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Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples

Generative modeling
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Maximum Likelihood
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✓
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θ * = arg max
θ
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log