in Attack Game 2.1, we
defined the value SSadv[A, E]. This value is actually a function of the security parameter \. The
proper interpretation of Definition 2.2 is that £ is secure if for all efficient adversaries A (modeled as
an interactive machine, as described above), the function SSadv|A, £](A) in the security parameter
A is negligible (as defined in Definition 2.5). Recall that both challenger and adversary receive A
as a common input. Control begins with the challenger, who sends the system parameter to the
adversary. The adversary then sends its query to the challenger, which consists of two plaintexts,
who responds with a ciphertext. Finally, the adversary outputs a bit (technically, in our formal
machine model, this “output” is a message sent to the challenger, and then the challenger halts).
The value of SSadv[A, £](\) is determined by the random choices of the challenger (including the
choice of system parameter) and the random choices of the adversary. See Fig. 2.6 for a complete
picture of Attack Game 2.1.

34

\ 4 \

Challenger A
(Experiment b) A
AE PN >
Mg, M1 € My a
k&Ko <
¢ & B\ A k,my) c

Figure 2.6: The fully detailed version of Attack Game 2.1

Also, in Attack Game 2.1, the requirement that the two messages presented by the adversary
have the same length means that the length function provided in part 3 of Definition 2.10 evaluates
to the same value on the two messages.

It is perhaps useful to see what it means for a cipher £ to be insecure according to this formal
definition. This means that there exists an adversary 4 such that SSadv[A4, £] is a non-negligible
function in the security parameter. This means that SSadv[.A, £](A\) > 1/A€ for some ¢ > 0 and for
infinitely many values of the security parameter A. So this does not mean that A can “break” £
for all values of the security parameter, but only infinitely many values of the security parameter.

In the main body of the text, we shall mainly ignore security parameters, system parameters,
and the like, but it will always be understood that all of our “shorthand” has a precise mathematical
interpretation. In particular, we will often refer to certain values v as being negligible (resp., poly-
bounded), which really means that v is a negligible (resp., poly-bounded) function of the security
parameter.

2.4 A fun application: anonymous routing

Our friend Alice wants to send a message m to Bob, but she does not want Bob or anyone else to
know that the message m is from Alice. For example, Bob might be running a public discussion
forum and Alice wants to post a comment anonymously on the forum. Posting anonymously lets
Alice discuss health issues or other matters without identifying herself. In this section we will
assume Alice only wants to post a single message to the forum.

One option is for Alice to choose a proxy, Carol, send m to Carol, and ask Carol to forward
the message to Bob. This clearly does not provide anonymity for Alice since anyone watching the

35

network will see that m was sent from Alice to Carol and then from Carol to Bob. By tracing the
path of m through the network anyone can see that the post came from Alice.

A better approach is for Alice to establish a shared key & with Carol and send ¢ := E(k,m) to
Carol, where £ = (E, D) is a semantically secure cipher. Carol decrypts ¢ and forwards m to Bob.
Now, someone watching the network will see one message sent from Alice to Carol and a different
message sent from Carol to Bob. Nevertheless, this method still does not ensure anonymity for
Alice: if on a particular day the only message that Carol receives is the one from Alice and the only
message she sends goes to Bob, then an observer can link the two and still learn that the posted
message came from Alice.

We solve this problem by having Carol provide a mizing service, that is, a service that mixes
incoming messages from many different parties A;,...,A,. For i = 1,...,n, Carol establishes
a secret key k; with party A; and each party A; sends to Carol an encrypted message ¢; =
E (k‘i, (destination;, ml>) Carol collects all n incoming ciphertexts, decrypts each of them with
the correct key, and forwards the resulting plaintexts in some random order to their destinations.
Now an observer examining Carol’s traffic sees n messages going in and n messages going out, but
cannot tell which message was sent where. Alice’s message is one of the n messages sent out by
Carol, but the observer cannot tell which one. We say that Alice’s anonymity set is of size n.

The remaining problem is that Carol can still tell that Alice is the one who posted a specific
message on the discussion forum. To eliminate this final risk Alice uses multiple mixing services,
say, Carol and David. She establishes a secret key k. with Carol and a secret key kq with David.
To send her message to Bob she constructs the following nested ciphertext cs:

2 = E(ke, E(kq,m)) . (2.12)

For completeness Alice may want to embed routing information inside the ciphertext so that co is
actually constructed as:

Cy = E(kc, <David,cl>) where c1 = E(k:d, (Bob, m}) .

Next, Alice sends ¢y to Carol. Carol decrypts co and obtains the plaintext (David, ¢1) which tells
her to send ¢; to David. David decrypts ¢; and obtains the plaintext (Bob, m) which tells him to
send m to Bob. This process of decrypting a nested ciphertext, illustrated in Fig. 2.7, is similar to
peeling an onion one layer at a time. For this reason this routing procedure is often called onion
routing.

Now even if Carol observes all network traffic she cannot tell with certainty who posted a
particular message on Bob’s forum. The same holds for David. However, if Carol and David
collude they can figure it out. For this reason Alice may want to route her message through more
than two mixes. As long as one of the mixes does not collude with the others, Alice’s anonymity
will be preserved.

One complication is that when Alice establishes her shared secret key kg with David, she must
do so without revealing her identity to David. Otherwise, David will know that ¢; came from
Alice, which we do not want. This is not difficult to do, and we will see how later in the book
(Section 21.13).

Security of nested encryption. To preserve Alice’s anonymity it is necessary that Carol, who
knows ke, learn no information about m from the nested ciphertext cg in (2.12). Otherwise, Carol
could potentially use the information she learns about m from cs to link Alice to her post on Bob’s

36

C
Alice 2 Carol 1 David Bob

>

mix mix
c, e, T " m
/

J

Figure 2.7: An example onion routing using two mixes

discussion forum. For example, suppose Carol could learn the first few characters of m from c¢s and
later find that there is only one post on Bob’s forum starting with those characters. Carol could
then link the entire post to Alice because she knows that co came from Alice.

The same should hold for David. David has k4, and by observing network traffic, knows that
Alice sent co. As in the previous paragraph, it is important that David learn nothing about m
from cs.

Let us argue that if £ is semantically secure, then no efficient adversary can learn information
about m given ¢ and one of k. or kq. More generally, for a cipher &€ = (FE, D) defined over
(K, M,C), let us define the n-way nested cipher &, = (E,, D,,) as

En((kl,...,k:n), m) = E(kn, E(kp-1, E(kl,m))))
Decryption applies the keys in the reverse order:
Dy ((k1,...,kpn), ¢) := D(ki, D(ka, ---D(kpn,c))) .

Our goal is to show that if £ is semantically secure then &, is semantically secure even if the
adversary is given all but one of the keys k1, ..., k,. To make this precise, we define two experiments,
Experiment 0 and Experiment 1, where for b = 0, 1, Experiment b is:

e The adversary gives the challenger (mg, m1,d) where mg, m; € M are equal length messages
and 1 <d<n.

e The challenger chooses n keys ki,...,k, <+ K and computes ¢ <& En((kl, ey kn), mb). It
sends c to the adversary along with all keys k1, ..., k,, but excluding the key k.

e The adversary outputs a bit b € {0,1}.

This game captures the fact that the adversary sees all keys k1, ..., k, except for k4 and tries to
break semantic security.

We define the adversary’s advantage, NE(®) adv[A4, &], as in the definition of semantic security:
NEMadv[A, &] := |Pr[Wp] — Pr[W1]]

where W, is the event that A outputs 1 in Experiment b, for b = 0,1. We say that £ is semantically
secure for n-way nesting if NE™adv[A4, £] is negligible.

Theorem 2.12. For every constant n > 0, if € = (E, D) is semantically secure then &£ is seman-
tically secure for n-way nesting.

In particular, for every n-way nested adversary A attacking &, there exists a semantic security
adversary B attacking £, where B is an elementary wrapper around A, such that

NE™adv[A, £] = SSadv[B, £] .

The proof of this theorem is a good exercise in security reductions. We leave it for Exercise 2.15.

37

2.5 Notes

The one time pad is due to Gilbert Vernam in 1917, although there is evidence that it was discovered
earlier [15].
Citations to the literature to be added.

2.6 Exercises

2.1 (multiplicative one-time pad). We may also define a “multiplication mod p” variation of
the one-time pad. This is a cipher £ = (E, D), defined over (K, M,C), where £ :== M :=C :=
{1,...,p— 1}, where p is a prime. Encryption and decryption are defined as follows:

E(k,m):=k-mmodp D(k,¢) := k™' ¢mod p.

Here, k! denotes the multiplicative inverse of k modulo p. Verify the correctness property for this
cipher and prove that it is perfectly secure.

2.2 (A good substitution cipher). Consider a variant of the substitution cipher & = (F, D)
defined in Example 2.3 where every symbol of the message is encrypted using an independent
permutation. That is, let M = C = £F for some a finite alphabet of symbols ¥ and some L. Let
the key space be K = ST where S is the set of all permutations on 3. The encryption algorithm
E(k,m) is defined as

Bk, m) == (K[0)(m{0]), k(1](m[1)), ..., k[L —1)(m[L - 1]))
Show that £ is perfectly secure.

2.3 (A broken one-time pad). Consider a variant of the one time pad with message space
{0, 1}* where the key space K is restricted to all L-bit strings with an even number of 1’s. Give an
efficient adversary whose semantic security advantage is 1.

2.4 (Encryption chain). Let £ = (E, D) be a cipher defined over (K, M,C) where K = M. Let
&' = (F', D') be a cipher where encryption is defined as

E,((k‘l,k‘g),m) = (E(k‘l,kiz), E(k‘g,m)) e C?.

Show that if £ is perfectly secure then so is £. Exercise 3.2 describes an application for this
encryption scheme.

2.5 (A stronger impossibility result). This exercise generalizes Shannon’s theorem (Theo-
rem 2.5). Let £ be a cipher defined over (K, M, C). Suppose that SSadv[A, £] < € for all adversaries
A, even including computationally unbounded ones. Show that || > (1 — €)|M|.

2.6 (A matching bound). This exercise develops a converse of sorts for the previous exercise.
For j =1,...,L, let € := 1/2/. Consider the L-bit one-time pad variant £ defined over (K, M,C)
where M = C = {0,1}F. The key space K is restricted to all L-bit strings whose first j bits are
not all zero, so that || = (1 — €)| M|. Show that:

(a) there is an efficient adversary A such that SSadv[A,] =¢/(1 — ¢);

38

(b) for all adversaries A, even including computationally unbounded ones, SSadv[A, E] < e/(1—¢).

Note: Since the advantage of A in part (a) is non-zero, the cipher £ cannot be perfectly secure.

2.7 (Deterministic ciphers). In this exercise, you are asked to prove in detail the claims made
in Example 2.9. Namely, show that if £ is a deterministic cipher that is perfectly secure, then
SSadv[A,E] = 0 for every adversary A (bearing in mind that A may be probabilistic); also show
that if £ is the variable length one-time pad, then SSadv[A,] = 0 for all adversaries A.

2.8 (Rowulette). In Section 2.2.4, we argued that if value r is encrypted using a semantically
secure cipher, then a player’s odds of winning at Internet roulette are very close to those of real
roulette. However, our “roulette” game was quite simple. Suppose that we have a more involved
game, where different outcomes may result in different winnings. The rules are not so important,
but assume that the rules are easy to evaluate (given a bet and the number 7) and that every bet
results in a payout of 0,1, ..., n dollars, where n is poly-bounded. Let p be the expected winnings
in an optimal strategy for a real version of this game (with no encryption). Let 1’ be the expected
winnings of some (efficient) player in an Internet version of this game (with encryption). Show that
i < p+ €, where € is negligible, assuming the cipher is semantically secure.

Hint: You may want to use the fact that if X is a random variable taking values in the set
{0,1,...,n}, the expected value of X is equal to y ;" ; Pr[X > i].

2.9. Prove Fact 2.6, using the formal definitions in Section 2.3.

2.10 (Ezxercising the definition of semantic security). Let £ = (E, D) be a semantically
secure cipher defined over (K, M,C), where M = C = {0,1}*. Which of the following encryption
algorithms yields a semantically secure scheme? Either give an attack or provide a security proof
via an explicit reduction.

(a) Er(k,m):=0]| E(k,m)

(b) Ea(k,m):= E(k,m) || parity(m)
(¢) Es(k,m) = reverse(E(k,m))
(d) Ey(k,m) = E(k, reverse(m))

Here, for a bit string s, parity(s) is 1 if the number of 1’s in s is odd, and 0 otherwise; also,
reverse(s) is the string obtained by reversing the order of the bits in s, e.g., reverse(1011) = 1101.

2.11 (Key recovery attacks). Let £ = (E, D) be a cipher defined over (K, M, C). A key recovery
attack is modeled by the following game between a challenger and an adversary A: the challenger
chooses a random key k in K, a random message m in M, computes ¢ <~ E(k, m), and sends (m, c)
to A. In response A outputs a guess kin K. We say that A wins the game if D(];:, ¢) = m and define
KRadv[A, £] to be the probability that A wins the game. As usual, we say that £ is secure against
key recovery attacks if for all efficient adversaries A the advantage KRadv[A, £] is negligible.

(a) Show that the one-time pad is not secure against key recovery attacks.

(b) Show that if £ is semantically secure and € = |KC| /| M| is negligible, then & is secure against key
recovery attacks. In particular, show that for every efficient key-recovery adversary A there

39

is an efficient semantic security adversary B, where B is an elementary wrapper around A,
such that
KRadv[A, £] < SSadv[B,&] + ¢

Hint: Your semantic security adversary B will output 1 with probability KRadv|.A, £] in the
semantic security Experiment 1, and output 1 with probability at most ¢ in Experiment 0.
Deduce from this a lower bound on SSadv[5,£] in terms of € and KRadv[A, £] from which
the result follows.

(c) Deduce from part (b) that if £ is semantically secure and | M| is super-poly, then || cannot
be poly-bounded.
Note: |K| can be poly-bounded when |M]| is poly-bounded, as in the one-time pad.
2.12 (Security against message recovery). In Section 2.2.3.1 we developed the notion of

security against message recovery. Construct a cipher that is secure against message recovery, but
is not semantically secure.

2.13 (Advantage calculations in simple settings). Consider the following two experiments
Experiment 0 and Experiment 1:

e In Experiment 0 the challenger flips a fair coin (probability 1/2 for HEADS and 1/2 for
TAILS) and sends the result to the adversary A.

e In Experiment 1 the challenger always sends TAILS to the adversary.

The adversary’s goal is to distinguish these two experiments: at the end of each experiment the
adversary outputs a bit 0 or 1 for its guess for which experiment it is in. For b = 0,1 let W},
be the event that in experiment b the adversary output 1. The adversary tries to maximize its
distinguishing advantage, namely the quantity

|Pr[Wo] — Pr[WA]| €[0,1] .

If the advantage is negligible for all efficient adversaries then we say that the two experiments are
indistinguishable.

(a) Calculate the advantage of each of the following adversaries:
(i) Aj: Always output 1.

(ii) Ag: Ignore the result reported by the challenger, and randomly output 0 or 1 with even
probability.

(iii) As: Output 1 if HEADS was received from the challenger, else output 0.

(iv) A4: Output 0 if HEADS was received from the challenger, else output 1.

(v) As: If HEADS was received, output 1. If TAILS was received, randomly output 0 or 1
with even probability.

(b) What is the maximum advantage possible in distinguishing these two experiments? Explain
why.

40

2.14 (Permutation cipher). Consider the following cipher (E, D) defined over (K, M, C) where
C =M ={0,1}* and K is the set of all £! permutations of the set {0,...,¢/ —1}. For a key k € K
and message m € M define E(k,m) to be result of permuting the bits of m using the permutation
k, namely E(k,m) = m[k(0)]...m[k(¢ — 1)]. Show that this cipher is not semantically secure by
showing an adversary that achieves advantage 1.

2.15 (Nested encryption). For a cipher € = (E, D) with key space K define the nested cipher
&= (F,D) as

E,((k‘o,kl),m) = E(kl,E(k:Q,m)) and D/((ko,k‘l),c) = D(ko,D(kl,C)) .

Our goal is to show that if £ is semantically secure then & is semantically secure even if the
adversary is given one of the keys kg or k.

(a) Consider the following two semantic security experiments, Experiments 0 and 1. For b =0, 1,
in Experiment b the adversary first sends to the challenger two messages mg and mj. The
challenger chooses keys ko, k1 <~ K and sends back the pair (k1,c) where ¢ <~ E'((ko, k1), my).
Finally, the adversary outputs b in {0,1}. We define the adversary’s advantage, NEadv|A, &],
as in the usual the definition of semantic security. Show that for every nested encryption
adversary A attacking &', there is a semantic security adversary B attacking £, where B is an
elementary wrapper around A, such that

NEadv[A, £] = SSadv[B,£] .

Draw a diagram with A on the right, B in the middle, and B’s challenger on the left. Show
the message flow between these three parties that takes place in your proof of security.

(b) Repeat part (a), but now when the adversary gets back the pair (ko,c) from the challenger
(i.e., ky is replaced by k), where ¢ <+ E’((k‘o, k1), mp) as before. Draw a diagram describing
the message flow in your proof of security as you did in part (a).

This problem comes up in the context of anonymous routing on the Internet as discussed in Sec-
tion 2.4.

2.16 (Self referential encryption). Let us show that encrypting a key under itself can be
dangerous. Let £ be a semantically secure cipher defined over (IC, M,C), where K C M, and let
kE < K. A ciphertext ¢, := E(k, k), namely encrypting k using k, is called a self referential
encryption.

(a) Construct a cipher £ = (E, D) derived from & such that & is semantically secure, but becomes
insecure if the adversary is given E(k, k). You have just shown that semantic security does
not imply security when one encrypts one’s key.

(b) Construct a cipher £ = (E, D) derived from & such that £ is semantically secure and remains
semantically secure (provably) even if the adversary is given E(k‘, k). To prove that £ is
semantically secure, you should show the following: for every adversary A that attacks E ,
there exists and adversary B that attacks £ such that (i) the running time B is about the
same as that of A, and (ii) SSadv[A, £] < SSadv|[B, &].

2.17 (Compression and encryption). Two standards committees propose to save bandwidth
by combining compression (such as the Lempel-Ziv algorithm used in the zip and gzip programs)
with encryption. Both committees plan on using the variable length one time pad for encryption.

41

e One committee proposes to compress messages before encrypting them. Explain why this is
a bad idea.

Hint: Recall that compression can significantly shrink the size of some messages while having
little impact on the length of other messages.

e The other committee proposes to compress ciphertexts after encryption. Explain why this is
a bad idea.

Over the years many problems have surfaced when combining encryption and compression. The
CRIME [136] and BREACH [131] attacks are good representative examples.

2.18 (Voting protocols). This exercise develops a simple voting protocol based on the additive
one-time pad (Example 2.4). Suppose we have ¢ voters and a counting center. Each voter is going
to vote 0 or 1, and the counting center is going to tally the votes and broadcast the total sum S.
However, they will use a protocol that guarantees that no party (voter or counting center) learns
anything other than S (but we shall assume that each party faithfully follows the protocol).

The protocol works as follows. Let n > ¢ be an integer. The counting center generates an encryption
of 0: ¢y < {0,...,n — 1}, and passes ¢y to voter 1. Voter 1 adds his vote vy to ¢, computing
€1 ¢ ¢o + vy mod n, and passes c¢; to voter 2. This continues, with each voter i adding v; to ¢;_1,
computing ¢; < c¢;—1 + v; mod n, and passing ¢; to voter ¢ + 1, except that voter ¢ passes ¢; to the
counting center. The counting center computes the total sum as S < ¢; —cp mod n, and broadcasts
S to all the voters.

(a) Show that the protocol correctly computes the total sum.

(b) Show that the protocol is perfectly secure in the following sense. For voter i = 1,...,t, define
View; := (S, ¢;—1), which represents the “view” of voter i. We also define Viewq := (co, ct),
which represents the “view” of the counting center. Show that for each ¢ = 0,...,¢ and

S=0,...,t, the following holds:

as the choice of votes vy, ...,v; varies, subject to the restrictions that each v; €
{0,1} and Z§:1 vj = S, the distribution of View; remains the same.

(c) Show that if two voters i, j collude, they can determine the vote of a third voter k. You are
free to choose the indices i, j, k.

2.19 (Two-way split keys). Let &€ = (E,D) be a semantically secure cipher defined over
(IC, M, C) where K = {0,1}¢. Suppose we wish to split the ability to decrypt ciphertexts across
two parties, Alice and Bob, so that both parties are needed to decrypt ciphertexts. For a random
key k in IC choose a random r in K and define k, := r and ky, := k ® r. Now if Alice and Bob get
together they can decrypt a ciphertext ¢ by first reconstructing the key k as k = k, @ ky, and then
computing D(k, c). Our goal is to show that neither Alice nor Bob can decrypt ciphertexts on their
own.

(a) Formulate a security notion that captures the advantage that an adversary has in break-
ing semantic security given Bob’s key k. Denote this 2-way key splitting advantage by
2KSadv[A, &].

(b) Show that for every 2-way key splitting adversary A there is a semantic security adversary B
such that 2KSadv[A, £] = SSadv[B, £].

42

2.20 (Simple secret sharing). Let £ = (E, D) be a semantically secure cipher with key space
K = {0,1}*. A bank wishes to split a decryption key k& € {0,1}" into three shares pg, p1, and po
so that two of the three shares are needed for decryption. Each share can be given to a different
bank executive, and two of the three must contribute their shares for decryption to proceed. This
way, decryption can proceed even if one of the executives is out sick, but at least two executives
are needed for decryption.

(a) To do so the bank generates two random pairs (ko, k() and (k1, k}) so that ko®k(, = ki1 Bk] = k.
How should the bank assign shares so that any two shares enable decryption using k, but no
single share can decrypt?

Hint: The first executive will be given the share py := (ko, k1).

(b) Generalize the scheme from part (a) so that 3-out-of-5 shares are needed for decryption.
Reconstituting the key only uses XOR of key shares. Two shares should reveal nothing about
the key k.

(c) More generally, we can design a t-out-of-w system this way for any ¢ < w. How does the size
of each share scale with t?7 We will see a much better way to do this in Chapter 22

2.21 (Simple threshold decryption). Let £ = (E, D) be a semantically secure cipher with key
space K. In this exercise we design a system that lets a bank split a key k into three shares pg, p1,
and py so that two of the three shares are needed for decryption, as in Exercise 2.20. However,
decryption is done without ever reconstituting the complete key at a single location.

We use nested encryption from Exercise 2.15. Choose a random key k := (ko, k1, k2, k3) in K* and
encrypt a message m as:

c& <E(k1,E(k0,m)), E(k‘g,E(k‘Q,m)))

(a) Construct the shares pg, p1,p2 so that any two shares enable decryption, but no single share
can decrypt. Hint: the first share is pg := (ko, k3).

Discussion: Suppose the entities holding shares py and py are available to decrypt. To
decrypt a ciphertext c, first send ¢ to the entity holding p, to partially decrypt c¢. Then
forward the result to the entity holding py to complete the decryption. This way, decryption
is done without reconstituting the complete key k at a single location.

(b) Generalize the scheme from part (a) so that 3-out-of-5 shares are needed for decryption.
Explain how decryption can be done without reconstituting the key in a single location.

An encryption scheme where the key can be split into shares so that t-out-of-w shares are needed
for decryption, and decryption does not reconstitute the key at a single location, is said to provide
threshold decryption. We will see a much better way to do this in Chapter 22.

2.22 (Bias correction). Consider again the bit-guessing version of the semantic security attack
game (i.e., Attack Game 2.4). Suppose an efficient adversary A wins the game (i.e., guesses the
hidden bit b) with probability 1/2 + €, where € is non-negligible. Note that € could be positive or
negative (the definition of negligible works on absolute values). Our goal is to show that there is
another efficient adversary B that wins the game with probability 1/2+¢, where € is non-negligible
and positive.

43

(a)

Consider the following adversary B that uses A as a subroutine in Attack Game 2.4 in the
following two-stage attack. In the first stage, B plays challenger to A, but B generates its
own hidden bit by, its own key kg, and eventually A outputs its guess-bit bo. Note that in
this stage, B’s challenger in Attack Game 2.4 is not involved at all. In the second stage, B
restarts A, and lets A interact with the “real” challenger in Attack Game 2.4, and eventually
A outputs a guess-bit b. When this happens, B outputs b® by ® by. Note that this run of A
is completely independent of the first — the coins of A and also the system parameters are
generated independently in these two runs.

Show that B wins Attack Game 2.4 with probability 1/2 + 2¢2.

One might be tempted to argue as follows. Just construct an adversary B that runs A, and
when A outputs I;, adversary B outputs b 1. Now, we do not know if € is positive or
negative. If it is positive, then A satisfies our requirements. If it is negative, then B satisfies
our requirements. Although we do not know which one of these two adversaries satisfies our
requirements, we know that one of them definitely does, and so existence is proved.

What is wrong with this argument? The explanation requires an understanding of the math-
ematical details regarding security parameters (see Section 2.3).

Can you come up with another efficient adversary B’ that wins the bit-guessing game with
probability at least 1/2 + |e|/2? Your adversary B’ will be less efficient than B.

Hint: try running the first stage of adversary B multiple times.

44

Chapter 3

Stream ciphers

In the previous chapter, we introduced the notions of perfectly secure encryption and semantically
secure encryption. The problem with perfect security is that to achieve it, one must use very long
keys. Semantic security was introduced as a weaker notion of security that would perhaps allow
us to build secure ciphers that use reasonably short keys; however, we have not yet produced any
such ciphers. This chapter studies one type of cipher that does this: the stream cipher.

3.1 Pseudo-random generators

Recall the one-time pad. Here, keys, messages, and ciphertexts are all L-bit strings. However, we
would like to use a key that is much shorter. So the idea is to instead use a short, ¢-bit “seed” s as
the encryption key, where £ is much smaller than L, and to “stretch” this seed into a longer, L-bit
string that is used to mask the message (and unmask the ciphertext). The string s is stretched
using some efficient, deterministic algorithm G that maps ¢-bit strings to L-bit strings. Thus, the
key space for this modified one-time pad is {0, 1}5, while the message and ciphertext spaces are
{0,1}*. For s € {0,1}* and m, c € {0,1}”, encryption and decryption are defined as follows:

E(s,m):=G(s)®&m and D(s,c):=G(s)®ec.

This modified one-time pad is called a stream cipher, and the function G is called a pseudo-
random generator.

If ¢ < L, then by Shannon’s Theorem, this stream cipher cannot achieve perfect security;
however, if GG satisfies an appropriate security property, then this cipher is semantically secure.
Suppose s is a random ¢-bit string and r is a random L-bit string. Intuitively, if an adversary cannot
effectively tell the difference between G(s) and r, then he should not be able to tell the difference
between this stream cipher and a one-time pad; moreover, since the latter cipher is semantically
secure, so should be the former. To make this reasoning rigorous, we need to formalize the notion
that an adversary cannot “effectively tell the difference between G(s) and r.”

An algorithm that is used to distinguish a pseudo-random string G(s) from a truly random
string r is called a statistical test. It takes a string as input, and outputs 0 or 1. Such a test
is called effective if the probability that it outputs 1 on a pseudo-random input is significantly
different than the probability that it outputs 1 on a truly random input. Even a relatively small
difference in probabilities, say 1%, is considered significant; indeed, even with a 1% difference, if
we can obtain a few hundred independent samples, which are either all pseudo-random or all truly

45

random, then we will be able to infer with high confidence whether we are looking at pseudo-random
strings or at truly random strings. However, a non-zero but negligible difference in probabilities,
say 27109 is not helpful.

How might one go about designing an effective statistical test? One basic approach is the
following: given an L-bit string, calculate some statistic, and then see if this statistic differs greatly
from what one would expect if the string were truly random.

For example, a very simple statistic that is easy to compute is the number k of 1’s appearing
in the string. For a truly random string, we would expect k ~ L/2. If the PRG G had some
bias towards either 0-bits or 1-bits, we could effectively detect this with a statistical test that,
say, outputs 1 if |k — 0.5L| < 0.01L, and otherwise outputs 0. This statistical test would be quite
effective if the PRG G did indeed have some significant bias towards either 0 or 1.

The test in the previous example can be strengthened by considering not just individual bits,
but pairs of bits. One could break the L-bit string up into ~ L/2 bit pairs, and count the number
koo of pairs 00, the number kg of pairs 01, the number k1 of pairs 10, and the number ki1 of pairs
11. For a truly random string, one would expect each of these numbers to be ~ L/2-1/4 = L/8.
Thus, a natural statistical test would be one that tests if the distance from L/8 of each of these
numbers is less than some specified bound. Alternatively, one could sum up the squares of these
distances, and test whether this sum is less than some specified bound — this is the classical x-
squared test from statistics. Obviously, this idea generalizes from pairs of bits to tuples of any
length.

There are many other simple statistics one might check. However, simple tests such as these do
not tend to exploit deeper mathematical properties of the algorithm G that a malicious adversary
may be able to exploit in designing a statistical test specifically geared towards G. For example,
there are PRG’s for which the simple tests in the previous two paragraphs are completely ineffective,
but yet are completely predictable, given sufficiently many output bits; that is, given a prefix of
G(s) of sufficient length, the adversary can compute all the remaining bits of G(s), or perhaps even
compute the seed s itself.

Our definition of security for a PRG formalizes the notion that there should be no effective (and
efficiently computable) statistical test.

3.1.1 Definition of a pseudo-random generator

A pseudo-random generator, or PRG for short, is an efficient, deterministic algorithm G that,
given as input a seed s, computes an output r. The seed s comes from a finite seed space S and
the output r belongs to a finite output space R. Typically, S and R are sets of bit strings of some
prescribed length (for example, in the discussion above, we had S = {0,1}¢ and R = {0,1}*). We
say that G is a PRG defined over (S, R).

Our definition of security for a PRG captures the intuitive notion that if s is chosen at random
from S and r is chosen at random from R, then no efficient adversary can effectively tell the
difference between G(s) and r: the two are computationally indistinguishable. The definition
is formulated as an attack game.

Attack Game 3.1 (PRG). For a given PRG G, defined over (S,R), and for a given adversary
A, we define two experiments, Experiment 0 and Experiment 1. For b = 0, 1, we define:

Experiment b:

e The challenger computes r € R as follows:

46

Challenger A

(Experiment 0)

s&ES

r <+ G(s) r

be{0,1}

Challenger A

(Experiment 1)

be{0,1}

Figure 3.1: Experiments 0 and 1 of Attack Game 3.1

—ifb=0: s & S, r+ G(s);
—ifb=1:r & R.
and sends r to the adversary.
e Given r, the adversary computes and outputs a bit be {0,1}.

For b = 0,1, let W}, be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to G as

PRGadv|A, G] := |Pr[Wy] — Pr[W4]|. O
The attack game is illustrated in Fig. 3.1.

Definition 3.1 (secure PRG). A PRG G is secure if the value PRGadv[A, G| is negligible for
all efficient adversaries A.

As discussed in Section 2.2.5, Attack Game 3.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b € {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage

47

PRGadv*[A4, G] as |Pr[b = b] — 1/2|. The general result of Section 2.2.5 (namely, (2.11)) applies
here as well:

PRGadv[A, G] = 2 - PRGadv*[A, G]. (3.1)

We also note that a PRG can only be secure if the cardinality of the seed space is super-poly
(see Exercise 3.5).

3.1.2 Mathematical details

Just as in Section 2.3, we give here more of the mathematical details pertaining to PRGs. Just like
Section 2.3, this section may be safely skipped on first reading with very little loss in understanding.

First, we state the precise definition of a PRG, using the terminology introduced in Defini-
tion 2.9.

Definition 3.2 (pseudo-random generator). A pseudo-random generator consists of an
algorithm G, along with two families of spaces with system parameterization P:

S={Safaa and R={Ryalra,
such that

1. S and R are efficiently recognizable and sampleable.

2. Algorithm G is an efficient deterministic algorithm that on input A\, A, s, where X € Z>1,
A € Supp(P())), and s € Sy o, outputs an element of Ry a.

Next, Definition 3.1 needs to be properly interpreted. First, in Attack Game 3.1, it is to be
understood that for each value of the security parameter A, we get a different probability space,
determined by the random choices of the challenger and the random choices of the adversary.
Second, the challenger generates a system parameter A, and sends this to the adversary at the very
start of the game. Third, the advantage PRGadv[A, G] is a function of the security parameter A,
and security means that this function is a negligible function.

3.2 Stream ciphers: encryption with a PRG

Let G be a PRG defined over ({0, 1}¢,{0,1}%); that is, G stretches an /-bit seed to an L-bit output.
The stream cipher £ = (FE, D) constructed from G is defined over ({0, 1}¢,{0,1}=%,{0,1}=1);
for s € {0,1}¢ and m,c € {0,1}=, encryption and decryption are defined as follows: if |m| = v,
then

E(s,m):=G(s)[0..v—1] & m,

and if |¢| = v, then
D(s,c):==G(s)[0..v—1] & e

As the reader may easily verify, this satisfies our definition of a cipher (in particular, the correctness
property is satisfied).

Note that for the purposes of analyzing the semantic security of £, the length associated with a
message m in Attack Game 2.1 is the natural length |m| of m in bits. Also, note that if v is much
smaller than L, then for many practical PRGs, it is possible to compute the first v bits of G(s)
much faster than actually computing all the bits of G(s) and then truncating.

The main result of this section is the following:

48

Theorem 3.1. If G is a secure PRG, then the stream cipher £ constructed from G is a semantically
secure cipher.

In particular, for every SS adversary A that attacks € as in Attack Game 2.1, there ezists a
PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

SSadv[A, £] = 2 - PRGadv(B, G]. (3.2)

Proof idea. The basic idea is to argue that we can replace the output of the PRG by a truly random
string, without affecting the adversary’s advantage by more than a negligible amount. However,
after making this replacement, the adversary’s advantage is zero. O

Proof. Let A be an efficient adversary attacking £ as in Attack Game 2.1. We want to show that
SSadv[A, £] is negligible, assuming that G is a secure PRG. It is more convenient to work with the
bit-guessing version of the SS attack game. We prove:

SSadv*[A,] = PRGadv[B, G| (3.3)

for some efficient adversary B. Then (3.2) follows from Theorem 2.10. Moreover, by the assump-
tion that G is a secure PRG, the quantity PRGadv[B, G] must be negligible, and so the quantity
SSadv[A, £] is negligible as well.

So consider the adversary A’s attack of £ in the bit-guessing version of Attack Game 2.1. In
this game, A presents the challenger with two messages mg, m1 of the same length; the challenger
then chooses a random key s and a random bit b, and encrypts mp under s, giving the resulting
ciphertext ¢ to A; finally, A outputs a bit b. The adversary A wins the game if b = b.

Let us call this Game 0. The logic of the challenger in this game may be written as follows:

Upon receiving mg, my € {0,1}Y from A, for some v < L, do:
b« {0,1}
5 < {0,1}, r «+ G(s)
cr[0..v—1]dmy
send ¢ to A.

Game 0 is illustrated in Fig. 3.2.
Let Wy be the event that b = b in Game 0. By definition, we have

SSadv*[A, €] = [Pr[Wo] — 1/2]. (3.4)

Next, we modify the challenger of Game 0, obtaining a new game, called Game 1, which is
exactly the same as Game 0, except that the challenger uses a truly random string in place of a
pseudo-random string. The logic of the challenger in Game 1 is as follows:

Upon receiving mg, my € {0,1}Y from A, for some v < L, do:
< {0,1}
r & {0,1}F
cr[0..v—1]dmy
send ¢ to A.

49

Challenger
b <& {0,1}

s & {0,1}°
r < G(s)

crl0..v—=1]dmy

mo, M1 € {0, 1}SL
(Imo| = |m1| = v)
c »
be{0,1}

Figure 3.2:

Game 0 in the proof of Theorem 3.1

Challenger

b & {01}
r&{0,1}F
cr0..v—1]dmy

mp, M1 € {0,1}§L

(Imo| = |ma| = v)

Cc

be{0,1}

Figure 3.3: Game 1 in the proof of Theorem 3.1

50

mo, my € {0, 1}§L

(Imo| = |ma| = v)

PRG Challenger 013"
f re , 1
or & b & {0,1)

cr[0..o—1]®my

be{0,1}

Figure 3.4: The PRG adversary B in the proof of Theorem 3.1

As usual, A outputs a bit b at the end of this game. We have highlighted the changes from Game 0
in gray. Game 1 is illustrated in Fig. 3.3.
Let Wy be the event that b = b in Game 1. We claim that

Pr[W;] = 1/2. (3.5)

This is because in Game 1, the adversary is attacking the variable length one-time pad. In particu-
lar, it is easy to see that the adversary’s output b and the challenger’s hidden bit b are independent.

Finally, we show how to construct an efficient PRG adversary B that uses A as a subroutine,
such that

|Pr[Wy] — Pr[WW;]| = PRGadv[B, G]. (3.6)
This is actually quite straightforward. The logic of our new adversary B is illustrated in Fig. 3.4.
Here, 0 is defined as follows:
1 ifz=y,
S(x,y) = : (3.7)
0 ifx#uy.

Also, the box labeled “PRG Challenger” is playing the role of the challenger in Attack Game 3.1
with respect to G.

In words, adversary B, which is a PRG adversary designed to attack G (as in Attack Game 3.1),
receives 1 € {0, 1}L from its PRG challenger, and then plays the role of challenger to A, as follows:

Upon receiving mgy, m; € {0,1}" from A, for some v < L, do:
b+« {0,1}
cr[0..v—1]®dmy
send ¢ to A.

o1

Finally, when A outputs a bit b, B outputs the bit & (13, b).

Let pg be the probability that B outputs 1 when the PRG challenger is running Experiment 0
of Attack Game 3.1, and let p; be the probability that B outputs 1 when the PRG challenger is
running Experiment 1 of Attack Game 3.1. By definition, PRGadv[B, G| = |p1 — po|.- Moreover, if
the PRG challenger is running Experiment 0, then adversary A is essentially playing our Game 0,
and so pg = Pr[Wy], and if the PRG challenger is running Experiment 1, then A is essentially
playing our Game 1, and so p; = Pr[IW;]. Equation (3.6) now follows immediately.

Combining (3.4), (3.5), and (3.6), yields (3.3). O

In the above theorem, we reduced the security of £ to that of G by showing that if A is an
efficient SS adversary that attacks &£, then there exists an efficient PRG adversary B that attacks
G, such that

SSadv[A, £] < 2 - PRGadv[B, G].

(Actually, we showed that equality holds, but that is not so important.) In the proof, we argued
that if G is secure, then PRGadv[B, G] is negligible, hence by the above inequality, we conclude
that SSadv[A, £] is also negligible. Since this holds for all efficient adversaries A, we conclude that
£ is semantically secure.

Analogous to the discussion after the proof of Theorem 2.7, another way to structure the proof
is by proving the contrapositive: indeed, if we assume that £ is insecure, then there must be an
efficient adversary A such that SSadv[A,£] is non-negligible, and the reduction (and the above
inequality) gives us an efficient adversary B such that PRGadv[B, G] is also non-negligible. That
is, if we can break &£, we can also break G. While logically equivalent, such a proof has a different
“feeling”: one starts with an adversary A that breaks £, and shows how to use A to construct a
new adversary B that breaks G.

The reader should notice that the proof of the above theorem follows the same basic pattern
as our analysis of Internet roulette in Section 2.2.4. In both cases, we started with an attack game
(Fig. 2.2 or Fig. 3.2) which we modified to obtain a new attack game (Fig. 2.3 or Fig. 3.3); in
this new attack game, it was quite easy to compute the adversary’s advantage. Also, we used an
appropriate security assumption to show that the difference between the adversary’s advantages in
the original and the modified games was negligible. This was done by exhibiting a new adversary
(Fig. 2.4 or Fig. 3.4) that attacked the underlying cryptographic primitive (cipher or PRG) with an
advantage equal to this difference. Assuming the underlying primitive was secure, this difference
must be negligible; alternatively, one could argue the contrapositive: if this difference were not
negligible, the new adversary would “break” the underlying cryptographic primitive.

This is a pattern that will be repeated and elaborated upon throughout this text. The reader
is urged to study both of these analyses to make sure he or she completely understands what is
going on.

3.3 Stream cipher limitations: attacks on the one time pad

Although stream ciphers are semantically secure, they are quite brittle and become insecure if used
incorrectly.

52

3.3.1 The two-time pad is insecure

A stream cipher is well equipped to encrypt a single message from Alice to Bob. Alice, however,
may wish to send several messages to Bob. For simplicity suppose Alice wishes to encrypt two
messages m; and mg. The naive solution is to encrypt both messages using the same stream cipher
key s:

c1 < my @ G(s) and co <+ ma @ G(s) (3.8)

A moments reflection shows that this construction is insecure in a very strong sense. An adversary
who intercepts ¢; and ¢y can compute

A=c1®cr=(m1 dG(s)) ® (ma®G(s)) =m Smy

and obtain the xor of m; and my. Not surprisingly, English text contains enough redundancy that
given A = mq @®meo the adversary can recover both my and my in the clear. Hence, the construction
in (3.8) leaks the plaintexts after seeing only two sufficiently long ciphertexts.

The construction in (3.8) is jokingly called the two-time pad. We just argued that the two-
time pad is totally insecure. In particular, a stream cipher key should never be used to
encrypt more than one message. Throughout the book we will see many examples where a
one-time cipher is sufficient. For example, when choosing a new random key for every message as
in Section 5.4.1. However, in settings where a single key is used multiple times, one should never
use a stream cipher directly. We build multi-use ciphers in Chapter 5.

Incorrectly reusing a stream cipher key is a common error in deployed systems. For example,
a protocol called PPTP enables two parties A and B to send encrypted messages to one another.
Microsoft’s implementation of PPTP in Windows N'T uses a stream cipher called RC4. The orig-
inal implementation encrypts messages from A to B using the same RC4 key as messages from
B to A [140]. Consequently, by eavesdropping on two encrypted messages headed in opposite
directions an attacker could recover the plaintext of both messages.

Another amusing story about the two-time pad is relayed by Klehr [85] who describes in great
detail how Russian spies in the US during World War II were sending messages back to Moscow,
encrypted with the one-time pad. The system had a critical flaw, as explained by Klehr:

During WWII the Soviet Union could not produce enough one-time pads ... to keep
up with the enormous demand So, they used a number of one-time pads twice,
thinking it would not compromise their system. American counter-intelligence during
WWII collected all incoming and outgoing international cables. Beginning in 1946, it
began an intensive effort to break into the Soviet messages with the cooperation of the
British and by ... the Soviet error of using some one-time pads as two-time pads, was
able, over the next 25 years, to break some 2900 messages, containing 5000 pages of the
hundreds of thousands of messages that had been sent between 1941 and 1946 (when
the Soviets switched to a different system).

The decryption effort was codenamed project Venona. The Venona files are most famous for
exposing Julius and Ethel Rosenberg and helped give evidence of their involvement with the Soviet
spy ring. Starting in 1995 all 3000 Venona decrypted messages were made public.

3.3.2 The one-time pad is malleable

Although semantic security ensures that an adversary cannot read the plaintext, it provides no
guarantees for integrity. When using a stream cipher, an adversary can change a ciphertext and

53

the modification will never be detected by the decryptor. Even worse, let us show that by changing
the ciphertext, the attacker can control how the decrypted plaintext will change.
Suppose an attacker intercepts a ciphertext ¢ := E(s,m) = m@®G(s). The attacker changes ¢ to
c = c® A for some A of the attacker’s choice. Consequently, the decryptor receives the modified
message
D(s,d) = ®G(s) = (cdA)DG(s) =md A.

Hence, without knowledge of either m or s, the attacker was able to cause the decrypted message
to become m @ A for A of the attacker’s choosing. We say that stream-ciphers are malleable since
an attacker can cause predictable changes to the plaintext. We will construct ciphers that provide
both privacy and integrity in Chapter 9.

A simple example where malleability could help an attacker is an encrypted file system. To
make things concrete, suppose Bob is a professor and that Alice and Molly are students. Bob’s
students submit their homework by email, and then Bob stores these emails on a disk encrypted
using a stream cipher. An email always starts with a standard header. Simplifying things a bit, we
can assume that an email from, say, Alice, always starts with the characters From:Alice.

Now suppose Molly is able to gain access to Bob’s disk and locate the encryption of the email
from Alice containing her homework. Molly can effectively steal Alice’s homework, as follows. She
simply XORs the appropriate five-character string into the ciphertext in positions 6 to 10, so as
to change the header From:Alice to the header From:Molly. Molly makes this change by only
operating on ciphertexts and without knowledge of Bob’s secret key. Bob will never know that the
header was changed, and he will grade Alice’s homework, thinking it is Molly’s, and Molly will get
the credit instead of Alice.

Of course, for this attack to be effective, Molly must somehow be able to find the email from Alice
on Bob’s encrypted disk. However, in some implementations of encrypted file systems, file metadata
(such as file names, modification times, etc) are not encrypted. Armed with this metadata, it may
be straightforward for Molly to locate the encrypted email from Alice and carry out this attack.

3.4 Composing PRGs

In this section, we discuss two constructions that allow one to build new PRGs out of old PRGs.
These constructions allow one to increase the size of the output space of the original PRG while at
the same time preserving its security. Perhaps more important than the constructions themselves is
the proof technique, which is called a hybrid argument. This proof technique is used pervasively
throughout modern cryptography.

3.4.1 A parallel construction

Let G be a PRG defined over (S,R). Suppose that in some application, we want to use G many
times. We want all the outputs of G to be computationally indistinguishable from random elements
of R. If G is a secure PRG, and if the seeds are independently generated, then this will indeed be
the case.

We can model the use of many applications of G as a new PRG G’. That is, we construct a
new PRG G’ that applies G to n seeds, and concatenates the outputs. Thus, G’ is defined over
(8™, R"™), and for s1,...,8, €S,

G'(51,...,8n) == (G(81),...,G(sn)).

We call G’ the n-wise parallel composition of G. The value n is called a repetition parameter,
and we require that it is a poly-bounded value.

Theorem 3.2. If G is a secure PRG, then the n-wise parallel composition G’ of G is also a secure
PRG.

In particular, for every PRG adversary A that attacks G' as in Attack Game 3.1, there exists
a PRG adversary B that attacks G as in Attack Game 3.1, where B is an elementary wrapper
around A, such that

PRGadv[A, G'] = n - PRGadv[B, G].

As a warm up, we first prove this theorem in the special case n = 2. Let A be an efficient PRG
adversary that has advantage € in attacking G’ in Attack Game 3.1. We want to show that e is
negligible, under the assumption that G is a secure PRG. To do this, let us define Game 0 to be
Experiment 0 of Attack Game 3.1 with A and G’. The challenger in this game works as follows:

S1 & S, T < G(Sl)
S9 (i S, T9 < G(SQ)
send (r1,72) to A.

Let pg denote the probability with which A outputs 1 in this game.
Next, we define Game 1, which is played between A and a challenger that works as follows:

rt <R
S9 & S, ro <— G(SQ)
send (r1,72) to A.

Note that Game 1 corresponds to neither Experiment 0 nor Experiment 1 of Attack Game 3.1;
rather, it is a “hybrid” experiment corresponding to something in between Experiments 0 and 1.
All we have done is replace the pseudo-random value r; in Game 0 by a truly random value (as
highlighted). Intuitively, under the assumption that G is a secure PRG, the adversary A should
not notice the difference. To make this argument precise, let p; be the probability that A outputs
1 in Game 1.

Let 61 := |p1 — po|. We claim that J; is negligible, assuming that G is a secure PRG. Indeed,
we can easily construct an efficient PRG adversary B; whose advantage in attacking G in Attack
Game 3.1 is precisely equal to §;. The adversary By works as follows:

Upon receiving r € R from its challenger, By plays the role of challenger to A, as follows:

T < T
S9 & S, o <— G(SQ)
send (r1,72) to A.

Finally, B1 outputs whatever A outputs.

Observe that when B is in Experiment 0 of its attack game, it perfectly mimics the behavior of the
challenger in Game 0, while in Experiment 1, it perfectly mimics the behavior of the challenger in
Game 1. Thus, pg is equal to the probability that 1 outputs 1 in Experiment 0 of Attack Game 3.1,
while py is equal to the probability that By outputs 1 in Experiment 1 of Attack Game 3.1. Thus,
By’s advantage in attacking G is precisely |p1 — pol, as claimed.

Next, we define Game 2, which is played between A and a challenger that works as follows:

95

™ SR
9 &R
send (r1,72) to A.

All we have done is replace the pseudo-random value ry in Game 1 by a truly random value (as
highlighted). Let pa be the probability that A outputs 1 in Game 2. Note that Game 2 corresponds
to Experiment 1 of Attack Game 3.1 with A and G’, and so ps is equal to the probability that A
outputs 1 in Experiment 1 of Attack Game 3.1 with respect to G’.

Let 02 := |p2 — p1|. By an argument similar to that above, it is easy to see that Jo is negligible,
assuming that G is a secure PRG. Indeed, we can easily construct an efficient PRG adversary By
whose advantage in Attack Game 3.1 with respect to G is precisely equal to ds. The adversary Bo
works as follows:

Upon receiving r € R from its challenger, By plays the role of challenger to A, as follows:
1 <£ R

g < T
send (r1,72) to A.

Finally, B2 outputs whatever A outputs.

It should be clear that p; is equal to the probability that By outputs 1 in Experiment 0 of Attack
Game 3.1, while ps is equal to the probability that By outputs 1 in Experiment 1 of Attack Game 3.1.
Recalling that ¢ = PRGadv[A, G'], then from the above discussion, we have

€ = |p2 — po| = [p2 — p1 +p1 — po|l < |p1 — po| + |p2 — p1| = 01 + da.

Since both 07 and dy are negligible, then so is € (see Fact 2.6).

That completes the proof that G’ is secure in the case n = 2. Before giving the proof in the
general case, we give another proof in the case n = 2. While our first proof involved the construction
of two adversaries By and B, our second proof combines these two adversaries into a single PRG
adversary B that plays Attack Game 3.1 with respect to G, and which runs as follows:

upon receiving r € R from its challenger, adversary B chooses w € {1,2} at random,
and gives 7 to B,; finally, B outputs whatever B,, outputs.

Let Wy be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. Conditioning on the events w = 1
and w = 2, we have

Pr[Wy| = Pr[Wy | w = 1] Prjw = 1] 4+ Pr[W | w = 2] Pr{w = 2]
= é(Pr[WO |w=1]+Pr[W |w = 2])

= %(Po +p1).
Similarly, we have

Pr[Wi] = Pr[W; | w = 1] Prlw = 1] + Pr[W; | w = 2] Prjw = 2]
= 5<Pr[W1 |w=1]+Pr[W; |w= 2])

= %(pl + p2).

56

Therefore, if § is the advantage of B in Attack Game 3.1 with respect to GG, we have
§ = |Pr[Wi] = Pr[Wol| = |5(p1 + p2) — 5(po + p1)| = §lp2 — po| = €/2.

Thus, € = 2§, and since ¢ is negligible, so is € (see Fact 2.6).
Now, finally, we present the proof of Theorem 3.2 for general, poly-bounded n.

Proof idea. We could try to extend the first strategy outlined above from n = 2 to arbitrary n.
That is, we could construct a sequence of n + 1 games, starting with a challenger that produces
a sequence (G(s1),...,G(sy)), of pseudo-random elements replacing elements one at a time with
truly random elements of R, ending up with a sequence (rq,...,r,) of truly random elements of
R. Intuitively, the adversary should not notice any of these replacements, since G is a secure
PRG; however, proving this formally would require the construction of n different adversaries,
each of which attacks G in a slightly different way. As it turns out, this leads to some annoying
technical difficulties when n is not an absolute constant, but is simply poly-bounded; it is much
more convenient to extend the second strategy outlined above, constructing a single adversary that
attacks G “in one blow.” O

Proof. Let A be an efficient PRG adversary that plays Attack Game 3.1 with respect to G'. We
first introduce a sequence of n 4+ 1 hybrid games, called Hybrid 0, Hybrid 1, ..., Hybrid n. For
j=0,1,...,n, Hybrid j is a game played between A and a challenger that prepares a tuple of n
values, the first j of which are truly random, and the remaining n — j of which are pseudo-random
outputs of G; that is, the challenger works as follows:

T1<£R

’l“j(iR,

si41 ¢S, mjp1 < G(sj41)

Sp £ S, — G(sp)
send (r1,...,7r,) to A.

As usual, A outputs 0 or 1 at the end of the game. Fig. 3.5 illustrates the values prepared by the
challenger in each of these n+1 games. Let p; denote the probability that .4 outputs 1 in Hybrid j.
Note that pg is also equal to the probability that A outputs 1 in Experiment 0 of Attack Game 3.1,
while p,, is equal to the probability that A outputs 1 in Experiment 1. Thus, we have

PRGadv[A, G'] = |pn — pol- (3.9)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to G, and which
works as follows:

Upon receiving r € R from its challenger, B plays the role of challenger to A, as follows:

57

Hybrid 0: G(s1) G(s2) G(sz) -+ G(sn)

Hybrid 1: 1 G(s2) G(s3) -+ G(sp)
Hybrid 2: r1 ro G(s3) -+ G(sp)
Hybrid n — 1: r1 T9 r3 o G(sp)
Hybrid n: 1 r9 s ... Tn

Figure 3.5: Values prepared by challenger in Hybrids 0,1,...,n. Each r; is a random element
of R, and each s; is a random element of S.

W

= T

{1,...,n}
T R

To_1 ¢ R
Tw & T

R
Sw+1 S, Twt+1l < G(Sw+1)

Sn &S, G(sy)
send (r1,...,7r,) to A.

Finally, B outputs whatever A outputs.

Let Wy be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on w = j for every fired j = 1,...,n, Experiment 0 of B’s attack game
is equivalent to Hybrid j — 1, while Experiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,

Pr[Wo |w=jl=pj—1 and Pr[W;|w=j]=p;.

So we have

ZPrWMw-y]Pr[w-g ZPI"WO\W—] Zp] 1

Jj=1]1

and similarly,

Pr(Wi] = > Pr[Wi | w = j] Prlw = ZPr (Wi | w = j] ij

j=1

58

Finally, we have

PRGadv[B, G] = |Pr[W;] — Pr[Wy]|

Il
AL
S
3
S
S

and combining this with (3.9), we have
PRGadv[A, G| = n- PRGadv|B, G].

Since we are assuming G is a secure PRG, it follows that PRGadv([B,] is negligible, and since n is
poly-bounded, it follows that PRGadv[A, G'] is negligible (see Fact 2.6). That proves the theorem.
O

Theorem 3.2 says that the security of a PRG degrades at most linearly in the number of times
that we use it. One might ask if this bound is tight; that is, might security indeed degrade linearly
in the number of uses? The answer is in fact “yes” (see Exercise 3.15).

3.4.2 A sequential construction: the Blum-Micali method

We now present a sequential construction, invented by Blum and Micali, which uses a PRG that
stretches just a little, and builds a PRG that stretches an arbitrary amount.

Let G be a PRG defined over (S, R x §), for some finite sets S and R. For every poly-bounded
value n > 1, we can construct a new PRG G’, defined over (S, R" x S). For s € S, we let

G'(s) =
So < S
fori < 1tondo
(T‘Z’, Si) — G(Si_l)
output (r1,...,7n,Sn)-

We call G’ the n-wise sequential composition of G. See Fig. 3.6 for a schematic description of
G’ for n = 3.

We shall prove below in Theorem 3.3 that if G is a secure PRG, then so is G’. As a special case
of this construction, suppose G is a PRG defined over ({0,1}¢,{0,1}*4), for some positive integers
¢ and t; that is, G stretches (-bit strings to (¢ + ¢)-bit strings. We can naturally view the output
space of G as {0,1} x {0,1}*, and applying the above construction, and interpreting outputs as
bit strings, we get a PRG G’ that stretches ¢-bit strings to (nt + £)-bit strings.

Theorem 3.3. If G is a secure PRG, then the n-wise sequential composition G' of G is also a
secure PRG.

In particular, for every PRG adversary A that plays Attack Game 3.1 with respect to G', there
ezists a PRG adversary B that plays Attack Game 3.1 with respect to G, where B is an elementary
wrapper around A, such that

PRGadv[A, G'] = n - PRGadv(B, G].

59

S1 52

1 T2 T3 53

Figure 3.6: The sequential construction for n = 3

Proof idea. The proof of this is a hybrid argument that is very similar in spirit to the proof of
Theorem 3.2. The intuition behind the proof is as follows: Consider a PRG adversary A who
receives the (71, ...,7p, Sp) in Experiment 0 of Attack Game 3.1. Since s = s¢ is random and G is a
secure PRG, we may replace (71, s1) by a completely random element of R x S, and the probability
that A outputs 1 in this new, hybrid game should change by only a negligible amount. Now, since
s1 is random (and again, since G is a secure PRG), we may replace (72, s2) by a completely random
element of R x &, and the probability that A outputs 1 in this second hybrid game should again
change by only a negligible amount. Continuing in this way, we may incrementally replace (r3, s3)
through (7, s,) by random elements of R x S, and the probability that A outputs 1 should change
by only a negligible amount after making all these changes (assuming n is poly-bounded). However,
at this point, A outputs 1 with the same probability with which he would output 1 in Experiment 1
in Attack Game 3.1, and therefore, this probability is negligibly close to the probability that .4
outputs 1 in Experiment 0 of Attack Game 3.1.

That is the idea; however, just as in the proof of Theorem 3.2, for technical reasons, we design
a single PRG adversary that attacks G. O

Proof. Let A be a PRG adversary that plays Attack Game 3.1 with respect to G'. We first introduce
a sequence of n + 1 hybrid games, called Hybrid 0, Hybrid 1, ..., Hybrid n. For j =0,1,...,n, we
define Hybrid j to be the game played between A and the following challenger:

7’1@7?,

T‘j(i’R,
Sj(iS

(Tj+1, 5j+1) < G(Sj)

(s 50) < G(5n1)

send (7r1,...,7n, Sp) to A.

As usual, A outputs 0 or 1 at the end of the game. See Fig. 3.7 for a schematic description of
how these challengers work in the case n = 3. Let p; denote the probability that A outputs 1
in Hybrid j. Note that pg is also equal to the probability that A outputs 1 in Experiment 0 of

60

Attack Game 3.1, while p,, is equal to the probability that A outputs 1 in Experiment 1 of Attack
Game 3.1. Thus, we have
PRGadv[A, G'] = |pn — pol- (3.10)

We next define a PRG adversary B that plays Attack Game 3.1 with respect to GG, and which
works as follows:

Upon receiving (r,s) € R x S from its challenger, B plays the role of challenger to A,

as follows:
w«{1l,...,n}
1 &R,...,Tw_l ER
(Fuy Sw) < (1, 5)
(Twt1, Swt1) < G(8w), -+, (Tny8n) <= G(sp—1)
send (71,...,7n, Sp) to A.

Finally, B outputs whatever A outputs.

Let Wy be the event that B outputs 1 in Experiment 0 of Attack Game 3.1, and W7 be the
event that B outputs 1 in Experiment 1 of Attack Game 3.1. The key observation is this:

conditioned on w = j for every fixed j = 1,...,n, Experiment 0 of B’s attack game
is equivalent to Hybrid j — 1, while Fxperiment 1 of B’s attack game is equivalent to
Hybrid j.

Therefore,

PrWo [w=jl=pj-1 and Pr[W)|w=j]=p;.

The remainder of the proof is a simple calculation that is identical to that in the last paragraph of
the proof of Theorem 3.2. O

One criteria for evaluating a PRG is its expansion rate: a PRG that stretches an n-bit seed
to an m-bit output has expansion rate of m/n; more generally, if the seed space is S and the
output space is R, we would define the expansion rate as log|R|/log|S|. The sequential composi-
tion achieves a better expansion rate than the parallel composition. However, it suffers from the
drawback that it cannot be parallelized. In fact, we can obtain the best of both worlds: a large
expansion rate with a highly parallelizable construction (see Section 4.4.4).

3.4.3 Mathematical details

There are some subtle points in the proofs of Theorems 3.2 and 3.3 that merit discussion.

First, in both constructions, the underlying PRG G may have system parameters. That is,
there may be a probabilistic algorithm that takes as input the security parameter A\, and outputs
a system parameter A. Recall that a system parameter is public data that fully instantiates the
scheme (in this case, it might define the seed and output spaces). For both the parallel and
sequential constructions, one could use the same system parameter for all n instances of GG; in fact,
for the sequential construction, this is necessary to ensure that outputs from one round may be
used as inputs in the next round. The proofs of these security theorems are perfectly valid if the
same system parameter is used for all instances of G, or if different system parameters are used.

61

Hybrid 0

: G G G

.

T1

Hybrid 1

@ a G
®

)
o &
T

T1
1

.
Q
< 3 = =

Hybrid 2

Hybrid 3
r

Figure 3.7: The challenger’s computation in the hybrid games for n = 3. The circles indicate
randomly generated elements of S or R, as indicated by the label.

62

Second, we briefly discuss a rather esoteric point regarding hybrid arguments. To make things
concrete, we focus attention on the proof of Theorem 3.2 (although analogous remarks apply to the
proof of Theorem 3.3, or any other hybrid argument). In proving this theorem, we ultimately want
to show that if there is an efficient adversary A that breaks G’, then there is an efficient adversary
that breaks G. Suppose that A is an efficient adversary that breaks G’, so that its advantage €(\)
(which we write here explicitly as a function of the security parameter \) with respect to G’ is not
negligible. This means that there exists a constant ¢ such that e(A) > 1/A° for infinitely many A.

Now, in the discussion preceding the proof of Theorem 3.2, we considered the special case n = 2,
and showed that there exist efficient adversaries B; and Ba, such that e(A) < §1(\) 4+ d2(A) for all A,
where 6;(\) is the advantage of B; with respect to G. It follows that either 6;(A) > 1/2\¢ infinitely
often, or da(A) > 1/2)¢ infinitely often. So we may conclude that either By breaks G or By breaks
G (or possibly both). Thus, there exists an efficient adversary that breaks G: it is either B; or
Bs, which one we do not say (and we do not have to). However, whichever one it is, it is a fixed
adversary that is defined uniformly for all A; that is, it is a fixed machine that takes A as input.

This argument is perfectly valid, and extends to every constant n: we would construct n adver-
saries By, ..., By, and argue that for some j = 1,...,n, adversary B; must have advantage 1/n\°
infinitely often, and thus break G. However, this argument does not extend to the case where n
is a function of A, which we now write explicitly as n(A). The problem is not that 1/(n(A)A) is
perhaps too small (it is not). The problem is quite subtle, so before we discuss it, let us first review
the (valid) proof that we did give. For each A, we defined a sequence of n(\) + 1 hybrid games,
so that for each A\, we actually get a different sequence of games. Indeed, we cannot speak of a
single, finite sequence of games that works for all A, since n(\) — oo. Nevertheless, we explicitly
constructed a fixed adversary B that is defined uniformly for all A; that is, B is a fixed machine
that takes A\ as input. The sequence of hybrid games that we define for each A is a mathematical
object for which we make no claims as to its computability — it is simply a convenient device used
in the analysis of B.

Hopefully by now the reader has at least a hint of the problem that arises if we attempt to
generalize the argument for constant n to a function n(A). First of all, it is not even clear what
it means to talk about n(\) adversaries By, ... s Bn(n): our adversaries are supposed to be fixed
machines that take A as input, and the machines themselves should not depend on A. Such linguistic
confusion aside, our proof for the constant case only shows that there exists an “adversary” that for
infinitely many values of A somehow knows the “right” value of j = j(A) to use in the (n(\) + 1)-
game hybrid argument — no single, constant value of j necessarily works for infinitely many A. One
can actually make sense of this type of argument if one uses a non-uniform model of computation,
but we shall not take this approach in this text.

All of these problems simply go away when we use a hybrid argument that constructs a single
adversary B, as we did in the proofs of Theorems 3.2 and 3.3. However, we reiterate that the original
analysis we did in the case where n = 2, or its natural extension to every constant n, is perfectly
valid. In that case, we construct a single, fixed sequence of n+ 1 games, with each individual game
uniformly defined for all A (just as our attack games are in our security definitions), as well as a
finite collection of adversaries, each of which is a fixed machine. We reiterate this because in the
sequel we shall often be constructing proofs that involve finite sequences of games like this (indeed,
the proof of Theorem 3.1 was of this type). In such cases, each game will be uniformly defined for
all A, and will be denoted Game 0, Game 1, etc. In contrast, when we make a hybrid argument
that uses non-uniform sequences of games, we shall denote these games Hybrid 0, Hybrid 1, etc.,

63

so as to avoid any possible confusion.

3.5 The next bit test

Let G be a PRG defined over ({0,1}¢,{0,1}%), so that it stretches ¢-bit strings to L-bit strings.
There are a number of ways an adversary might be able to distinguish a pseudo-random output of
G from a truly random bit string. Indeed, suppose that an efficient adversary were able to compute,
say, the last bit of G’s output, given the first L — 1 bits of G’s output. Intuitively, the existence of
such an adversary would imply that G is insecure, since given the first L — 1 bits of a truly random
L-bit string, one has at best a 50-50 chance of guessing the last bit. It turns out that an interesting
converse, of sorts, is also true.

We shall formally define the notion of unpredictability for a PRG, which essentially says
that given the first 7 bits of G’s output, it is hard to predict the next bit (i.e., the (i + 1)-st
bit) with probability significantly better that 1/2 (here, i is an adversarially chosen index). We
shall then prove that unpredictability and security are equivalent. The fact that security implies
unpredictability is fairly obvious: the ability to effectively predict the next bit in the pseudo-random
output string immediately gives an effective statistical test. However, the fact that unpredictability
implies security is quite interesting (and requires more effort to prove): it says that if there is any
effective statistical test at all, then there is in fact an effective method for predicting the next bit
in a pseudo-random output string.

Attack Game 3.2 (Unpredictable PRG). For a given PRG G, defined over (S,{0,1}%), and a
given adversary A, the attack game proceeds as follows:

e The adversary sends an index i, with 0 <¢ < L — 1, to the challenger.

e The challenger computes
s+ S, r+ G(s)

and sends r[0..7 — 1] to the adversary.
e The adversary outputs g € {0,1}.

We say that A wins if r[i] = g, and we define A’s advantage Predadv[A, G] to be |Pr[A wins|—1/2|.
a

Definition 3.3 (Unpredictable PRG). A PRG G is unpredictable if the value Predadv]A, G]
s negligible for all efficient adversaries A.

We begin by showing that security implies unpredictability.
Theorem 3.4. Let G be a PRG, defined over (S,{0,1}1). If G is secure, then G is unpredictable.

In particular, for every adversary A breaking the unpredictability of G, as in Attack Game 3.2,
there exists an adversary B breaking the security of G as in Attack Game 3.1, where B is an
elementary wrapper around A, such that

Predadv|A, G] = PRGadv[B, G].

64

Proof. Let A be an adversary breaking the unpredictability of G, and let i denote the index chosen
by A. Also, suppose A wins Attack Game 3.2 with probability 1/2+¢, so that Predadv[A, G] = |¢|.
We build an adversary B breaking the security of G, using A as a subroutine, as follows:

Upon receiving € {0,1}* from its challenger, B does the following:

e B gives r[0..7 — 1] to A, obtaining A’s output g € {0,1};
e if r[i] = g, then output 1, and otherwise, output 0.

For b = 0,1, let W}, be the event that B outputs 1 in Experiment b of Attack Game 3.1. In
Experiment 0, r is a pseudo-random output of G, and Wy occurs if and only if r[i] = g, and so by
definition

Pr[Wy] =1/2+ .

In Experiment 1, r is a truly random bit string, but again, W occurs if and only if [i] = g¢; in this
case, however, as random variables, the values of r[i] and g are independent, and so

Pr[Wi] = 1/2.
It follows that
PRGadv[B, G| = |Pr[W1] — Pr[Wy]| = |e| = Predadv][A4,G]. O

The more interesting, and more challenging, task is to show that unpredictability implies secu-
rity. Before getting into all the details of the proof, we sketch the high level ideas.

First, we shall employ a hybrid argument, which will essentially allow us to argue that if A is
an efficient adversary that can effectively distinguish a pseudo-random L-bit string from a random
L-bit string, then we can construct an efficient adversary B that can effectively distinguish

Ty TjTjq1

from
X1 - -l'j r,

where j is a randomly chosen index, x1,...,x is the pseudo-random output, and r is a random
bit. Thus, adversary B can distinguish the pseudo-random bit ;11 from the random bit r, given
the “side information” x1,..., ;.

We want to turn B’s distinguishing advantage into a predicting advantage. The rough idea is
this: given x1,...,x;, we feed B the string z1,...,x; r for a randomly chosen bit r; if B outputs 1,
our prediction for ;41 is r; otherwise, our prediction for ;41 is 7 (the complement of r).

That this prediction strategy works is justified by the following general result, which we call
the distinguisher/predictor lemma. The general setup is as follows. We have:

e a random variable X, which corresponds to the “side information” z1,...,x; above, as well
as any random coins used by the adversary B;

e a 0/1-valued random variable B, which corresponds to xj;1 above, and which may be corre-
lated with X;

e a 0/1-valued random variable R, which corresponds to r above, and which is independent of
(X, B);

65

e a function d, which corresponds to B’s strategy, so that B’s distinguishing advantage is equal
to |e[, where € = Pr[d(X,B) = 1] — Pr[d(X,R) = 1].

The lemma says that if we define B’ using the predicting strategy outlined above, namely B’ = R if
d(X,R) = 1, and B’ = R otherwise, then the probability that the prediction B’ is equal to the actual
value B is precisely 1/2 + e. Here is the precise statement of the lemma:

Lemma 3.5 (Distinguisher/predictor lemma). Let X be a random variable taking values in
some set S, and let B and R be a 0/1-valued random variables, where R is uniformly distributed
over {0,1} and is independent of (X,B). Let d: S x {0,1} — {0,1} be an arbitrary function, and
let

€ := Pr[d(X,B) = 1] — Pr[d(X,R) = 1].

Define the random variable B' as follows:

B {R if d(X,R) = 1;

R otherwise.

Then
Pr[B'=8B] =1/2+e.

Proof. We calculate Pr[B’ = B], conditioning on the events B =R and B = R:

Pr[8’ = B] = Pr[B' = B | B = R|Pr[B = R] + Pr[B’ = B | B = R| Pr[B = R]

= Pr[d(X,R) =1 | B:R]%—FPr[d(X,R):O’B:ﬁ]%

:%(Pr[d(X,R)—l | B=R] + (1 —Pr[d(X,R) =1 B:ﬁ]))
11

=5 t5l@=p),

where
a:=Pr[d(X,R) =1|B=R] and § :=Pr[d(X,R) =1| B =R].

By independence, we have
a =Pr[d(X,R) =1|B=R] =Pr[d(X,B) =1]|B=R] =Pr[d(X,B) =1].

To see the last equality, the result of Exercise 3.26 may be helpful.
We thus calculate that

e = Pr[d(X,B) = 1] — Pr[d(X,R) = 1]

—a- (Pr[d(x,R) —1|B=R]Pr[B =R]+Pr[d(X,R) = 1| B = R Pr[B :ﬂ)
1
2

=a—(a+p)
1
:i(a—ﬁ),

which proves the lemma. O

66

Theorem 3.6. Let G be a PRG, defined over (S,{0,1}F). If G is unpredictable, then G is secure.

In particular, for every adversary A breaking the security of G as in Attack Game 3.1, there
exists an adversary B, breaking the unpredictability of G as in Attack Game 3.2, where B is an
elementary wrapper around A, such that

PRGadv[A, G| = L - Predadv([B, G].
Proof. Let A attack G as in Attack Game 3.1. Using A, we build a predictor B, which attacks G
as in Attack Game 3.2, and works as follows:
e Choose w € {1,...,L} at random.

e Send L — w to the challenger, obtaining a string = € {0, 1}7~.

Generate w random bits 71, ...,r,, and give the L-bit string x || r1 -+, to A.

If A outputs 1, then output r1; otherwise, output 7.

To analyze B, we consider L + 1 hybrid games, called Hybrid 0, Hybrid 1, ..., Hybrid L. For
j=0,...,L, we define Hybrid j to be the game played between A and a challenger that generates
a bit string r consisting of L — j pseudo-random bits, followed by j truly random bits; that is, the
challenger chooses s € S and ¢ € {0,1}7 at random, and sends A the bit string

ri=G(s)0..L—j—1]| t.

As usual, A outputs 0 or 1 at the end of the game, and we define p; to be the probability that A
outputs 1 in Hybrid j. Note that pg is the probability that A outputs 1 in Experiment 0 of Attack
Game 3.1, while py, is the probability that A outputs 1 in Experiment 1 of Attack Game 3.1.

Let W be the event that B wins in Attack Game 3.2 (that is, correctly predicts the next bit).
Then we have

L
Pr[W] =Y Pr[W | w = j]Prlw = j]
j=1
1 L
:ZZPF[WV‘):]]
j=1
1 /1
-3 (5 tpi _pj> (by Lemma 3.5)
j=1
1 1
=3 + z(po —PL),

and the theorem follows. O

3.6 Case study: the Salsa and ChaCha PRGs

There are many ways to build PRGs and stream ciphers in practice. One approach builds PRGs
using the Blum-Micali paradigm discussed in Section 3.4.2. Another approach, discussed more

67

generally in Chapter 5, builds them from a more versatile primitive called a pseudorandom function
in counter mode. We start with a construction that uses this latter approach.

Salsa20/12 and Salsa20/20 are fast stream ciphers designed by Dan Bernstein in 2005.
Salsa20/12 is one of four Profile 1 stream ciphers selected for the eStream portfolio of stream
ciphers. eStream is a project that identifies fast and secure stream ciphers that are appropriate
for practical use. Variants of Salsa20/12 and Salsa20/20, called ChaChal2 and ChaCha20 respec-
tively, were proposed by Bernstein in 2008. These stream ciphers have been incorporated into
several widely deployed protocols such as TLS and SSH.

Let us briefly describe the PRGs underlying the Salsa and ChaCha stream cipher families.
These PRGs take as input a 256-bit seed and a 64-bit nonce. For now we ignore the nonce and
simply set it to 0. We discuss the purpose of the nonce at the end of this section. The Salsa
and ChaCha PRGs follow the same high level structure shown in Fig. 3.8. They make use of two
components:

e A padding function denoted pad(s, j,0) that combines a 256-bit seed s with a 64-bit counter
j to form a 512-bit block. The third input, a 64-bit nonce, is always set to 0 for now.

e A fixed public permutation 7 : {0,1}°1% — {0,1}°!2.

These components are used to output L < 264 pseudorandom blocks, each 512 bits long, using the
following algorithm (Fig. 3.8):

input: seed s € {0,1}2%

1. forj«O0toL -1

2. h; + pad(s, j,0) € {0,1}°12
3. Tj(*ﬂ'(hj)@hj
4. output (rg,...,rr—1).

The final PRG output is 512 - L bits long. We note that in Salsa and ChaCha the XOR on line 3
is a slightly more complicated operation: the 512-bit operands h; and 7(h;) are split into 16 words
each 32-bits long and then added word-wise mod 232.

The design of Salsa and ChaCha is highly parallelizable and can take advantage of multiple
processor cores to speed-up encryption. Moreover, it enables random access to output blocks:
output block number j can be computed without having to first compute all previous blocks.
Generators based on the Blum-Micali paradigm do not have these properties.

We analyze the security of the Salsa and ChaCha design in Exercise 4.23 in the next chapter,
after we develop a few more tools.

The details. We briefly describe the padding function pad(s,j,n) and the permutation 7 used
in ChaCha20. The padding function takes as input a 256-bit seed sq,...,s7 € {0,1}32, a 64-bit
counter jo,j1 € {0,1}32, and 64-bit nonce ng,n; € {0,1}32. It outputs a 512-bit block denoted

zo,. .., 215 € {0,1}32. The output is arranged in a 4 x 4 matrix of 32-bit words as follows:
o T1 T2 T3 ch €1 C2 C3
T4 Ty T X S0 81 S2 S
4 5 6 7 0 S1 S2 S3 (3.11)
rg X9 Tio 11 sS4 S5 Se ST
T2 T13 T4 T15 Jo J1 mo m

68

seed T T l

256 bits pad(-, 0,0) pad(*,1,0) pad(-,2,0) oo

512 bits

v v 2

1! Tt 1!

l l |
-7 —f 7

output block #0 output block #1 output block #2 | *e*

512 bits 512 bits 512 bits

Figure 3.8: A schematic of the Salsa and ChaCha PRGs

where cg, c1, co, c3 are fixed 32-bit constants.

The permutation 7 : {0,1}512 — {0,1}°!2 is constructed by iterating a simple permutation a
fixed number of times. The 512-bit input to 7 is treated as a 4 x 4 array of 32-bit words denoted
by xg,...,z15. In ChaCha20 the function 7 is implemented by repeating the following sequence of
steps ten times:

(1) QuarterRound
(3) QuarterRound
(5) QuarterRound
(7) QuarterRound

2) QuarterRound(z1, =5, z9, 213),
4) QuarterRound(zs, z7, 11, 215),
6) QuarterRound(x1, x¢, x11, T12),
8) QuarterRound(xs, x4, z9, x14).

To, T4, T8, T12),
T2, X6, 10, T14),
L0y, L5, 10, x15)7
T2, 27, T8, T13),

N N N N
N N N N

Here QuarterRound(a, b, c,d) is defined as the following sequence of steps written as C code using
a macro ROTL (a,b) that rotates left a 32-bit word a by b bits:

#define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
a += b; d "= a; ROTL(d, 16);
d; b "= c; ROTL(b, 12);
a+=Db; d "= a; ROTL(d, 8);
c +=d b "= ¢; ROTL(b, 7);

(e}
+
I

b

Observe that the first four invocations of QuarterRound, steps (1-4), are applied to each of the four
columns of the 4 x 4 matrix, from left to right. The next four invocations, steps (5-8), are applied
to each of the four diagonals, with wrap around. This completes our description of ChaCha20,
except that we still need to discuss the use of nonces.

Using nonces. While the PRGs we discussed so far only take the seed as input, many PRGs used
in practice take an additional input called a nonce. That is, the PRG is a function G : S x N — R
where S and R are as before and N is called a nonce space. The nonce lets us generate multiple
pseudorandom outputs from a single seed s. That is, G(s,ng) is one pseudorandom output and

69

G(s,n1) for ny # ng is another. The nonce turns the PRG into a more powerful primitive called
a pseudorandom function discussed in the next chapter. As we will see, secure pseudorandom
functions make it possible to use the same seed to encrypt multiple messages securely.

3.7 Case study: linear generators

In this section we look at two example PRGs built from linear functions. Both generators follow the
Blum-Micali paradigm presented in Section 3.4.2. Our first example, called a linear congruential
generator, is completely insecure. We present it to show the beautiful mathematics that comes up
when attacking PRGs. Our second example, called a subset sum generator, is a provably secure
PRG assuming a certain version of the classic subset-sum problem is hard.

3.7.1 An example cryptanalysis: the linear congruential generator

Linear congruential generators (LCG) are used in statistical simulations to generate pseudorandom
values. They are fast, easy to implement, and widely deployed. Variants of LCG are used to generate
randomness in early versions of glibc, Microsoft Visual Basic, and the Java runtime. While
these generators may be sufficient for simulations, they should never be used for cryptographic
applications because they are insecure as PRGs. In particular, they are predictable: given a few
consecutive outputs of an LCG generator it is easy to compute all subsequent outputs. In this
section we describe an attack on LCG generators by showing a prediction algorithm.

The basic linear congruential generator is specified by four public system parameters: an inte-
ger ¢, two constants a,b € {0,...,q — 1}, and a positive integer w < ¢q. The constant a is taken to
be relatively prime to q. We use §; and R to denote the sets:

Sg=10,....,¢—1}; R:={0,...,[(¢—1)/w] }.

Here |-] is the floor function: for a real number z, |z] is the biggest integer less than or equal to x.
Now, the generator Gl : Sy —+ R X S, with seed s € S is defined as follows:

Gieg(s) == ([s/w], as+bmodq).

When w is a power of 2, say w = 2!, then the operation |s/w| simply erases the ¢ least significant
bits of s. Hence, the left part of Gig(s) is the result of dropping the ¢ least significant bits of s.

The generator Gy is clearly insecure since given s’ := as + b mod ¢ it is straight-forward to
recover s and then distinguish |[s/w] from random. Nevertheless, consider a variant of the Blum-
Micali construction in which the final Sg-value is not output:

Gl(:g)(s) = S1 48
for i + 1 ton do
ri < |si/w], Sit1 < as; +bmod g
output (r1,...,7y).

We refer to each iteration of the loop as a single iteration of the LCG generator and call each one
of r1,...,r, the output of a single iteration.

Different implementations use different system parameters g¢,a,b,w. For example, the
Math.random function in the Java 8 Development Kit (JDKv8) uses ¢ := 2% w := 222 and

70

the hexadecimal constants a := 0x5DEECEG6D and b := 0x0B. Thus, every iteration of the LCG
generator outputs the top 48 — 22 = 26 bits of the 48-bit state s;.

The parameters used by this Java 8 generator are clearly too small for security applications since
the output r; € R of the first iteration of the generator reveals all but 22 bits of the seed s € S;. An
attacker can easily recover the unknown 22 bits of s by exhaustive search. For every possible value of
the 22 bits, the attacker forms a candidate seed 5 € S,. It tests if 5 is the correct seed by checking if
the outputs 71,79, 73 € R computed from the seed § are equal to the outputs r1, 72,73 € R observed
from the actual generator. By trying all 222 candidates (about four million) the attacker eventually
finds the correct seed s and can then predict all subsequent outputs of the generator. This attack
runs in under a second on a modern processor.

Even when the LCG parameters are sufficiently large to prevent exhaustive search, say ¢ = 2512,

the generator Gl(cng) is insecure and should never be used for security applications despite its wide
availability in software libraries. Known attacks [65] on the LCG show that even if the generator
outputs only a few bits per iteration, it is still possible to predict the entire sequence from just a
few consecutive outputs. Let us see an elegant version of this attack.
Cryptanalysis. Suppose that ¢ is large (e.g. ¢ = 2°'?) and the LCG generator chng) outputs
about half the bits of the state s per iteration, as in the Java 8 Math.random generator. An
exhaustive search on the seed s is not possible given its size. Nevertheless, we show how to quickly
predict the generator from the output of only two consecutive iterations.

Suppose that w < |/q/c] for some fixed ¢ > 0, say ¢ = 32. This means that at every iteration
the generator outputs slightly more than half the bits of the current internal state s;. For example,
when ¢ = 252 and ¢ = 32 the generator would output at least 261 bits per iteration.

Suppose the attacker is given two consecutive outputs of the generator r;, 7,41 € R. We show
how it can predict the remaining sequence. The attacker knows that

ri = |si/w] and rit1 = |Si+1/w]| = [(as; + b mod q)/w] .
for some unknown s; € §;. By multiplying both equation by w we obtain
- W+ ey = S; and rit1 - w+ e = (as; + bmod q),
where eg and e are the remainders after dividing s; and s;11 by w. In particular,
0<ep,er <w< [/q/cl.

The fact that eg,e; are smaller than ,/g/c is an essential ingredient of the attack. Next, let us
write s in place of s;, and eliminate the mod ¢ by introducing an integer variable x, to obtain

ri-w-+e=s and riv1-w+e =as+b+qx .

The integers z, s, eg, €1 are unknown to the attacker, but it has the integers r;, 711, w,a,b. Re-
arranging terms to put the terms involving x and s on the left gives

s=r;-w+ e and as+qr =ripqw—b+eq . (3.12)

Finally, we can write (3.12) in vector form as

1 0\ _ o riw ._ (€0
s - <a> +x- <q> =g+e where g:= (Ti+1w B b) and e := <61) . (3.13)

71

.
(3,15)

°
(2,10)

o\
&

S0 []

ce

®
(1,5) L

(0,=29)

Figure 3.9: The two-dimensional lattice £, associated with attacking the LCG. Here the lattice
is generated by the vectors (1,5)T and (0,29)T. The attacker has a vector g = (9,7)T € Z? and
wants to find the closest lattice vector w € L,. In this picture there is indeed only one “close”
lattice vector to g, namely u = (7,6)T.

The attacker knows g € Z?, but it does not know s, z, or e € Z2. However, it knows that e is
short, namely ||e||. is less than [,/q/c].

Let u € Z? denote the unknown vector u := g+e = s-(1,a)T+z-(0,¢)T. If the attacker could
find u then it could easily recover s and x from wu by linear algebra. Using s it could predict the
rest of the PRG output. Thus, to break the generator it suffices to find the vector uw € Z2. The
attacker has g € Z?, and it knows that ||g — ||, = ||€]| is short, meaning that wu is “close” to g.

We show how to find w from g. Consider the set of all integer linear combinations of the
vectors (1,a)T and (0,q)T. This set, denoted by L,, is a subset of Z? and contains vectors like
(1,a)7, (2,2a)7, (3,3a —2q)T, and so on. The set L, is illustrated in Fig. 3.9 where the solid dots
in the figure are the integer linear combinations of the vectors (1,a)T and (0,¢)T. The set L, is
called the two-dimensional lattice generated by the vectors (1,a)T and (0, q)T.

Now, the attacker has a vector g € Z? and knows that his target vector w € £, is close to g. If
it could find the closest vector in L, to g then there is a good chance that this vector is the desired
vector u. The following lemma shows that indeed this is the case for most a € S,.

Lemma 3.7. For at least (1 — 16/c?) - q of the a in S,, the lattice L, C Z* has the following
property: for every g € 72 there is at most one vector u € L, such that ||g — u||. < [\V/a/c].

Taking ¢ = 32 in Lemma 3.7 shows that for 98% of the a € S;, the closest vector to g in £, is
precisely the desired vector u. Before proving the lemma, let us first complete the description of
the attack.

It remains to efficiently find the closest vector to g in £,. This problem is a special case of
a general problem called the closest vector problem: given a lattice £ and a vector g, find
the vector in £ that is closest to g. When the lattice £ is two dimensional there is an efficient
polynomial time algorithm for this problem [153]. Armed with this algorithm the attacker can

72

recover the internal state s; of the LCG generator from just two outputs r;, r;41 of the generator
and predict the remaining sequence. This attack works for 98% of the a € S,.

For completeness we note that a = 1 and a = 2 are examples where Lemma 3.7 fails. For these
a there may be many lattice vectors in £, close to a given g € Z?, and the attack will fail. We
leave it as a fun exercise to devise an attack that works for the a in S, for which Lemma 3.7 does
not apply. We conclude this section with a proof of Lemma 3.7.

Proof of Lemma 3.7. Let g € Z? and suppose there are two vectors ug and u; in £, that are close
to g, that is, ||u; —g||. < [/q/c] for i = 0,1. Then up and u; must be close to each other. Indeed,
by the triangle inequality, we have

[0 — wifle < lluo = gllw + llg = will < 2[v/a/c] -

Since any lattice is closed under addition, we know that w := wg — w is a vector in the lattice L,
and we conclude that £, must contain a “short” vector, namely, a non-zero vector of norm less
than B := 2|,/q/c]. So, let us bound the number of “bad” a € S, for which £, contains a short
vector of norm less than B.

First, consider the case when ¢ is a prime. We show that every short vector in Z? is contained
in at most one lattice £,. Therefore, the number of bad a’s is at most the number of short vectors
in Z2. Let t = (s,y)T € Z? be some non-zero vector such that |||, < B. Suppose that t € £, for
some a € S;. Then there exist integers s, and x, such that s, - (1,a)T +z, - (0,¢)T =t = (s,y)T.
From this we obtain that s = s, and y = as mod ¢q. Moreover, s # 0 since otherwise t = 0. Since
y = as mod g and s # 0, the value of a is uniquely determined, namely, a = ys~! mod ¢. Hence,
when ¢ is prime, every non-zero short vector t is contained in at most one lattice £, for some
a € S,. It follows that the number of bad a in S, is at most the number of vectors in t € Z? where
|t||. < B, which is at most (2B)? < 16¢/c.

The same bound on the number of bad a’s holds when ¢ is not a prime. To see why consider a
specific non-zero s € S; and let d = ged(s, ¢). As above, a vector t = (s,y)7 is contained in some
lattice £, only if there is an a € S, satisfying as = y (mod ¢). This implies that y must be a
multiple of d so that we need only consider 2B/d possible values of y. For each such y the vector
t = (s,y)T is in at most d lattices £,. Since ||t||., < B, there are at most 2B possible values for s.
Hence, the number of bad a’s is bounded by (d-2B/d)-2B = (2B)? as in the case when ¢ is prime.

To conclude, there are at most 16¢/c? bad values of a in S,;. Therefore, for at least (1—16/c?)-q
of the a values in S, the lattice £, contains no non-zero short vectors and the lemma follows. O

3.7.2 The subset sum generator

We next show how to construct a pseudorandom generator from simple linear operations. The
generator is secure assuming that a certain randomized version of the classic subset sum problem
is hard.

The modular subset problem. Let ¢ be a positive integer and set S; := {0,...,¢q — 1} C Z.
Choose n integers a := (ai,...,a,) in S; and define the subset sum function fg : {0,1}" — S, as

for s = (s1,...,5n) € {0,1}" define fq(s) := Zai - s; mod q .
i=1

73

For example, fq(101101) = a; + a3 + a4 + ag mod ¢q. Now, for a target integer ¢ € S, the modular
subset problem is defined as follows:

given (q, a,t) as input, output a vector s € {0, 1}" such that fo(s) = t, if one exists.

In other words, the problem is to find a pre-image of ¢ for the function fg(-), if one exists. The
modular subset problem is known to be NP hard.

The subset sum PRG. The subset problem naturally suggests the following PRG: at setup
time fix an integer ¢ and choose n random integers a := (a1, ...,a,) in S;. The PRG G, 4 takes a
seed s € {0,1}" and outputs a pseudorandom value in S;. It is defined as

Gga(s) = Zai -s; mod q .
i=1

The PRG expands an n bit seed to an element of S;, which is about log, ¢ bits of output. Choosing
n and ¢ so that log, q is somewhat bigger than 2n gives a PRG whose output is about twice the size
of the input. We can then plug this PRG into the Blum-Micali construction to expand the output
further. Note that if the output of the PRG needs to be converted to a binary string, then ¢ needs
to be close to a power of 2, otherwise the most significant bit of the output will be biased.

While Gy q is far slower than custom PRG constructions like ChaCha20 from Section 3.6, the
work on average per bit of output is a single modular addition in S;, which may be appropriate for
some applications that are not time sensitive.

Impagliazzo and Naor [91] show that attacking G4 as a PRG is as hard as solving a certain
randomized variant of the modular subset sum problem. While there is considerable work on solving
the modular subset problem, the problem appears to be hard when log, ¢ is approximately 2n, and
n is large, say n > 1000. This shows the security of G, 4 as a PRG.

Variants. Fischer and Stern [62] and others propose the following variation of the subset sum
generator:

Gga(s):=A-smodgq

where ¢ is a small prime, A is a random matrix in ngm for n < m, and the seed s is uniform in
{0,1}™. The generator maps an m-bit seed to nlog, ¢ bits of output. We discuss this generator
further in Chapter 17.

3.8 Case study: cryptanalysis of the DVD encryption system

The Content Scrambling System (CSS) is a system used for protecting movies on DVD disks. It
uses a stream cipher, called the CSS stream cipher, to encrypt movie contents. CSS was designed
in the 1980’s when exportable encryption was restricted to 40-bit keys. As a result, CSS encrypts
movies using a 40-bit secret key. While ciphers using 40-bit keys are woefully insecure, we show that
the CSS stream cipher is particularly weak and can be broken in far less time than an exhaustive
search over all 240 keys. It provides a fun opportunity for cryptanalysis.

74

7 6 5 4 3 2 1 0

1 0 1 1 0 p— 0110100100010100...

Figure 3.10: The 8 bit linear feedback shift register {4, 3,2,0}

Linear feedback shift registers (LFSR). The CSS stream cipher is built from two LFSRs.
An n-bit LFSR is defined by a set of integers V' := {v1,...,v4} where each v; is in the range
{0,...,m — 1}. The elements of V are called tap positions. An LFSR gives a PRG as follows
(Fig. 3.10):

Input: s = (bp—1,...,b0) € {0,1}" and s # 0"
Output: y € {0,1}* where ¢ > n

fori<1...¢do

output by // output one bit
bbby, @ Dby, // compute feedback bit
s < (b, bp—1,..., b1) /) shift register bits to the right

The LFSR outputs one bit per clock cycle. Note that if an LFSR is started in state s = 0™ then
its output is degenerate, namely all 0. For this reason one of the seed bits is always set to 1.

LFSR can be implemented in hardware with few transistors. As a result, stream ciphers built
from LEFSR are attractive for low-cost consumer electronics such as DVD players, cell phones, and
Bluetooth devices.

Stream ciphers from LSFRs. A single LFSR is completely insecure as a PRG since given n
consecutive bits of its output it is trivial to compute all subsequent bits. Nevertheless, by combining
several LFSRs using a non-linear component it is possible to get some (weak) security as a PRG.
Trivium, one of the eStream portfolio stream ciphers, is built this way.

One approach to building stream ciphers from LFSRs is to run several LFSRs in parallel and
combine their output using a non-linear operation. The CSS stream cipher, described next, com-
bines two LFSRs using addition over the integers. The A5/1 stream cipher used to encrypt GSM
cell phone traffic combines the outputs of three LFSRs. The Bluetooth EO stream cipher combines
four LFSRs using a 2-bit finite state machine. All these algorithms have been shown to be insecure
and should not be used: recovering the plaintext takes far less time than an exhaustive search on
the key space.

Another approach is to run a single LFSR and generate the output from a non-linear operation
on its internal state. The snow 3G cipher used to encrypt 3GPP cell phone traffic operates this
way.

The CSS stream cipher. The CSS stream cipher is built from the PRG shown in Fig. 3.11.
The PRG works as follows:

75

17-bit LFSR |8 bits

x
| T + y + ¢ mod 256 I_S’

. Yy
25-bit LFSR }WT

Figure 3.11: The CSS stream cipher

Input: seed s € {0,1}40
Output: ¢ bytes

write s = s1/|so where s1 € {0,1}!6 and so € {0,1}%4
load 1||s; into a 17-bit LESR

load 1||s2 into a 25-bit LESR

c« 0 // carry bit

fori=1,....¢:
run both LFSRs for eight cycles to obtain z;,y; € {0,1}®
treat x; and y; as integers in 0...255
output z; := z; + y; + ¢ mod 256
if x; +y; > 255 then ¢« 1 else c< 0 // carry bit

The PRG outputs one byte per iteration. Prepending 1 to both s; and sy ensures that the LFSRs
are never initialized to the all 0 state. The taps for both LFSRs are fixed. The 17-bit LFSR uses
taps {14,0}. The 25-bit LFSR uses taps {12,4,3,0}.

The CSS PRG we presented is a minor variation of CSS that is a little easier to describe, but
has the same security. In the real CSS, instead of prepending a 1 to the initial seeds, one inserts
the 1 in bit position 9 for the 17-bit LFSR and in bit position 22 for the 25-bit LFSR. In addition,
the real CSS discards the first byte output by the 17-bit LFSR and the first two bytes output by
the 25-bit LFSR. Neither issue affects the analysis presented next.

Insecurity of CSS. Given the PRG output, one can clearly recover the secret seed in time 240
by exhaustive search over the seed space. We show a much faster attack that takes only 2'6 guesses.
Suppose we are given the first 100 bytes z := (21, 22, . ..) output by the PRG. The attack is based
on the following observation:

Let (z1,z2,23) and (y1,y2,ys3) be the first three bytes output by the 17-bit and 25-bit
LFSR, respectively. Then

(2123 + 2829 + 1) + (2'%y3 + 2892 + y1) = (2923 + 2820 4+ 21) (mod 22%).

Therefore, once both (z1, 22, 23) and (x1,x9,x3) are known, one can easily compute
(y1,y2,Y3), from which the initial state so of the 25-bit LFSR is easily obtained.

With this observation the attacker can recover the seed s by trying all possible 16-bit values for s;.
For each guess for s; compute the corresponding (z1, z2,z3) output from the 17-bits LFSR. Use

76

0 1 2 3 4 254 255
203 | 35 | 41 | 87 2 e 23 e 187 72

\ \

i J

Figure 3.12: An example RC4 internal state

the observation above to obtain a candidate seed s; for the 25-bit LFSR. Then to confirm that
§:= s1]|s2 is the correct secret seed, run the PRG using the seed § for 100 iterations, and compare
the resulting output to the given sequence z. If the sequences do not match, try another guess
for s1. Once the attacker hits the correct value for s;, the generated sequence will match the
given Zz, in which case the attacker has the correct secret seed s := s1|s2.

We just showed that the entire seed s can be found after an expected 25 guesses for s;. This
is much faster than the naive 2%0-time exhaustive search attack.

3.9 Case study: cryptanalysis of the RC4 stream cipher

The RC4 stream cipher, designed by Ron Rivest in 1987, was historically used for securing Web
traffic (in the SSL/TLS protocol) and wireless traffic (in the 802.11b WEP protocol). It is designed
to operate on 8-bit processors with little internal memory. While RC4 is still in use, it has been
shown to be vulnerable to a number of significant attacks and should not be used in new projects.
Our discussion of RC4 serves as an elegant example of stream cipher cryptanalysis.

At the heart of the RC4 cipher is a PRG, called the RC4 PRG. The PRG maintains an internal
state consisting of an array S of 256 bytes plus two additional bytes 4, j used as pointers into S.
The array S contains all the numbers 0...255 and each number appears exactly once. Fig. 3.12
gives an example of an RC4 state.

The RC4 stream cipher key s is a seed for the PRG and is used to initialize the array S to a
pseudo-random permutation of the numbers 0. .. 255. Initialization is performed using the following
setup algorithm:

input: string of bytes s
for i <— 0 to 255 do: S[i| < i
j+«0
for ¢ <— 0 to 255 do
k<« s[imod|s|] ,/ estract one byte from seed
j < (j+S[i]+ k) mod 256
swap(Sli], S[j])
During the loop the index ¢ runs linearly through the array while the index j jumps around. At
each iteration the entry at index ¢ is swapped with the entry at index j.

Once the array S is initialized, the PRG generates pseudo-random output one byte at a time
using the following stream generator:

77

cipher speed! (MB/sec)
RC4 126
SEAL 375
Salsa20 408
Sosemanuk 727

Table 3.1: Software stream cipher speeds (higher speed is better)

10, 7«0
repeat
i + (i 4 1) mod 256
J < (4 + S[i]) mod 256
swap(S[i], S[j])
output S| (S[i] + S[j]) mod 256 |

forever

The procedure runs for as long as necessary. Again, the index 4 runs linearly through the array
while the index j jumps around. Swapping S[i] and S[j] continuously shuffles the array S.

RC4 encryption speed. RC4 is well suited for software implementations. Other stream ciphers,
such as Grain and Trivium, are designed for hardware and perform poorly when implemented in
software. Table 3.1 provides running times for RC4 and a few other software stream ciphers.
Modern processors operate on 64-bit words, making the 8-bit design of RC4 relatively slow on
these architectures.

3.9.1 Security of RC4

At one point RC4 was believed to be a secure stream cipher and was widely deployed in applications.
The cipher fell from grace after a number of attacks showed that its output is somewhat biased.
We present two attacks that distinguish the output of RC4 from a random string. Throughout the
section we let n denote the size of the array S. n = 256 for RCA4.

Bias in the initial RC4 output. The RC4 setup algorithm initializes the array S to a permuta-
tion of 0...255 generated from the given random seed. For now, let us assume that the RC4 setup
algorithm is perfect and generates a uniform permutation from the set of all 256! permutations.
Mantin and Shamir [107] showed that, even assuming perfect initialization, the output of RC4 is
biased.

Lemma 3.8 (Mantin-Shamir). Suppose the array S is set to random permutation of 0...n — 1
and that i,j are set to 0. Then the probability that the second byte of the output of RCY is equal to
0 is 2/n.

!Performance numbers were obtained using the Crypto++ 5.6.0 benchmarks running on a 1.83 GhZ Intel Core 2
processor.

78

z|0
i
vlo x ——» S|z + y]
; j
ylzx 0 — 0

<. —p

< —

Figure 3.13: Proof of Lemma 3.8

Proof idea. Let zy be the second byte output by RC4. Let P be the event that S[2] = 0 and
S[1] # 2. The key observation is that when event P happens then zo = 0 with probability 1. See
Fig. 3.13. However, when P does not happen then zo is uniformly distributed in 0...n — 1 and
hence equal to 0 with probability 1/n. Since Pr[P] is about 1/n we obtain (approximately) that

Pr[zy = 0] = Pr [(22 = 0) | P] - Pr[P] + Pr [(22 = 0) | =P] - Pr[=P]
~1-(1/n)+(1/n)-(1—-1/n)~2/n O

The lemma shows that the probability that the second byte in the output of RC4 is 0 is
twice what it should be. This leads to a simple distinguisher for the RC4 PRG. Given a string
x € {0...255}¢, for £ > 2, the distinguisher outputs 0 if the second byte of = is 0 and outputs 1
otherwise. By Lemma 3.8 this distinguisher has advantage approximately 1/n, which is 0.39% for
RCA4.

The Mantin-Shamir distinguisher shows that the second byte of the RC4 output are biased.
This was generalized by AlFardan et al. [4] who showed, by measuring the bias over many random
keys, that there is bias in every one of the first 256 bytes of the output: the distribution on each
byte is quite far from uniform. The bias is not as noticeable as in the second byte, but it is non-
negligible and sufficient to attack the cipher. They show, for example, that given the encryption of
a single plaintext encrypted under 23° random keys, it is possible to recover the first 128 bytes of
the plaintext with probability close to 1. This attack is easily carried out on the Web where a secret
cookie is often embedded in the first few bytes of a message. This cookie is re-encrypted over and
over with fresh keys every time the browser connects to a victim web server. Using Javascript the
attacker can make the user’s browser repeatedly re-connect to the target site giving the attacker
the 239 ciphertexts needed to mount the attack and expose the cookie.

In response, RSA Labs issued a recommendation suggesting that one discard the first 1024 bytes
output by the RC4 stream generator and only use bytes 1025 and onwards. This defeats the initial
key stream bias distinguishers, but does not defeat other attacks, which we discuss next.

79

Bias in the RC4 stream generator. Suppose the RC4 setup algorithm is modified so that the
attack of the previous paragraph is ineffective. Fluhrer and McGrew [64] gave a direct attack on
the stream generator. They argue that the number of times that the pair of bytes (0,0) appears
in the RC4 output is larger than what it should be for a random sequence. This is sufficient to
distinguish the output of RC4 from a random string.

Let STgrc4 be the set of all possible internal states of RC4. Since there are n! possible settings
for the array S and n possible settings for each of i and j, the size of STrcy is n!-n?. For n = 256,
as used in RC4, the size of STrcy is gigantic, namely about 10°!!.

Lemma 3.9 (Fluhrer-McGrew). Suppose RCY is initialized with a random state T in STrcy.
Let (21, 22) be the first two bytes output by RCY when started in state T. Then

i#An—1 = Pr[(z1,22)=(0,0)] > (1/n?) - (14 (1/n))
i#0,1 = Pr[(z1,22) = (0,1)] > (1/n?) - (14 (1/n))

A pair of consecutive outputs (z1,22) is called a digraph. In a truly random string, the
probability of all digraphs (z,vy) is exactly 1/n%. The lemma shows that for RC4 the probability
of (0,0) is greater by 1/n3 from what it should be. The same holds for the digraph (0, 1). In fact,
Fluhrer-McGrew identify several other anomalous digraphs, beyond those stated in Lemma 3.9.

The lemma suggests a simple distinguisher D between the output of RC4 and a random string.
If the distinguisher finds more (0,0) pairs in the given string than are likely to be in a random
string it outputs 1, otherwise it outputs 0. More precisely, the distinguisher D works as follows:

input: string z € {0...n}*
output: 0 or 1

let ¢ be the number of times the pair (0,0) appears in x
if (q/¢) — (1/n?) > 1/(2n3) output 0, else output 1

Using Theorem B.3 we can estimate D’s advantage as a function of the input length ¢. In
particular, the distinguisher D achieves the following advantages:

¢ = 2 bytes: PRGadv|[D, RC4] > 278
¢ = 234 bytes: PRGadv[D, RC4] > 0.5

Using all the anomalous digraphs provided by Fluhrer and McGrew one can build a distinguisher
that achieves advantage 0.8 using only 2306 bytes of output.

Related key attacks on RC4. Fluhrer, Mantin, and Shamir [63] showed that RC4 is insecure
when used with related keys. We discuss this attack and its impact on the 802.11b WiF'i protocol
in Section 9.10, attack 2.

3.10 Generating random bits in practice

Random bits are needed in cryptography for many tasks, such as generating keys and other
ephemeral values called nonces. Throughout the book we assume all parties have access to a
good source of randomness, otherwise many desirable cryptographic goals are impossible. So far
we used a PRG to stretch a short uniformly distributed secret seed to a long pseudorandom string.

80

pseudorandom

entropy

generate output
function o

internal
state

vy

\

Figure 3.14: A random number generator

While a PRG is an important tool in generating random (or pseudorandom) bits it is only part of
the story.

In practice, random bits are generated using a random number generator, or RNG. An
RNG, like a PRG, outputs a sequence of random or pseudorandom bits. RNGs, however, have an
additional interface that is used to continuously add entropy to the RNG’s internal state, as shown
in Fig. 3.14. The idea is that whenever the system has more random entropy to contribute to the
RNG, this entropy is added into the RNG internal state. Whenever someone reads bits from the
RNG, these bits are generated using the current internal state.

An example is the Linux RNG which is implemented as a device called /dev/random. Anyone
can read data from the device to obtain random bits. To play with the /dev/random try typing
cat /dev/random at a UNIX shell. You will see an endless sequence of random-looking characters.
The UNIX RNG obtains its entropy from a number of hardware sources:

e keyboard events: inter-keypress timings provide entropy;
e mouse events: both interrupt timing and reported mouse positions are used;

e hardware interrupts: time between hardware interrupts is a good source of entropy;

These sources generate a continuous stream of randomness that is periodically XORed into the
RNG internal state. Notice that keyboard input is not used as a source of entropy; only keypress
timings are used. This ensures that user input is not leaked to other users in the system via the
Linux RNG.

High entropy random generation. The entropy sources described above generate randomness
at a relatively slow rate. To generate true random bits at a faster rate, Intel added a hardware
random number generator starting with the Ivy Bridge processor family in 2012. Output from
the generator is read using the RdRand instruction that is intended to provide a fast uniform bit
generator.

To reduce biases in the generator output, the raw bits are first passed through a function called
a “conditioner” designed to ensure that the output is a sequence of uniformly distributed bits,
assuming sufficient entropy is provided as input. We discuss this in more detail in Section 8.10
where we discuss the key derivation problem.

The RdRand generator should not replace other entropy sources such as the four sources described
above; it should only augment them as an additional entropy source for the RNG. This way, if the
generator is defective it will not completely compromise the cryptographic application.

One difficulty with Intel’s approach is that, over time, the hardware generator may stop produc-
ing high entropy random bits due to a hardware glitch. For example, the raw hardware generator

81

may always output ‘0’, resulting in highly non-random output. To prevent this from happening the
processor periodically tests the raw bits produced by the hardware using a fixed set of statistical
tests. If any of the tests reports “non-random” the hardware generator is declared to be defective.

3.11 A broader perspective: computational and statistical indis-
tinguishability

Our definition of security for a pseudo-random generator G formalized the intuitive idea that an
adversary should not be able to effectively distinguish between G(s) and r, where s is a randomly
chosen seed, and r is a random element of the output space.

This idea generalizes quite naturally and usefully to other settings. Suppose Py and P; are
probability distributions on some finite set R. Our goal is to formally define the intuitive notion
that an adversary cannot effectively distinguish between Py and P;. As usual, this is done via an
attack game. For b = 0,1, we write x <+ P, to denote the assignment to x of a value chosen at
random from the set R, according to the probability distribution P,.

Attack Game 3.3 (Distinguishing Py from P;). For given probability distributions Py and
Py on a finite set R, and for a given adversary A, we define two experiments, Experiment 0 and
Experiment 1. For b = 0, 1, we define:

Experiment b:
e The challenger computes x as follows:
r & P,
and sends z to the adversary.
e Given z, the adversary computes and outputs a bit be {0,1}.

For b = 0,1, let W}, be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to Py and P as

Distadv[A, Py, P1] := |Pr[Wp] — Pr[W4]|. O

Definition 3.4 (Computational indistinguishability). Distributions Py and Py are called
computationally indistinguishable if the value Distadv|A, Py, Pi] is negligible for all efficient
adversaries A.

Using this definition we can restate the definition of a secure PRG more simply: a PRG G
defined over (S, R) is secure if and only if Py and P; are computationally indistinguishable, where
Py is the uniform distribution on R, and Py is the distribution that assigns to each r € R the
weight
 H{seS:G(s) =71}

S| '

Again, as discussed in Section 2.2.5, Attack Game 3.3 can be recast as a “bit guessing” game,
where instead of having two separate experiments, the challenger chooses b € {0,1} at random,
and then runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing

Py(r) :

82

advantage Distadv*[A, Py, P1] as [Pr[b = b] — 1/2|. The general result of Section 2.2.5 (namely,
(2.11)) applies here as well:

Distadv[A, Py, Pi] = 2 - Distadv*[A, Py, Py]. (3.14)

Typically, to prove that two distributions are computationally indistinguishable, we will have to
make certain other computational assumptions. However, sometimes two distributions are so similar
that no adversary can effectively distinguish between them, regardless of how much computing
power the adversary may have. To make this notion of “similarity” precise, we introduce a useful
tool, called statistical distance:

Definition 3.5 (Statistical distance). Suppose Py and Py are probability distributions on a finite
set R. Then their statistical distance is defined as

A[Py, P)] = % S [Ro(r) — Pr(r).
reR

Exzample 3.1. Suppose Py is the uniform distribution on {1,...,m}, and P; is the uniform dis-
tribution on {1,...,m — §}, where 6 € {0,...,m — 1}. Let us compute A[Py, P;]. We could apply
the definition directly; however, consider the following graph of Py and P;:

1/(m — 6)

LT e R

The statistical distance between Py and Pj is just 1/2 times the area of regions A and C' in the
diagram. Moreover, because probability distributions sum to 1, we must have

area of B + area of A =1 = area of B + area of C,
and hence, the areas of region A and region C' are the same. Therefore,
A[Py, P1] = area of A = area of C' =4§/m. O

The following theorem allows us to make a connection between the notions of computational
indistinguishability and statistical distance:

Theorem 3.10. Let Py and Py be probability distributions on a finite set R. Then we have

max |Py[R'] — P1[R']| = A[Py, P,
RICR

where the mazimum is taken over all subsets R’ of R.

Proof. Suppose we split the set R into two disjoint subsets: the set Rg consisting of those r € R
such that Py(r) < Pi(r), and the set Ry consisting of those r € R such that Py(r) > Pi(r).
Consider the following rough graph of the distributions of Py and P;, where the elements of Ry are
placed to the left of the elements of Ri:

83

Ro Ry —>

Now, as in Example 3.1,
A[Py, P;] = area of A = area of C.
Observe that for every subset R’ of R, we have
Po[R'] — P[R'] = area of C" — area of A’,

where C” is the subregion of C' that lies above R’, and A’ is the subregion of A that lies above R'.
It follows that |Py[R'] — P1[R’]| is maximized when R’ = Ry or R’ = R4, in which case it is equal
to A[P(),Pl]. O

The connection to computational indistinguishability is as follows:

Theorem 3.11. Let Py and Py be probability distributions on a finite set R. Then for every

adversary A, we have
Distadv[.A, Py, Pl] < A[Po, Pl].

Proof. Consider an adversary A that tries to distinguish Py from Pj, as in Attack Game 3.3.

First, we consider the case where A is deterministic. In this case, the output of A is a function
f(r) of the value r € R presented to it by the challenger. Let R’ := {r € R: f(r) = 1}. If Wy and
Wy are the events defined in Attack Game 3.3, then for b = 0, 1, we have

Pr[W,] = P,[R'].
By the previous theorem, we have
Distadv[A4, Py, P] = |R[R'] — Pi[R']| < APy, P).

We now consider the case where A is probabilistic. We can view A as taking an auxiliary
input ¢, representing its random choices. We view t as being chosen uniformly at random from
some finite set 7. Thus, the output of A is a function g(r,t) of the value r € R presented to it
by the challenger, and the value t € T representing its random choices. For a given t € T, let
R, :={r € R:g(r,t) = 1}. Then, averaging over the random choice of ¢, we have

Pr[W,] = ’71-’ > B[R]
teT

84

It follows that
Distadv[A, Py, Pi| = |Pr[Wp] — Pr[Wq]]

1
‘Z B[R} — Pi[RL)

- ’T’ teT
P, 7?,’ PR,
|7-| ; O 1[”
A[Py, P
mt;, b, B
= A[Py, P]. O

Analogous to the definition of computational indistinguishability, we have:

Definition 3.6 (Statistical indistinguishability). Let Py and Py be probability distributions
on a finite set R. We say that Py and Py are statistically indistinguishable if the statistical
distance A[Py, P1] is negligible.

An immediate consequence of Theorem 3.11 is that two distributions that are statistically
indistinguishable are also computationally indistinguishable:

Corollary 3.12. Let Py and Py be probability distributions on a finite set R. If Py and P; are
statistically indistinguishable, then they are also computationally indistinguishable.

Statistical distance between random variables. One also defines the statistical distance
between two random variables as the statistical distance between their corresponding distributions.
That is, if X and Y are random variables taking values in a finite set R, then their statistical
distance is)

AX, Y] =5 > [Pr[x = 7] = Pr[y =1]].

reR

In this case, Theorem 3.10 says that

max ‘Pr[x e R — Py € R']| = A, Y],
RICR

where the maximum is taken over all subsets R’ of R. Definition 3.6, which defines statistical

inistinguishability, extends to random variables as well.

Analogously, one can define distinguishing advantage (as in Attack Game 3.3) and compu-
tational indistinguishability (as in Definition 3.4) with respect to random variables, rather than
distributions. The advantage of working with random variables is that we can more conveniently
work with distributions that are related to one another, as exemplified in the following theorem.

Theorem 3.13. If S and T are finite sets, X and Y are random variables taking values in S, and
f:S8 =T is a function, then A[f(X), f(Y)] < A[X,Y].

85

Proof. We have

A[f(X), £(Y)] = |Pr[f(X) € T'] — Pr[f(Y) € T]| for some T' C T
(by Theorem 3.10)
= [Prix € f7H(T)) = Pr[y € fH(T)]|
< AlX,Y] (again by Theorem 3.10). O

Exzample 3.2. Let X be uniformly distributed over the set {0,...,m — 1}, and let Y be uniformly
distributed over the set {0,...,N — 1}, for N > m. Let f(¢) := ¢t mod m. We want to compute
an upper bound on the statistical distance between X and f(Y). We can do this as follows. Let
N = gm —r, where 0 < r < m, so that ¢ = [N/m]. Also, let Z be uniformly distributed

over {0,...,gqm — 1}. Then f(Z) is uniformly distributed over {0,...,m — 1}, since every element
of {0,...,m — 1} has the same number (namely, ¢) of pre-images under f which lie in the set
{0,...,gm—1}. Since statistical distance depends only on the distributions of the random variables,

by the previous theorem, we have
AlX, f(Y)] = A[f(2), F(Y)] < Alz, Y],

and as we saw in Example 3.1,
r

Alz, Y] = <-<

Q| =
=E

qam

Therefore,

Alx, f(¥)] < o

m
N
Example 3.3. Suppose we want to generate a pseudo-random number in a given interval
{0,...,m — 1}. However, suppose that we have at our disposal a PRG G that outputs L-bit
strings. Of course, an L-bit string can be naturally viewed as a number in the range {0,..., N —1},
where N := 2L, Let us assume that N > m.

To generate a pseudo-random number in the interval {0,...,m — 1}, we can take the output
of G, view it as a number in the interval {0,..., N —1}, and reduce it modulo m. We will show that
this produces a number that is computationally indistinguishable from a truly random number in
the interval {0,...,m — 1}, assuming G is secure and m/N is negligible (e.g., N > 2100.m),

To this end, let Py be the distribution representing the output of GG, reduced modulo m, and
let P; be the uniform distribution on {0,...,m — 1}. Let A be an adversary trying to distinguish
Py from Pp, as in Attack Game 3.3.

Let Game 0 be Experiment 0 of Attack Game 3.3, in which A is presented with a random
sample distributed according to Py, and let W be the event that A outputs 1 in this game.

Now define Game 1 to be the same as Game 0, except that we replace the output of G by a
truly random value chosen from the interval {0,..., N — 1}. This value is then reduced modulo m,
as in Game 0. Let Wi be the event that A outputs 1 in Game 1. One can easily construct an
efficient adversary B that attacks G as in Attack Game 3.1, such that

PRGadv[B, G] = |Pr[W] — Pr[W1]].

The idea is that B takes its challenge value, reduces it modulo m, gives this value to A, and outputs
whatever A outputs.

86

Finally, we define Game 2 to be Experiment 1 of Attack Game 3.3, in which A is presented with
a random sample distributed according to P;, the uniform distribution on {0,...,m — 1}. Let W5
be the event that A outputs 1 in Game 2. If P is the distribution of the value presented to A in
Game 1, then by Theorem 3.11, we have |[Pr[W;] — Pr[Ws]| < A[P, P]; moreover, by Example 3.2,
we have A[P, P;] < m/N.

Putting everything together, we see that

Distadv[A4, Py, P] = |[Pr[Wo] — Pr[Ws]| < |Pr[Wy] — Pr[Wh]| + |Pr[W;] — Pr[Ws]|
< PRGadv[B,G] + %

which, by assumption, is negligible. O

Remark 3.1. In statistics, a divergence function D(F, P;) establishes a way to measure the
distance between two distributions Py and P;. The statistical distance A[Py, P;], developed in
this section, is one example of a divergence function. Many other divergence functions have been
developed, such as Kullback—Leibler (KL) divergence and Rényi Divergence. In some cases, these
alternate divergence functions lead to much tighter bounds than what can be proved using sta-
tistical distance. Exercise 3.12 introduces a divergence function with important applications to
cryptography (see Exercises 3.14 and 7.12). Other divergence functions and applications may be
found in [133, 1]. O

3.11.1 Mathematical details

As usual, we fill in the mathematical details needed to interpret the definitions and results of this
section from the point of view of asymptotic complexity theory.

In defining computational and statistical indistinguishability (Definitions 3.4 and 3.6), one
should consider two families of probability distributions Py = {Py}x and Py = {P; »},, indexed
by a security parameter \. For each A, the distributions Py) and P should take values in a
finite set of bit strings R), where the strings in R) are bounded in length by a polynomial in A.
In Attack Game 3.3, the security parameter A\ is an input to both the challenger and adversary,
and in Experiment b, the challenger produces a sample, distributed according to P . The ad-
vantage should properly be written Distadv[A, Py, P;|(A), which is a function of A. Computational
indistinguishability means that this is a negligible function. Similarly, the definition of statistical
indistinguishability says that the value A[P », P; x| grows negligibly, as a function of A.

In some situations, it may be natural to introduce a probabilistically generated system parame-
ter; however, from a technical perspective, this is not necessary, as such a system parameter can be
incorporated in the distributions Py) and P; . One could also impose the requirement that Fp »
and P) be efficiently sampleable; however, to keep the definition simple, we will not require this.

The definition of statistical distance (Definition 3.5) makes perfect sense from a non-asymptotic
point of view, and does not require any modification or elaboration. Theorem 3.10 holds as stated,
for specific distributions Py and P;. Theorem 3.11 may be viewed asymptotically as stating that for
all distribution families Py = {Pp x}x and Py = {P; x}, for all adversaries (even computationally
unbounded ones), and for all A\, we have

Distadv[A, P, P1] (A < A[Po)\, PL)\].

87

3.12 A fun application: coin flipping and bit commitment

Alice and Bob are going out on a date. Alice wants to see one movie and Bob wants to see another.
They decide to flip a random coin to choose the movie. If the coin comes up “heads” they will go to
Alice’s choice; otherwise, they will go to Bob’s choice. When Alice and Bob are in close proximity
this is easy: one of them, say Bob, flips a coin and they both verify the result. When they are far
apart and are speaking on the phone this is harder. Bob can flip a coin on his side and tell Alice
the result, but Alice has no reason to believe the outcome. Bob could simply claim that the coin
came up “tails” and Alice would have no way to verify this. Not a good way to start a date.

A simple solution to their problem makes use of a cryptographic primitive called bit commit-
ment. It lets Bob commit to a bit b € {0,1} of his choice. Later, Bob can open the commitment
and convince Alice that b was the value he committed to. Committing to a bit b results in a com-
mitment string c, that Bob sends to Alice, and an opening string s that Bob uses for opening
the commitment later. A commitment scheme is secure if it satisfies the following two properties:

e Hiding: The commitment string c reveals no information about the committed bit b. More
precisely, the distribution on ¢ when committing to the bit 0 is indistinguishable from the
distribution on ¢ when committing to the bit 1. In the bit commitment scheme we present,
the hiding property depends on the security of a certain PRG G.

e Binding: Let ¢ be a commitment string output by Bob. If Bob can open the commitment
as some b € {0,1} then he cannot open it as b. This ensures that once Bob commits to a
bit b he can open it as b and nothing else. In the commitment scheme we present the binding
property holds unconditionally.

Coin flipping. Using a commitment scheme, Alice and Bob can generate a random bit b € {0,1}
so that no side can bias the result towards their preferred outcome, assuming the protocol terminates
successfully. Such protocols are called coin flipping protocols. The resulting bit b determines
what movie they go to.

Alice and Bob use the following simple coin flipping protocol:

Step 1: Bob chooses a random bit by <+ {0,1}.
Alice and Bob execute the commitment protocol by which Alice obtains
a commitment c¢ to by and Bob obtains an opening string s.
Step 2: Alice chooses a random bit b; <+ {0, 1} and sends b; to Bob in the clear.
Step 3: Bob opens the commitment by revealing by and s to Alice.
Alice verifies that c¢ is indeed a commitment to by and aborts if verification fails.

Output: the resulting bit is b := by @ b;.

We argue that if the protocol terminates successfully and one side is honestly following the protocol
then the other side cannot bias the result towards their preferred outcome. By the hiding property,
Alice learns nothing about by at the end of Step 1 and therefore her choice of bit b; is independent of
the value of by. By the binding property, Bob can only open the commitment ¢ in Step 3 to the bit
bo he chose in Step 1. Because he chose by before Alice chose b1, Bob’s choice of by is independent
of b1. We conclude that the output bit b is the XOR of two independent bits. Therefore, if one
side is honestly following the protocol, the other side cannot bias the resulting bit.

One issue with this protocol is that Bob learns the generated bit at the end of Step 2, before
Alice learns the bit. In principle, if the outcome is not what Bob wants he could abort the protocol

88

at the end of Step 2 and try to re-initiate the protocol hoping that the next run will go his way.
More sophisticated coin flipping protocols avoid this problem, but at the cost of many more rounds
of interaction (see, e.g., [116]).

Bit commitment from secure PRGs. It remains to construct a secure bit commitment scheme
that lets Bob commit to his bit by € {0,1}. We do so using an elegant construction due to Naor [122].

Let G : S — R be a secure PRG where |R| > |S|> and R = {0,1}" for some n. To commit to
the bit by, Alice and Bob engage in the following protocol:

Bob commits to bit by € {0,1}:
Step 1: Alice chooses a random r € R and sends r to Bob.
Step 2: Bob chooses a random s € S and computes ¢ < com(s, , by)
where com(s, r, by) is the following function:

G(S) if b() = 0,

= 9y 7b =
¢ = com(s, ,by) {G(s)@r o — 1.

Bob outputs ¢ as the commitment string and uses s as the opening string.

When it comes time to open the commitment Bob sends (b, s) to Alice. Alice accepts the opening
if ¢ = com(s,r,by) and rejects otherwise.

The hiding property follows directly from the security of the PRG: because the output G(s)
is computationally indistinguishable from a uniform random string in R it follows that G(s) @ r
is also computationally indistinguishable from a uniform random string in R. Therefore, whether
bp = 0 or bg = 1, the commitment string ¢ is computationally indistinguishable from a uniform
string in R, as required.

The binding property holds unconditionally as long as 1/|S| is negligible. The only way Bob
can open a commitment ¢ € R as both 0 and 1 is if there exist two seeds sg,s1 € S such that
¢ = G(so) = G(s1) ® r which implies that G(sg) ® G(s1) = r. Let us say that r € R is “bad” if
there are seeds sg, s1 € S such that G(sg) @ G(s1) = r. The number of pairs of seeds (so, s1) is |S|?,
and therefore the number of bad 7 is at most |S|2. It follows that the probability that Alice chooses
a bad r is at most |S|?/|R| < |S|?/|S|> = 1/|S| which is negligible. Therefore, the probability that
Bob can open the commitment ¢ as both 0 and 1 is negligible.

This completes the description of the bit commitment scheme. We will see a more efficient
commitment scheme and more applications for commitments in Section 8.12, after we develop a
few more tools.

3.13 Notes

Citations to the literature to be added.

3.14 Exercises

3.1 (Semantic security for random messages). One can define a notion of semantic secu-
rity for random messages. Here, one modifies Attack Game 2.1 so that instead of the adversary

89

choosing the messages mg, m1, the challenger generates mg, m; at random from the message space.
Otherwise, the definition of advantage and security remains unchanged.

(a) Suppose that & = (E, D) is defined over (I, M,C), where M = {0,1}*. Assuming that
£ is semantically secure for random messages, show how to construct a new cipher &£ that
is secure in the ordinary sense. Your new cipher should be defined over (K', M’,C"), where

K'=K and M’ = M.

(b) Give an example of a cipher that is semantically secure for random messages but that is not
semantically secure in the ordinary sense.

3.2 (Encryption chain). Let £ = (E, D) be a cipher defined over (K, M, C) where K = M. Let
& = (E',D') be a cipher where encryption is defined as E'((k1,k2), m) := (E(k1, ks2), E(k2,m)).
Show that if £ is semantically secure then so is £’.

Hint: Use a three move hybrid argument. In particular, define four games where in each game the
adversary outputs mg, m; € M, and receives back an &’ ciphertext ¢, as:

Game 1: ¢

& (E(kl,kQ),E(kQ,mo)), Game 3: ¢ <& (E(kl,O),E(kz,ml)),
& &

Game 2: ¢ <~ (E(ky,0), E(k2, mo)), Game 4: ¢ <~ (E(ky1, k2), E(k2,m1)).

Argue that the adversary cannot distinguish each game from the one before it. Deduce that &’ is
semantically secure.

Discussion: This encryption scheme can be used to distribute large protected files. For example, a
movie rental service can place a large encrypted movie, E(ke, m), on a content distribution network
for anyone to download. When a customer, Bob, wants to watch the movie m, he pays the rental
service, and the service sends back a short ticket E(ki,k2), where Bob knows k;. Bob can now
stream the encrypted file from the content distribution network, and decrypt it locally. Exercise 5.4
gives another application of this construction.

3.3 (Indistinguishability from a random message). This exercise develops an alternative
characterization of semantic security. Let & = (F, D) be a cipher defined over (I, M,C). Assume
that one can efficiently generate messages from the message space M at random. We define an
attack game between an adversary A and a challenger as follows. The adversary selects a message
m € M and sends m to the challenger. The challenger then computes:

b {0,1}, k&K, mo+ m, my & M, ¢c& E(k,my),

and sends the ciphertext ¢ to A, who then computes and outputs a bit b. That is, the challenger
encrypts either m or a random message, depending on b. We define A’s advantage to be]Pr[l; =
b] — 1/2|, and we say the & is real/random semantically secure if this advantage is negligible for all
efficient adversaries.

Show that & is real/random semantically secure if and only if it is semantically secure in the
ordinary sense.

3.4 (Pseudo-random ciphertexts). In this exercise, we develop a notion of security for a cipher,
called psuedo-random ciphertext security, which intuitively says that no efficient adversary can
distinguish an encryption of a chosen message from a random ciphertext.

90

Let £ = (E, D) be defined over (K, M,C). Assume that one can efficiently generate ciphertexts
from the ciphertext space C at random. We define an attack game between an adversary A and a
challenger as follows. The adversary selects a message m € M and sends m to the challenger. The
challenger then computes:

< 0,1} k<A K, g <~ E(k,m), c1<+C, c<

and sends the ciphertext ¢ to A, who then computes and outputs a bit b. We define A’s advantage
to be |Pr[b = b] — 1/2|, and we say the £ is pseudo-random ciphertext secure if this advantage is
negligible for all efficient adversaries.

(a) Show that if a cipher is pseudo-random ciphertext secure, then it is semantically secure.
(b) Show that the one-time pad is pseudo-random ciphertext secure.

(¢) Give an example of a cipher that is semantically secure, but not pseudo-random ciphertext
secure.

3.5 (Small seed spaces are insecure). Suppose G is a PRG defined over (S, R) where |R| >
2|S|. Let us show that |S| must be super-poly. To do so, show that there is an adversary that
achieves advantage at least 1/2 in attacking the PRG G whose running time is linear in |S].

3.6 (Another malleability example). Let us give another example illustrating the malleability
of stream ciphers. Suppose you are told that the stream cipher encryption of the message “attack
at dawn” is 6¢73d5240a948c86981bc294814d (the plaintext letters are encoded as 8-bit ASCII and
the given ciphertext is written in hex). What would be the stream cipher encryption of the message
“attack at dusk” under the same key?

3.7 (Exercising the definition of a secure PRG). Suppose G(s) is a secure PRG that outputs
bit-strings in {0, 1}". Which of the following derived generators are secure?

(a) Gi(s1 || 52) i= G(s1) A G(s2) where A denotes bit-wise AND.
Ga(s1 || s2) = G(s1) & G(s2).
3(s) == G(s) & 1™
4(s) :=G(s)[0..n —1].
5(s) == (G(s5),G(s)).
6(s1 || s2) := (s1,G(52))-

3.8 (The converse of Theorem 3.1). In Section 3.2, we showed how to build a stream cipher
from a PRG. In Theorem 3.1, we proved that this encryption scheme is semantically secure if the
PRG is secure. Prove the converse: the PRG is secure if this encryption scheme is semantically
secure.

3.9 (Predicting the next character). In Section 3.5, we showed that if one could effectively
distinguish a random bit string from a pseudo-random bit string, then one could succeed in pre-
dicting the next bit of a pseudo-random bit string with probability significantly greater than 1/2

91

(where the position of the “next bit” was chosen at random). Generalize this from bit strings to
strings over the alphabet {0,...,n — 1}, for all n > 2, assuming that n is poly-bounded.

Hint: First generalize the distinguisher/predictor lemma (Lemma 3.5).

3.10 (Simple statistical distance calculations).

(a) Let X and Y be independent random variables, each uniformly distributed over Z,, where p
is prime. Calculate A[(X,Y), (X,XY)].

(b) Let X and Y be random variables, each taking values in the interval [0,¢]. Show that |E[X] —
ElY]| < tAX,Y].

3.11 (A converse to Example 3.2). In Example 3.2, we saw that if Y be uniformly distributed
over the set {0, ..., N—1}, then the statistical between R := (Y mod m) and the uniform distribution
on {0,...,m — 1} is less than m/N. This exercise develops a converse of sorts.

Let R be uniformly distributed over {0,...,m — 1} and Q be uniformly distributed over
{0,...,[N/m|—1}, where R and Q are independent, and set Y := mQ+R. Show that (i) 0 <Y < N,
(i) R = (Y mod m), and (iii) the statistical distance between Y and the uniform distribution on
{0,..., N — 1} is less than m/N.

The following three exercises should be done together; they will be used in exercises in
the following chapters.

3.12 (Distribution ratio). This exercise develops another way of comparing two probability
distributions, which considers ratios of probabilities, rather than differences. Let X and Y be two
random variables taking values on a finite set R, and assume that Pr[X = r] > 0 for all » € R.
Define

pX, Y] := max{Pr[y =7]/Pr[X =r]: r € R}

We call this the max ratio distance between X and Y. Show that for every subset R’ of R, we
have Pr[y € R'] < p[X,Y]-Pr[x € R'].

3.13 (A variant of Bernoulli’s inequality). The following is a useful fact that will be used
in the following exercise. Prove the following statement by induction on n: for any real numbers
Z1,...,Z, in the interval [0, 1], we have

n

H(l —x;) > 1— sz
1=1

i=1

3.14 (Sampling with and without replacement: distance and ratio). Let X be a finite set
of size NV, and let Q < N. Define random variables X and Y, where X is uniformly distributed over
all sequences of Q) elements in X', and Y is uniformly distributed over all sequences of @) distinct
elements in X. Let A[X, Y] be the statistical distance between X and Y, and let p[X, Y] be the max
ratio distance defined in Exercise 3.12. Using the previous exercise, prove the following:

Q-1 Q2
() Ak Y] =1- [J(-i/N) < 2,
=0

92

1 1
= < (assuming Q? < 2N).
1 . = 2
&' —i/N) ~1- &
Discussion: The result of part (b) has applications to the security analysis of message authenti-
cation codes. See Exercise 7.12.

(b) plx,Y]

3.15 (Theorem 3.2 is tight). Let us show that the bounds in the parallel composition theorem,
Theorem 3.2, are tight. Consider the following, rather silly PRG G, which “stretches” ¢-bit strings
to (-bit strings, with ¢ even: for s € {0, 1}6, we define

Go(s) :==
if s[0..4/2 —1] =042
then output 0
else output s.

That is, if the first ¢/2 bits of s are zero, then Gy(s) outputs the all-zero string, and otherwise,
Go(s) outputs s.

Next, define the following PRG adversary By that attacks Gy:

When the challenger presents By with r € {0,1}, if 7 is of the form 092 || t, for some
t # 0Y2, By outputs 1; otherwise, By outputs 0.

Now, let G, be the n-wise parallel composition of G. Using By, we construct a PRG adversary Ay
that attacks G{:

when the challenger presents Ay with the sequence of strings (r1,...,7,), Ao presents
each r; to By, and outputs 1 if By ever outputs 1; otherwise, Ag outputs 0.

(a) Show that PRGadv([By, Go] = 27¢/2 — 27¢,
(b) Show that PRGadv[Ag, Gj] > n2~¢/? —n(n+1)27".

(¢) Show that no adversary attacking G has a better advantage than By (hint: make an argument
based on statistical distance).

(d) Using parts (a)—(c), argue that Theorem 3.2 cannot be substantially improved; in particular,
show that the following cannot be true:

There exists a constant ¢ < 1 such that for every PRG G, poly-bounded n, and efficient
adversary A, there exists an efficient adversary B such that

PRGadv[A, G'] < en - PRGadv[B, G],
where G’ is the n-wise parallel composition of G.

3.16 (A converse (of sorts) to Theorem 2.8). Let £ = (E, D) be a semantically secure cipher
defined over (K, M,C), where M = {0,1}. Let A be an efficient adversary that takes as input an
encryption ¢ ¢ E(k,b) of a random bit b <+ {0,1}, where k <- K, and outputs a guess ' € {0,1}
for b. Show that the probability that b = b’ is at most 1/2 + €, where ¢ is negligible.

Hint: Use Lemma 3.5.

93

3.17 (Previous-bit prediction). Suppose that A is an effective next-bit predictor. That is,
suppose that A is an efficient adversary whose advantage in Attack Game 3.2 is non-negligible.
Show how to use A to build an explicit, effective previous-bit predictor B that uses A as a black
box. Here, one defines a previous-bit prediction game that is the same as Attack Game 3.2, except
that the challenger sends r[i+1.. L — 1] to the adversary. Also, express B’s previous-bit prediction
advantage in terms of A’s next-bit prediction advantage.

3.18 (An insecure PRG based on linear algebra). Let A be a fixed m x n matrix with m > n
whose entries are all binary. Consider the following PRG G : {0,1}" — {0,1}" defined by

G(s):==A-s (mod 2)

where A - s mod 2 denotes a matrix-vector product where all elements of the resulting vector are
reduced modulo 2. Show that this PRG is insecure no matter what matrix A is used.

3.19 (Generating an encryption key using a PRG). Let G : S — R be a secure PRG. Let
€ = (E, D) be a semantically secure cipher defined over (K, M,C). Assume K = R. Construct
a new cipher & = (E’, D') defined over (S, M,C), where E'(s,m) := E(G(s),m) and D'(s,c) :=
D(G(s),c). Show that £’ is semantically secure.

3.20 (Nested PRG construction). Let Go: S — R1 and G; : R1 — Ra be two secure PRGs.
Show that G(s) := G1(Go(s)) mapping S to Ry is a secure PRG.

3.21 (Self-nested PRG construction). Let G be a PRG that stretches n-bit strings to 2n-bit
strings. For s € {0,1}", write G(s) = Go(s) || Gi(s), so that Go(s) represents the first n bits of
G(s), and G1(s) represents the last n bits of G(s). Define a new PRG G’ that stretches n-bit strings
to 4n-bit strings, as follows: G'(s) := G(Go(s)) || G(G1(s)). Show that if G is a secure PRG, then
sois G'.

Hint: You can give a direct proof; alternatively, you can use the previous exercise together with
Theorem 3.2.

Note: This construction is a special case of a more general construction discussed in Section 4.6.

3.22 (Bad seeds). Show that a secure PRG G : {0,1}" — R can become insecure if the seed is
not uniformly random in S.

(a) Consider the PRG G’ : {0,1}""1 — R x {0,1} defined as G'(so || s1) = (G(s0),51). Show

that G’ is a secure PRG assuming G is secure.

(b) Show that G’ becomes insecure if its random seed sg || s1 is chosen so that its last bit is
always 0.

(c) Construct a secure PRG G” : {0,1}"*1 — R x {0,1} that becomes insecure if its seed s is
chosen so that the parity of the bits in s is always 0.

3.23 (Good intentions, bad idea). Let us show that a natural approach to strengthening a
PRG is insecure. Let m > n and let G : {0,1}" — {0,1}™ be a PRG. Define a new generator
G'(s) := G(s) ® (0™ ™ || s) derived from G. Show that there is a secure PRG G for which G’ is
insecure.

Hint: Use the construction from part (a) of Exercise 3.22.

94

3.24 (Seed recovery attacks). Let G be a PRG defined over (S, R) where, |S|/|R| is negligible,
and suppose A is an adversary that given G(s) outputs s with non-negligible probability. Show
how to use A to construct a PRG adversary B that has non-negligible advantage in attacking G as
a PRG. This shows that for a secure PRG it is intractable to recover the seed from the output.

3.25 (A PRG combiner). Suppose that G; and G2 are PRG’s defined over (S,R), where
R = {0,1}*. Define a new PRG G’ defined over (S x S,R), where G'(s1,52) = G1(51) @ Ga(s2).
Show that if either G or Gy is secure (we may not know which one is secure), then G’ is secure.

3.26 (A technical step in the proof of Lemma 3.5). This exercise develops a simple fact from
probability that is helpful in understanding the proof of Lemma 3.5. Let X and Y be independent
random variables, taking values in S and 7', respectively, where Y is uniformly distributed over T
Let f:S — {0,1} and ¢g : S — T be functions. Show that the events f(X) = 1 and g(X) = Y are
independent, and the probability of the latter is 1/|7T|.

95

Chapter 4

Block ciphers

This chapter continues the discussion begun in the previous chapter on achieving privacy against
eavesdroppers. Here, we study another kind of cipher, called a block cipher. We also study the
related concept of a pseudo-random function.

Block ciphers are the “work horse” of practical cryptography: not only can they can be used to
build a stream cipher, but they can be used to build ciphers with stronger security properties (as
we will explore in Chapter 5), as well as many other cryptographic primitives.

4.1 Block ciphers: basic definitions and properties

Functionally, a block cipher is a deterministic cipher &€ = (E, D) whose message space and
ciphertext space are the same (finite) set X. If the key space of £ is K, we say that £ is a block
cipher defined over (K, X). We call an element =z € X’ a data block, and refer to X as the data
block space of £.

For every fixed key k € K, we can define the function f; := E(k,-); that is, fr : X — X sends
x € X to E(k,z) € X. The usual correctness requirement for any cipher implies that for every
fixed key k, the function f; is one-to-one, and as X is finite, f must be onto as well. Thus, f is
a permutation on X', and D(k,-) is the inverse permutation fk_l.

Although syntactically a block cipher is just a special kind of cipher, the security property we
shall expect for a block cipher is actually much stronger than semantic security: for a randomly
chosen key k, the permutation F(k,-) should — for all practical purposes — “look like” a random
permutation. This is a notion that we will soon make more precise.

One very important and popular block cipher is AES (the Advanced Encryption Standard).
We will study the internal design of AES in more detail below, but for now, we just give a very
high-level description. AES keys are 128-bit strings (although longer key sizes may be used, such
as 192-bits or 256-bits). AES data blocks are 128-bit strings. See Fig. 4.1. AES was designed to be
quite efficient: one evaluation of the encryption (or decryption) function takes just a few hundred
cycles on a typical computer.

The definition of security for a block cipher is formulated as a kind of “black box test.” The intu-
ition is the following: an efficient adversary is given a “black box.” Inside the box is a permutation
f on X, which is generated via one of two random processes:

e f:=FE(k,-), for a randomly chosen key k, or

96

k

l 128 bits

128 bits 128 bits

. AES . .

Figure 4.1: The block cipher AES

e f is a truly random permutation, chosen uniformly from among all permutations on X.

The adversary cannot see inside the box, but he can “probe” it with questions: he can give the
box a value z € X, and obtain the value y := f(x) € X. We allow the adversary to ask many
such questions, and we quite liberally allow him to choose the questions in any way he likes; in
particular, each question may even depend in some clever way on the answers to previous questions.
Security means that the adversary should not be able to tell which type of function is inside the
box — a randomly keyed block cipher, or a truly random permutation. Put another way, a secure
block cipher should be computationally indistinguishable from a random permutation.
To make this definition more formal, let us introduce some notation:

Perms|X]
denotes the set of all permutations on X. Note that this is a very large set:
|Perms[X]| = |X|!.

For AES, with |X| = 2128 the number of permutations is about
Perms[X] ~ 22'%
while the number of permutations defined by 128-bit AES keys is at most 225,

As usual, to define security, we introduce an attack game. Just like the attack game used
to define a PRG, this attack game comprises two separate experiments. In both experiments,
the adversary follows the same protocol; namely, it submits a sequence of queries z1,zx2,... to
the challenger; the challenger responds to query x; with f(x;), where in the first experiment,
f = E(k,-) for a randomly chosen k € IC, while in the second experiment, f is randomly selected
from Perms[X]; throughout each experiment, the same f is used to answer all queries. When the
adversary tires of querying the challenger, it outputs a bit.

Attack Game 4.1 (block cipher). For a given block cipher (E, D), defined over (K, X'), and for
a given adversary A, we define two experiments, Experiment 0 and Experiment 1. For b =0, 1, we
define:

Experiment b:

97

e The challenger selects f € Perms[X] as follows:

ifb=0: k<K, f« E(k,-);
if b=1: f < Perms[X].

e The adversary submits a sequence of queries to the challenger.
For i =1,2,..., the ith query is a data block x; € X.
The challenger computes y; < f(z;) € X, and gives y; to the adversary.

e The adversary computes and outputs a bit be {0,1}.

For b = 0,1, let W}, be the event that A outputs 1 in Experiment b. We define A’s advantage
with respect to £ as
BCadv|A4, &] := |Pr[Wy] — Pr[W]|.

Finally, we say that A is a Q-query BC adversary if A issues at most () queries. O
Fig. 4.2 illustrates Attack Game 4.1.

Definition 4.1 (secure block cipher). A block cipher £ is secure if for all efficient adversaries
A, the value BCadv[A, &] is negligible.

We stress that the queries made by the adversary in Attack Game 4.1 are allowed to be adaptive;
that is, the adversary need not choose all its queries in advance; rather, it is allowed to concoct
each query in some clever way that depends on the previous responses from the challenger (see
Exercise 4.6).

As discussed in Section 2.2.5, Attack Game 4.1 can be recast as a “bit guessing” game, where
instead of having two separate experiments, the challenger chooses b € {0, 1} at random, and then
runs Experiment b against the adversary A. In this game, we measure A’s bit-guessing advantage
BCadv*[A, &] as |Prb = b] — 1/2|. The general result of Section 2.2.5 (namely, (2.11)) applies here
as well:

BCadv[A,&] = 2 - BCadv*[A4, £]. (4.1)

4.1.1 Some implications of security

Let £ = (E, D) be a block cipher defined over (K, X'). To exercise the definition of security a bit, we
prove a couple of simple implications. For simplicity, we assume that |X| is large (i.e., super-poly).

4.1.1.1 A secure block cipher is unpredictable

We show that if £ is secure in the sense of Definition 4.1, then it must be unpredictable, which
means that every efficient adversary wins the following prediction game with negligible probability.
In this game, the challenger chooses a random key k, and the adversary submits a sequence of
queries z1,...,zQ; in response to the ith query x;, the challenger responds with E(k,z;). These
queries are adaptive, in the sense that each query may depend on the previous responses. Finally,
the adversary outputs a pair of values (xg1,y), where zgy1 € {z1,...,2¢Q}. The adversary wins
the game if y = E(k,zg41).

To prove this implication, suppose that £ is not unpredictable, which means there is an efficient
adversary A that wins the above prediction game with non-negligible probability p. Then we can

98

Challenger
(Experiment 0)
k&K
¢ I\. Le X
II \
Yi < E(k‘, xi) 1
\
I \\;‘ >
be{0,1
e bcl0])
Challenger
(Experiment 1)
R
f & Perms[X] CmEX
¢ T
I} \
i < flz:) |
I \\;‘ -
be{0,1
bl

Figure 4.2: Attack Game 4.1

99

use A to break the security of £ in the sense of Definition 4.1. To this end, we design an adversary
B that plays Attack Game 4.1, and plays the role of challenger to A in the above prediction game.
Whenever A makes a query x;, adversary B passes z; through to its own challenger, obtaining a
response y;, which it passes back to A. Finally, when A outputs (xg41,y), adversary B submits
xQ+1 to its own challenger, obtaining yg41, and outputs 1 if y = yo41, and 0, otherwise.

On the one hand, if B’s challenger is running Experiment 0, then B outputs 1 with probability
p. On the other hand, if B’s challenger is running Experiment 1, then B outputs 1 with negligible
probability € (since we are assuming |X| is super-poly). This implies that B’s advantage in Attack
Game 4.1 is |p — €|, which is non-negligible.

4.1.1.2 Unpredictability implies security against key recovery

Next, we show that if £ is unpredictable, then it is secure against key recovery, which means that
every efficient adversary wins the following key-recovery game with negligible probability. In this
game, the adversary interacts with the challenger exactly as in the prediction game, except that at
the end, it outputs a candidate key k € K, and wins the game if £k = k.

To prove this implication, suppose that £ is not secure against key recovery, which means that
there is an efficient adversary A that wins the key-recovery game with non-negligible probability p.
Then we can use A to build an efficient adversary B that wins the prediction game with probability
at least p. Adversary B simply runs A’s attack, and when A outputs kK, adversary B chooses an
arbitrary xg41 ¢ {x1,...,2¢g}, computes y < E(K,zqQ+1), and outputs (xg11,y).

It is easy to see that if A wins the key-recovery game, then 5 wins the prediction game.

4.1.1.3 Key space size and exhaustive-search attacks

Combining the above two implications, we conclude that if £ is a secure block cipher, then it must
be secure against key recovery. Moreover, if £ is secure against key recovery, it must be the case
that |K| is large.

One way to see this is as follows. An adversary can always win the key-recovery game with
probability 1/|K| by simply choosing K from K at random. If |[K| is not super-poly, then 1/|K]|
is non-negligible. Hence, when |K| is not super-poly this simple key guessing adversary wins the
key-recovery game with non-negligible probability.

We can trade success probability for running time using a different attack, called an exhaustive-
search attack. In this attack, our adversary makes a few, arbitrary queries z1,...,z¢ in the key-
recovery game, obtaining responses yi,...,¥yg. One can argue — heuristically, at least, assuming
that |X| > |K| and |X| is super-poly — that for fairly small values of @ (Q = 2, in fact), with all
but negligible probability, only one key k satisfies

yi = E(k,z;) for i=1,...,Q. (4.2)

So our adversary simply tries all possible keys to find one that satisfies (4.2). If there is only
one such key, then the key that our adversary finds will be the key chosen by the challenger, and
the adversary will win the game. Thus, our adversary wins the key-recovery game with all but
negligible probability; however, its running time is linear in |X|.

This time/advantage trade-off can be easily generalized. Indeed, consider an adversary that
chooses t keys at random, testing if each such key satisfies (4.2). The running time of such an
adversary is linear in ¢, and it wins the key-recovery game with probability ~ t/|K]|.

100

We describe a few real-world exhaustive search attacks in Section 4.2.2. We present a de-
tailed treatment of exhaustive search in Section 4.7.2 where, in particular, we justify the heuristic
assumption used above that with high probability there is at most one key satisfying (4.2).

So it is clear that if a block cipher has any chance of being secure, it must have a large key
space, simply to avoid a key-recovery attack.

4.1.2 Efficient implementation of random permutations

Note that the challenger’s protocol in Experiment 1 of Attack Game 4.1 is not very efficient: he is
supposed to choose a very large random object. Indeed, just writing down an element of Perms[X]
would require about |X|log,|X| bits. For AES, with |X| = 2128 this means about 10%° bits!

While this is not a problem from a purely definitional point of view, for both aesthetic and
technical reasons, it would be nice to have a more efficient implementation. We can do this by
using a “lazy” implementation of f. That is, the challenger represents the random permutation
f by keeping track of input/output pairs (z;,y;). When the challenger receives the ith query z;,
he tests whether x; = x; for some j < i; if so, he sets y; < y; (this ensures that the challenger
implements a function); otherwise, he chooses y; at random from the set X \ {y1,...,y;—1} (this
ensures that the function is a permutation); finally, he sends y; to the adversary. We can write the
logic of this implementation of the challenger as follows:

upon receiving the ith query x; € X from A do:
if ; = x; for some j <14
then y; < y;
clse y; ¢~ X\ {y1,...,yi1}
send y; to A.

To make this implementation as fast as possible, one would implement the test “if x; = x; for some
j < 4” using an appropriate dictionary data structure (hash tables, digital search tries, balanced
trees, etc.). Assuming random elements of X’ can be generated efficiently, one way to implement
the step “y; <+ X'\ {y1,...,¥i—1}" is as follows:

repeat y <« X untily & {y1,...,yi—1}
Yi <Y,

again, using appropriate dictionary data structure for the tests “y & {y1,...,vi—1}.” When i <
|X'|/2 the loop will run for only two iterations in expectation.

One way to visualize this implementation is that the challenger in Experiment 1 is a “black box,”
but inside the box is a little faithful gnome whose job it is to maintain the table of input/output
pairs which represents a random permutation f. See Fig. 4.3.

4.1.3 Strongly secure block ciphers

Note that in Attack Game 4.1, the decryption algorithm D was never used. One can in fact define
a stronger notion of security by defining an attack game in which the adversary is allowed to make
two types of queries to the challenger:

forward queries: the adversary sends a value x; € X to the challenger, who sends y; := f(z;) to
the adversary;

101

x 00101 | 10101
11111 | 01110

01011

10001

Figure 4.3: A faithful gnome implementing random permutation f

inverse queries: the adversary sends a value y; € X to the challenger, who sends z; := f~!(y;)
to the adversary (in Experiment 0 in the attack game, this is done using algorithm D).

One then defines a corresponding advantage for this attack game. A block cipher is then called
strongly secure if for all efficient adversaries, this advantage is negligible. We leave it to the
reader to work out the details of this definition (see Exercise 4.9). We will not make use of this
notion in this text, other than an example application in a later chapter (Exercise 9.12).

4.1.4 Using a block cipher directly for encryption

Since a block cipher is a special kind of cipher, we can of course consider using it directly for
encryption. The question is: is a secure block cipher also semantically secure?

The answer to this question is “yes,” provided the message space is equal to the data block
space. This will be implied by Theorem 4.1 below. However, data blocks for practical block ciphers
are very short: as we mentioned, data blocks for AES are just 128-bits long. If we want to encrypt
longer messages, a natural idea would be to break up a long message into a sequence of data blocks,
and encrypt each data block separately. This use of a block cipher to encrypt long messages is called
electronic codebook mode, or ECB mode for short.

More precisely, suppose & = (E, D) is a block cipher defined over (I, X'). For any poly-bounded
¢ > 1, we can define a cipher & = (E', D'), defined over (K, X<¢, X=¢), as follows.

e For k € K and m € X<¢, with v := |m|, we define
E'(k,m) := (E(k,m[0]),..., E(k,m[v—1])).
e For k € K and ¢ € X<, with v := |c|, we define

D'(k,c) := (D(k,c[0]),...,D(k,clv—1])).

102

E(kv) E(k») E(k’)
c[0] 1] clv—1]

C[O} C[l] c[v — 1]
D(k,-) D(k,-) D(k,)
m[0] ml1] mlv — 1]

(b) decryption

Figure 4.4: Encryption and decryption for ECB mode

Fig. 4.4 illustrates encryption and decryption. We call £’ the -wise ECB cipher derived from &.

The ECB cipher is very closely related to the substitution cipher discussed in Examples 2.3
and 2.6. The main difference is that instead of choosing a permutation at random from among all
possible permutations on X', we choose one from the much smaller set of permutations {E(k,-) : k €
K}. A less important difference is that in Example 2.3, we defined our substitution cipher to have
a fixed length, rather than a variable length message space (this was really just an arbitrary choice
— we could have defined the substitution cipher to have a variable length message space). Another
difference is that in Example 2.3, we suggested an alphabet of size 27, while if we use a block cipher
like AES with a 128-bit block size, the “alphabet” is much larger — it has 2'?® elements. Despite
these differences, some of the vulnerabilities discussed in Example 2.6 apply here as well. For
example, an adversary can easily distinguish an encryption of two messages mg, m; € X2, where
myo consists of two equal blocks (i.e., my[0] = mo[1]) and m; consists of two unequal blocks (i.e.,

103

(a) plaintext (b) plaintext encrypted in ECB mode
using AES

Figure 4.5: Encrypting in ECB mode

m1[0] # mq[1]). For this reason alone, the ECB cipher does not satisfy our definition of semantic
security, and its use as an encryption scheme is strongly discouraged.

This ability to easily tell which plaintext blocks are the same is graphically illustrated in Fig. 4.5
(due to B. Preneel). Here, visual data is encrypted in ECB mode, with each data block encoding
some small patch of pixels in the original data. Since identical patches of pixels get mapped to
identical blocks of ciphertext, some patterns in the original picture are visible in the ciphertext.

Note, however, that some of the vulnerabilities discussed in Example 2.6 do not apply directly
here. Suppose we are encrypting ASCII text. If the block size of the cipher is 128-bits, then each
character of text will be typically encoded as a byte, with 16 characters packed into a data block.
Therefore, an adversary will not be able to trivially locate positions where individual characters
are repeated, as was the case in Example 2.6.

We close this section with a proof that ECB mode is in fact secure if the message space is
restricted to sequences on distinct data blocks. This includes as a special case the encryption of
single-block messages. It is also possible to encode longer messages as sequences of distinct data
blocks. For example, suppose we are using AES, which has 128-bit data blocks. Then we could
allocate, say, 32 bits out of each block as a counter, and use the remaining 96 bits for bits of the
message. With such a strategy, we can encode any message of up to 232 - 96 bits as a sequence of
distinct data blocks. Of course, this strategy has the disadvantage that ciphertexts are 33% longer
than plaintexts.

Theorem 4.1. Let £ = (E, D) be a block cipher. Let £ > 1 be any poly-bounded value, and let
E' = (E', D) be the t-wise ECB cipher derived from &, but with the message space restricted to all
sequences of at most £ distinct data blocks. If £ is a secure block cipher, then &£ is a semantically

104

secure cipher.

In particular, for every SS adversary A that plays Attack Game 2.1 with respect to £, there
exists a BC adversary B that plays Attack Game 4.1 with respect to £, where B is an elementary
wrapper around A, such that

SSadv[A, &'] = 2 - BCadv[B, &]. (4.3)

Proof idea. The basic idea is that if an adversary is given an encryption of a message, which is a
sequence of distinct data blocks, then what he sees is effectively just a sequence of random data
blocks (sampled without replacement). O

Proof. If £ is defined over (IC, X), let X=* denote the set of all sequences of at most ¢ distinct
elements of X.

Let A be an efficient adversary that attacks £ as in Attack Game 2.1. Our goal is to show that
SSadv[A, £’] is negligible, assuming that £ is a secure block cipher. It is more convenient to work
with the bit-guessing version of the SS attack game. We prove:

SSadv*[A, €] = BCadv[B, £] (4.4)

for some efficient adversary B. Then (4.3) follows from Theorem 2.10.

So consider the adversary A’s attack of £ in the bit-guessing version of Attack Game 2.1. In
this game, A presents the challenger with two messages mg, m1 of the same length; the challenger
then chooses a random key k and a random bit b, and encrypts m; under k, giving the resulting
ciphertext ¢ to A; finally, A outputs a bit b. The adversary A wins the game if b = b.

The logic of the challenger in this game may be written as follows:

upon receiving mg, m; € X=F, with v := |mg| = |my|, do:
b<-{0,1}
k&K
¢+ (E(k,mpl0]),..., E(k,mplv—1]))
send ¢ to A.

Let us call this Game 0. We will define two more games: Game 1 and Game 2. For j =0,1,2,
we define W; to be the event that b = b in Game j. By definition, we have

SSadv*[A, &' = |Pr[Wo] — 1/2]. (4.5)

Game 1. This is the same as Game 0, except the challenger uses a random f € Perms[X] in place
of E(k,-). Our challenger now looks like this:

upon receiving mg, m; € X=¢, with v := |mg| = |my|, do:
b<-{0,1}
f <& Perms[X]
e (fmpl0)), .. fmplo — 1))
send ¢ to A.

Intuitively, the fact that £ is a secure block cipher implies that the adversary should not notice
the switch. To prove this rigorously, we show how to build a BC adversary B that is an elementary
wrapper around A, such that

|Pr[Wo] — Pr[W1]| = BCadv(B, £]. (4.6)

105

The design of B follows directly from the logic of Games 0 and 1. Adversary B plays Attack
Game 4.1 with respect to &£, and works as follows:

Let f be the function chosen by B’s BC challenger in Attack Game 4.1. We let B play
the role of challenger to A, as follows:

upon receiving mg, my € XSt from A, with v == |mo| = |m1|, do:
b {0,1}
¢ (fmp[0]), ..., f(mplv —1]))
send ¢ to A.

Note that B computes the values f(mp[0]), ..., f(mp[v — 1]) by querying its own BC
challenger. Finally, when A outputs a bit b, B outputs the bit d(b,b), as defined in
(3.7).

It should be clear that when B is in Experiment 0 of its attack game, it outputs 1 with probability
Pr[Wy], while when B is in Experiment 1 of its attack game, it outputs 1 with probability Pr[WW/7].
The equation (4.6) now follows.

Game 2. We now rewrite the challenger in Game 1 so that it uses the “faithful gnome” imple-
mentation of a random permutation, discussed in Section 4.1.2. Each of the messages mg and mq
is required to consist of distinct data blocks (our challenger does not have to verify this), and so
our gnome’s job is quite easy: it does not even have to look at the input data blocks, as these are
guaranteed to be distinct; however, it still has to ensure that the output blocks it generates are
distinct.

We can express the logic of our challenger as follows:

yo <= X,y <= X\ {wo}, - ye1 <= X\ {yo, ..., ye—2}
upon receiving mg, m; € X=, with v := |mg| = |m4], do:
b <+ {0,1}
€< (y(]; ce ayv—l)
send ¢ to A.

Since our gnome is faithful, we have
Pr[W;] = Pr[Ws]. (4.7)
Moreover, we claim that
Pr[Ws] = 1/2. (4.8)

This follows from the fact that in Game 2, the adversary’s output b is a function of its own random
choices, together with yo, ..., ys—1; since these values are (by definition) independent of b, it follows
that b and b are independent. The equation (4.8) now follows.

Combining (4.5), (4.6), (4.7), and (4.8), yields (4.4), which completes the proof. O

4.1.5 Mathematical details

As usual, we address a few mathematical details that were glossed over above.
Since a block cipher is just a special kind of cipher, there is really nothing to say about the
definition of a block cipher that was not already said in Section 2.3. As usual, Definition 4.1 needs

106

[+ 1]

key expansion

ky ke | ks | - kn
F—round 14 F=round 2— F—round 3 — F—round n —

Figure 4.6: Encryption in a real-world block cipher

to be properly interpreted. First, in Attack Game 4.1, it is to be understood that for each value of
the security parameter A\, we get a different probability space, determined by the random choices of
the challenger and the random choices of the adversary. Second, the challenger generates a system
parameter A, and sends this to the adversary at the very start of the game. Third, the advantage
BCadv[A, €] is a function of the security parameter A, and security means that this function is a
negligible function.

4.2 Constructing block ciphers in practice

Block ciphers are a basic primitive in cryptography from which many other systems are built.
Virtually all block ciphers used in practice use the same basic framework called the iterated
cipher paradigm. To construct an iterated block cipher the designer makes two choices:

e First, he picks a simple block cipher &= (E, ﬁ) that is clearly insecure on its own. We call é
the round cipher.

e Second, he picks a simple (not necessarily secure) PRG G that is used to expand the key k
into d keys ki, ..., kq for £. We call G the key expansion function.

Once these two choices are made, the iterated block cipher £ is completely specified. The encryption
algorithm FE(k,x) works as follows (see Fig. 4.6):

107

key size block size number of performance!

(bits) (bits) rounds (MB/sec)
DES 56 64 16 80
3DES 168 64 48 30
AES-128 128 128 10 163
AES-256 256 128 14 115

Table 4.1: Sample block ciphers

Algorithm E(k,x):

e step 1. key expansion: use the key expansion function G to
stretch the key k of € to d keys of &:

(ki1 ... kg) < G(k)

e step 2. iteration: for i = 1,...,d apply E(kl, -), namely:

y<_EA(k;da E(kd—ly""E(k27 E(kla x))))

Each application of F is called a round and the total number of rounds is d. The keys ki,...,kq
are called round keys. The decryption algorithm D(k,y) is identical except that the round keys
are applied in reverse order. D(k,y) is defined as:

x < D(k1, D(ka,...,D(kq_1, D(kq, v))...))

Table 4.1 lists a few common block ciphers and their parameters. We describe DES and AES in
the next section.

Does iteration give a secure block cipher? Nobody knows. However, heuristic evidence
suggests that security of a block cipher comes from iterating a simple cipher many times. Not all
round ciphers will work. For example, iterating a linear function

E(k,z) =k -2z mod ¢

will never result in a secure block cipher since the iterate of E is just another linear function. There
is currently no way to classify which round ciphers will eventually result in a secure block cipher.
Moreover, for a candidate round cipher E there is no rigorous methodology to gauge how many
times it needs to be iterated before it becomes a secure block cipher. All we know is that certain
functions, like linear functions, never lead to secure block ciphers, while simple non-linear functions
appear to give a secure block cipher after a few iterations.

The challenge for the cryptographer is to come up with a fast round cipher that converges to a
secure block cipher within a few rounds. Looking at Table 4.1 one is impressed that AES-128 uses
a simple round cipher and yet seems to produce a secure block cipher after only ten rounds.

'OpenSSL 1.0.1e on Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz (Haswell).

108

A word of caution. While this section explains the inner workings of several block ciphers, it
does not teach how to design new block ciphers. In fact, one of the main take-away messages from
this section is that readers should not design block ciphers on their own, but instead always use
the standard ciphers described here. Block-cipher design is non-trivial and many years of analysis
are needed before one gains confidence in a specific proposal. Furthermore, readers should not even
implement block ciphers on their own since implementations of block-ciphers tend to be vulnerable
to timing and power attacks, as discussed in Section 4.3.2. It is much safer to use one of the standard
implementations freely available in crypto libraries such as OpenSSL. These implementations have
gone through considerable analysis over the years and have been hardened to resist attack.

4.2.1 Case study: DES

The Data Encryption Standard (DES) was developed at IBM in response to a solicitation for
proposals from the National Bureau of Standards (now the National Institute of Standards). It
was published in the Federal Register in 1975 and was adopted as a standard for “unclassified”
applications in 1977. The DES algorithm single-handedly jump started the field of cryptanalysis;
everyone wanted to break it. Since inception, DES has undergone considerable analysis that led to
the development of many new tools for analyzing block ciphers.

The precursor to DES is an earlier IBM block cipher called Lucifer. Certain variants of Lucifer
operated on 128-bit blocks using 128-bit keys. The National Bureau of Standards, however, asked
for a block cipher that used shorter blocks (64 bits) and shorter keys (56 bits). In response, the IBM
team designed a block cipher that met these requirements and eventually became DES. Setting the
DES key size to 56 bits was widely criticized and lead to speculation that DES was deliberately
made weak due to pressure from US intelligence agencies. In the coming chapters, we will see that
reducing the block size to 64 bits also creates problems.

Due to its short key size, the DES algorithm is now considered insecure and should not be
used. However, a strengthened version of DES called Triple-DES (3DES) was reaffirmed as a US
standard in 1998. The National Institute of Standards, NIST, has approved Triple-DES through
the year 2030 for government use. In 2002 DES was superseded by a new and more efficient block
cipher standard called AES that uses 128-bit (or longer) keys, and operates on 128-bit blocks.

4.2.1.1 The DES algorithm
The DES algorithm consists of 16 iterations of a simple round cipher. To describe DES it suffices
to describe the DES round cipher and the DES key expansion function. We describe each in turn.

The Feistel permutation. One of the key innovations in DES, invented by Horst Feistel at
IBM, builds a permutation from an arbitrary function. Let f : X — X be a function. We construct
a permutations 7 : X2 — X? as follows (Fig. 4.7):

W(xﬁl/) = (y7 T D f(y))

To show that 7 is one-to-one we construct its inverse, which is given by:

™ Hu,v) = (v flu), u)

The function 7 is called a Feistel permutation and is used to build the DES round cipher.
The composition of n Feistel permutations is called an n-round Feistel network. Block ciphers

109

Figure 4.7: The Feistel permutation

designed as a Feistel network are called Feistel ciphers. For DES, the function f takes 32-bit
inputs and the resulting permutation 7 operates on 64-bit blocks.

Note that the Feistel inverse function 7! is almost identical to 7. As a result the same hardware
can be used for evaluating both 7 and 7—!. This in turn means that the encryption and decryption
circuits can use the same hardware.

The DES round function F(k,z). The DES encryption algorithm is a 16-round Feistel network
where each round uses a different function f : X — X. In round number ¢ the function f is defined
as

f(x) = F(k;i,x)

where k; is a 48-bit key for round number ¢ and F' is a fixed function called the DES round
function. The function F' is the centerpiece of the DES algorithm and is shown in Fig. 4.8. F
uses several auxiliary functions F, P, and 57,...,Ss defined as follows:

e The function E expands a 32-bit input to a 48-bit output by rearranging and replicating the
input bits. For example, ¥ maps input bit number 1 to output bits 2 and 48; it maps input
bit 2 to output bit number 3, and so on.

e The function P, called the mixing permutation, maps a 32-bit input to a 32-bit output
by rearranging the bits of the input. For example, P maps input bit number 1 to output bit
number 9; input bit number 2 to output number 15, and so on.

e At the heart of the DES algorithm are the functions Sy, ..., Sy called S-boxes. Each S-box
S; maps a 6-bit input to a 4-bit output by a lookup table. The DES standard lists these 8
look-up tables, where each table contains 64 entries.

Given these functions, the DES round function F'(k,z) works as follows:

110

[48 bits |
| > N <
6 6 6 6 6 6 6 6
Si Sy Ss Su Ss Se S Ss
4 4 4 4 4 4 4 4

Figure 4.8: The DES round function F(k,z)

111

input: k € {0,1}® and = € {0,1}32
output: y € {0,1}3

F(k,x):
t+— E(x)ok €{0,1}*
separate ¢ into 8 groups of 6-bits each: ¢t =1ty || - || ts
fori=1to 8: 52<_Sz(tz)
s 51 -] ss €{0,1}32
y <« P(s) €{0,1}3
output y

Except for the S-boxes, the DES round cipher is made up entirely of XORs and bit permutations.
The eight S-boxes are the only components that introduce non-linearity into the design. IBM
published the criteria used to design the S-boxes in 1994 [44], after the discovery of a powerful
attack technique called “differential cryptanalysis” in the open literature. This IBM report makes
it clear that the designers of DES knew in 1973 of attack techniques that would only become known
in the open literature many years later. They designed DES to resist these attacks. The reason for
keeping the S-box design criteria secret is explained in the following quote [44]:

The design [of DES] took advantage of knowledge of certain cryptanalytic techniques,
most prominently the technique of “differential cryptanalysis,” which were not known in
the published literature. After discussions with the NSA, it was decided that disclosure
of the design considerations would reveal the technique of differential cryptanalysis, a
powerful technique that can be used against many ciphers. This in turn would weaken
the competitive advantage that the United States enjoyed over other countries in the
field of cryptography.

Once differential cryptanalysis became public, there was no longer any reason to keep the design
of DES secret. Due to the importance of the S-boxes we list a few of the criteria that went into
their design, as explained in [44].

1.

The size of the look-up tables, mapping 6-bits to 4-bits, was the largest that could be accom-
modated on a single chip using 1974 technology.

. No output bit of an S-box should be close to a linear function of the input bits. That is, if

we select any output bit and any subset of the 6 input bits, then the fraction of inputs for
which this output bit equals the XOR of these input bits should be close to 1/2.

. If we fix the leftmost and rightmost bits of the input to an S-box then the resulting 4-bit to

4-bit function is one-to-one. In particular, this implies that each S-box is a 4-to-1 map.

. Changing one bit of the input to an S-box changes at least two bits of the output.

. For each A € {0,1}°, among the 64 pairs x,y € {0,1}° such that = © y = A, the quantity

Si(x) @ Si(y) must not attain a single value more than eight times.

These criteria were designed to make DES as strong as possible, given the 56-bit key-size constraints.
It is now known that if the S-boxes were simply chosen at random, then with high probability the
resulting DES cipher would be insecure. In particular, the secret key could be recovered after only
several million queries to the challenger.

112

56 bit key

ki (ke ks ... k16

16 round Feistel network

Figure 4.9: The complete DES circuit

64 bits
64 bits

Beyond the S-boxes, the mixing permutation P also plays an important role. It ensures that
the S-boxes do not always operate on the same group of 6 bits. Again, [44] lists a number of criteria
used to choose the permutation P. If the permutation P was simply chosen at random then DES
would be far less secure.

The key expansion function. The DES key expansion function G takes as input the 56-bit
key k and outputs 16 keys ki,..., kig, each 48-bits long. Each key k; consists of 48 bits chosen
from the 56-bit key, with each k; using a different subset of bits from k.

The DES algorithm. The complete DES algorithm is shown in Fig. 4.9. It consists of 16
iterations of the DES round cipher plus initial and final permutations called IP and FP. These
permutations simply rearrange the 64 incoming and outgoing bits. The permutation FP is the
inverse of IP.

IP and FP have no cryptographic significance and were included for unknown reasons. Since bit
permutations are slow in software, but fast in hardware, one theory is that IP and FP are intended
to deliberately slow down software implementations of DES.

4.2.2 Exhaustive search on DES: the DES challenges

Recall that an exhaustive search attack on a block cipher (F, D) (Section 4.1.1.2) refers to the
following attack: the adversary is given a small number of plaintext blocks x1,...,2zg € X and
their encryption y1,...,yq using a block cipher key k in K. The adversary finds k by trying all
possible keys k£ € K until it finds a key that maps all the given plaintext blocks to the given
ciphertext blocks. If enough ciphertext blocks are given, then k is the only such key, and it will be
found by the adversary.

For block ciphers like DES and AES-128 three blocks are enough to ensure that with high
probability there is a unique key mapping the given plaintext blocks to the given ciphertext blocks.
We will see why in Section 4.7.2 where we discuss ideal ciphers and their properties. For now it
suffices to know that given three plaintext/ciphertext blocks an attacker can use exhaustive search
to find the secret key k.

In 1974, when DES was designed, an exhaustive search attack on a key space of size 2°% was
believed to be infeasible. With improvements in computer hardware it was shown that a 56-bit key
is woefully inadequate.

113

To prove that exhaustive search on DES is feasible, RSA data security set up a sequence of
challenges, called the DES challenges. The rules were simple: on a pre-announced date RSA data
security posted three input/output pairs for DES. The first group to find the corresponding key
wins ten thousand US dollars. To make the challenge more entertaining, the challenge consisted
of n DES outputs y1, 2, - . ., yn where the first three outputs, y1, y2, y3, were the result of applying
DES to the 24-byte plaintext message:

The unknown message is:
T T2 3

which consists of three DES blocks: each block is 8 bytes which is 64 bits, a single DES block. The
goal was to find a DES key that maps x; to y; for all ¢ = 1,2,3 and then use this key to decrypt
the secret message encoded in yy ... ypy.

The first challenge was posted in January 1997. It was solved by the DESCHALL project in 96
days. The team used a distributed Internet search with the help of 78,000 volunteers who con-
tributed idle cycles on their machines. The person whose machine found the secret-key received
40% of the prize money. Once decrypted, the secret message encoded in y4 ...y, was “Strong
cryptography makes the world a safer place.”

A second challenge, posted in January 1998, was solved by the distributed.net project in only
41 days by conducting a similar Internet search, but on a larger scale.

In early 1998, the Electronic Frontiers Foundation (EFF) contracted Paul Kocher to construct
a dedicated machine to do DES exhaustive key search. The machine, called DeepCrack, cost
250,000 US dollars and contained about 1900 dedicated DES chips housed in six cabinets. The
chips worked in parallel, each searching through an assigned segment of the key space. When RSA
data security posted the next challenge in July 1998, DeepCrack solved it in 56 hours and easily
won the ten thousand dollar prize: not quite enough to cover the cost of the machine, but more
than enough to make an important point about DES.

The final challenge was posted in January 1999. It was solved within 22 hours using a combined
DeepCrack and distributed.net effort. This put the final nail in DES’s coffin showing that a 56-bit
secret key can be recovered in just a few hours.

To complete the story, in 2007 the COPACOBANA team built a cluster of 120 off the shelf FPGA
boards at a total cost of about ten thousand US dollars. The cluster can search through the entire
256 DES key space in about 12.8 days [81].

The conclusion from all this work is that a 56-bit key is way too short. The minimum safe key
size these days is 128 bits.

4.2.2.1 1Is AES-128 vulnerable to exhaustive search?

Let us extrapolate the DES results to AES. While these estimates are inherently imprecise, they
give some indication as to the complexity of exhaustive search on AES. The minimum AES key
space size is 2'28. If scanning a space of size 2°6 takes 22 hours then scanning a space of size 2128
will take time:

(22 hours) x 2128756 x~ 1,18 - 10% years.

Even allowing for a billion fold improvement in computing speed and computing resources and
accounting for the fact that evaluating AES is faster than evaluating DES, the required time far
exceeds our capabilities. It is fair to conclude that a brute-force exhaustive search attack on AES

114

will never be practical. However, more sophisticated brute-force attacks on AES-128 exploiting
time-space tradeoffs may come within reach, as discussed in Section 18.7.

4.2.3 Strengthening ciphers against exhaustive search: the 3£ construction

The DES cipher has proved to be remarkably resilient to sophisticated attacks. Despite many years
of analysis the most practical attack on DES is a brute force exhaustive search over the entire key
space. Unfortunately, the 56-bit key space is too small.

A natural question is whether we can strengthen the cipher against exhaustive search without
changing its inner structure. The simplest solution is to iterate the cipher several time using
independent keys.

Let £ = (E, D) be a block cipher defined over (K, X'). We define the block cipher 3€ = (E3, D3)
as

E3< (kl, k27k3), w) = E(kg, E(k‘g, E(kl,a:)))

The 3€ block cipher takes keys in K3. For DES the 3& block cipher, called Triple-DES, uses keys
whose length is 3 x 56 = 168 bits.

Security. To analyze the security of 3€ we will need a framework called the ideal cipher model
which we present at the end of this chapter. We analyze the security of 3€ in that section.

The Triple-DES standard. NIST approved Triple-DES for government use through the
year 2030. Strictly speaking, the NIST version of Triple-DES is defined as

Es3((k1, ko, k3), z) := E(ks, D(ka, E(k1,x))).

The reason for this is that setting k; = ko = ks reduces the NIST Triple-DES to ordinary DES
and hence Triple-DES hardware can be used to implement single DES. This will not affect our
discussion of security of Triple-DES. Another variant of Triple-DES is discussed in Exercise 4.5.

4.2.3.1 The 2€ construction is insecure

While Triple-DES is not vulnerable to exhaustive search, its performance is three times slower than
single DES, as shown in Table 4.1.

Why not use Double-DES? Its key size is 2 x 56 = 112 bits, which is already sufficient to defeat
exhaustive search. Its performance is much better than Triple-DES.

Unfortunately, Double-DES is no more secure than single DES. More generally, let £ = (E, D)
be a block cipher with key space K. We show that the 2€ = (E2, D3) construction, defined as

EQ((kl,kQ), 3}) = E(kg, E(kl,l’))

is no more secure than £. The attack strategy is called meet in the middle.

We are given @) plaintext blocks x1,...,z¢ and their 2 encryptions y; = Eg((k1, k2), xz) for
i=1,...,Q. We show how to recover the secret key (ki, k2) in time proportional to |K|, even though
the key space has size |[KC|2. As with exhaustive search, a small number of plaintext/ciphertext pairs
is sufficient to ensure that there is a unique key (k1, k2) with high probability. Ten pairs are more
than enough to ensure uniqueness for block ciphers like Double-DES.

115

Lo Bky) |—— Elks) |—

> <

step 1: _ step 2:

build table of all 0 | £(0,2) for every £, in K

E(ky,) L] EQ,z) lookup D(ky,¥) in table
2 | E(2,7)

Figure 4.10: Meet in the middle attack on 2&

Theorem 4.2. Let £ = (E, D) be a block cipher defined over (IC,X). There is an algorithm Agx
that takes as input Q plaintext/ciphertext pairs (x;,y;) € X2 fori = 1,...,Q and outputs a key
pair (ki, ko) € K? such that

Yi :EQ((]4}1,]{32), :L‘l) fOT all i = 1,...,@. (4.9)
Its running time is dominated by a total of 2Q) - || evaluations of algorithms E and D.

Proof. Let = := (z1,...,2q) and § := (y1,...,yg). We can capture the @ relations in (4.9) by
writing

y = Ex((k1,k2), %) = E(ka, E(k1,7)).

This is equivalent to

To find a pair (k1, k2) satisfying (4.10) the algorithm Agx does the following:

step 1: construct a table T containing all pairs (Kl, E(k;,)) for all k; € K
step 2: for all kK, € K do:
A D(k‘27 g)
table lookup: if T' contains a pair (-, z) then
let (K;,z) be that pair, output (K, Ky) and halt

This meet in the middle attack is depicted in Fig. 4.10. By construction, the pair (K, K,) output
by the algorithm must satisfy D(k,,y) = E(k;,Z), as required.

Step 1 requires @ - |K| evaluations of E. Step 2 similarly requires @ - || evaluations of D.
Therefore, the total number of evaluation of E and D is 2Q - |K|. We assume that the time to insert
and look-up elements in the data structure holding the table T is less than the time to evaluate
algorithms F and D. O

As discussed above, for relatively small values of @), with overwhelming probability there will
be only one key pair satisfying (4.9), and this will be the output of Algorithm Agy in Theorem 4.2.

The running time of algorithm 4 in Theorem 4.2 is about the same as the time to do exhaustive
search on &, suggesting that 2€ does not strengthen £ against exhaustive search. The theorem,

116

however, only considers the running time of .A. Notice that .4 must keep a large table in memory
which can be difficult. To attack Double-DES, A would need to store a table of size 2°¢ where
each table entry contains a DES key and a short ciphertext. Overall this amounts to at least 260
bytes, which is about a million Terrabytes. While not impossible, obtaining sufficient storage can
be difficult. Alternatively an attacker can trade-off storage space for running time — it is easy to
modify A so that at any given time it only stores an € fraction of the table at the cost of increasing
the running time by a factor of 1/e.

A meet in the middle attack on Triple-DES. A similar meet in the middle attack applies
to the 3£ construction from the previous section. While 3€ has key space I3, the meet in the
middle attack on 3€ runs in time about |K|? and takes space |K|. In the case of Triple-DES, the
attack requires about |KC|2 = 2112 evaluations of DES which is too long to run in practice. Hence,
Triple-DES resists this meet in the middle attack and is the reason why Triple-DES is used in
practice.

4.2.4 Case study: AES

Although Triple-DES is a NIST approved cipher, it has a number of significant drawbacks. First,
Triple-DES is three times slower than DES and performs poorly when implemented in software.
Second, the 64-bit block size is problematic for a number of important applications, such as those
discussed in Chapter 6. By the mid-1990s it became apparent that a new federal block cipher
standard was needed.

The AES process. In 1997 NIST put out a request for proposals for a new block cipher standard
to be called the Advanced Encryption Standard or AES. The AES block cipher had to operate
on 128-bit blocks and support three key sizes: 128, 192, and 256 bits. In September of 1997,
NIST received 15 submissions, many of which were developed outside of the United States. After
holding two open conferences to discuss the proposals, in 1999 NIST narrowed down the list to five
candidates. A further round of intense cryptanalysis followed, culminating in the AES3 conference
in April of 2000, at which a representative of each of the final five teams made a presentation arguing
why their submission should be chosen as the standard. In October of 2000, NIST announced that
Rijndael, a Belgian block cipher, had been selected as the AES cipher. AES became an official
standard in November of 2001 when it was published as a NIST standard in FIPS 197. This
concluded a five year process to standardize a replacement to DES.

Rijndael was designed by Belgian cryptographers Joan Daemen and Vincent Rijmen [49]. AES
is slightly different from the original Rijndael cipher. For example, Rijndael supports blocks of size
128, 192, or 256 bits while AES only supports 128-bit blocks.

4.2.4.1 The AES algorithm

Like many real-world block ciphers, AES is an iterated cipher that iterates a simple round cipher
several times. The number of iterations depends on the size of the secret key:

117

128 bit key

ko ky ks ko k1o
IMyes : IMpps : ﬁ .

; ByteSub ByteSub AR tput
input Y .- outpu
P N ShiftRow ShiftRow N SBgffeSR“b N p
MixColumns MixColumns iftRow
round 1 round 9 round 10

Figure 4.11: Schematic of the AES-128 block cipher

cipher | key-size | block-size | number of

name (bits) (bits) rounds
AES-128 128 128 10
AES-192 192 128 12
AFES-256 256 128 14

For example, the structure of the cipher AES-128 with its ten rounds is shown in Fig. 4.11. Here
I ,ps is a fixed permutation (a one-to-one function) on {0,1}'?8 that does not depend on the key.
The last step of each round is to XOR the current round key with the output of Il gs. This is
repeated 9 times until in the last round a slightly modified permutation g is used. Inverting
the AES algorithm is done by running the entire structure in the reverse direction. This is possible
because every step is easily invertible.

Ciphers that follow the structure shown in Fig. 4.11 are called alternating key ciphers.
They are also known as iterated Even-Mansour ciphers. They can be proven secure under
certain “ideal” assumptions about the permutation II,zg in each round. We present this analysis
in Theorem 4.14 later in this chapter.

To complete the description of AES it suffices to describe the permutation II,zg, and the AES
key expansion PRG. We describe each in turn.

The AES round permutation. The permutation II,gs is made up of a sequence of three
invertible operations on the set {0, 1}12%. The 128 bits are organized as a 4 x 4 array of cells, where
each cell is made up of eight bits. The following three invertible operations are then carried out in
sequence, one after the other, on this 4 x 4 array:

1. SubBytes: Let S : {0,1}® — {0,1}® be a fixed permutation (a one-to-one function). This
permutation is applied to each of the 16 cells, one cell at a time. The permutation S is
specified in the AES standard as a hard-coded table of 256 entries. It is designed to have
no fixed points, namely S(z) # z for all x € {0,1}®, and no inverse fixed points, namely
S(z) # = where T is the bit-wise complement of x. These requirements are needed to defeat
certain attacks discussed in Section 4.3.1.

2. ShiftRows: This step performs a cyclic shift on the four rows of the input 4 x 4 array: the
first row is unchanged, the second row is cyclically shifted one byte to the left, the third row is

118

cyclically shifted two bytes, and the fourth row is cyclically shifted three bytes. In a diagram,
this step performs the following transformation:

ag ay a2 az ao a a2 as
a4 a a a a a a a4
asg ag aip a1 a1p ai1 ag ag
a12 a3 ai4 ais a5 a2 aiz a4

3. MixColumns: In this step the 4 x 4 array is treated as a matrix and this matrix is multiplied
by a fixed matrix where arithmetic is interpreted in the finite field GF(2%). Elements in
the field GF(2®) are represented as polynomials over GF(2) of degree less than eight where
multiplication is done modulo the irreducible polynomial 28 + 24 + 23 + 2 4+ 1. Specifically,
the MixColumns transformation does:

02 03 01 01 ap a1 az as ay ay ahy ab
01 02 03 01 as ag ar a4 ay af ay a;

4.12
01 01 02 03 |~ alp a1 ag Qg — ag ag ayy ai ()
03 01 01 02 als a1z a1z ai4 CL/12 CL/13 a’14 a’15

Here the scalars 01, 02,03 are interpreted as elements of GF(2%) using their binary represen-
tation (e.g., 03 represents the element x + 1 in GF(28)). This fixed matrix is invertible over
GF(2%) so that the entire transformation is invertible.

The permutation I1,gg used in the AES circuit of Fig. 4.11 is the sequential composition of the
three permutation SubBytes, ShiftRows, and MixColumns in that order. In the very last round
AES uses a slightly different function we call ﬂAES. This function is the same as Il zg except
that the MixColumns step is omitted. This omission is done so that the AES decryption circuit
looks somewhat similar to the AES encryption circuit. Security implications of this omission are
discussed in [57].

Because each step in Il,gg is easily invertible, the entire permutation I,z is easily invertible,
as required for decryption.

Implementing AES using pre-computed tables. The AES round function is built from
a permutation we called Il,gg defined as a sequence of three steps: SubBytes, ShiftRows, and
MixColumns. The designers of AES did not intend for AES to be implemented that way on modern
processors. Instead, they proposed an implementation of I, gg the does all three steps at once using
four fixed lookup tables called Ty, 11,15, T5.

To explain how this works, recall that I1,zs takes as input a 4 x 4 matrix A = (a;)i—o,...,15 and
outputs a matrix A’ := I gs(A) of the same dimensions. Let us use S[a] to denote the result of
applying SubBytes to an input a € {0,1}8. Similarly, recall that the MixColumns step multiplies
the current state by a fixed 4 x 4 matrix M. Let us use M[i] to denote column number i of M, and
A'[i] to denote column number ¢ of A’.

Now, looking at (4.12), we can write the four columns of the output of I ps(A) as:

A0

[0] = M[0] - S[ao] + M[1] - S[as] + M[2] - S[a1o] + M[3] - Slays]
A'l1] = M|[0] - S[a1] + M[1] - S[ag) + M[2] - S[a11] + M[3] - S[a12] (4.13)
A'[2] = M[0] - S[ag] + M[1] - S[az] + M[2] - Slag] + M(3] - S[a13]
A'[3] = M[0] - Slas] + M[1] - S[as] + M[2] - S[ag] + M[3] - S[a4]

where addition and multiplication is done in GF(28). Each column M[i], i = 0,1,2,3, is a vector
of four bytes over GF(2%), while the quantities S[a;] are 1-byte scalars in GF(28).

Every term in (4.13) can be evaluated quickly using a fixed pre-computed table. Fori =0,1,2,3
let us define a table T; with 256 entries as follows:

for a € {0,1}%: Tji[a] := M[i]-Sla] € {0,1}3?.

Plugging these tables into (4.13) gives a fast way to evaluate I gs(A):

A'[0] = Toao] + Th[as] + To[a1o] + Tslars)
A'(1] = Tolar] + Th[ae] + Tolar1] + Tz[ars]
A'12] = Tolas] + Ti[az] + Te[as]) + Ts[a1s]
A'[3] = Tolas] + Ti[aa] + Ta[ag] + Ts[a14]

The entire AES circuit written this way is a simple sequence of table lookups. Since each table T;
contains 256 entries, four bytes each, the total size of all four tables is 4KB. The circular structure
of the matrix M makes it possible to compress the four tables to only 2KB with little impact on
performance.

The one exception to (4.13) is the very last round of AES where the MixColumns step is omitted.
To evaluate the last round we need a fifth 256-byte table S that only implements the SubBytes
operation.

This optimization of AES is optional. Implementations in constrained environments where
there is no room to store a 4KB table can choose to implement the three steps of Il gs in code,
which takes less than 4KB, but is not as fast. Thus AES can be adapted for both constrained and
unconstrained environments.

As a word of caution, we note that a simplistic implementation of AES using this table lookup
optimization is most likely vulnerable to cache timing attacks discussed in Section 4.3.2.

The AES-128 key expansion method. Looking back at Fig. 4.11 we see that key expansion
for AES-128 needs to generate 11 rounds keys ko, ..., k19 where each round key is 128 bits. To do
so, the 128-bit AES key is partitioned into four 32-bit words wg o, wo 1, wo 2, wo 3 and these form
the first round key kg. The remaining ten round keys are generated sequentially: for i =1,...,10,
the 128-bit round key k; = (w; 0, w; 1, w;z2,w;3) is generated from the preceding round key k;—1 =
(wi_lyg, Wi;—1,1, Wi—1,2, wi_173) as follows:

Wi — Wi—1,0 D gi(wi—13)
Wil < Wi—1,1 Dw;o

Wi 2 < Wi—1,2 D w1

Wi 3 < Wi—13 D w2 .

Here the function g; : {0,1}3% — {0,1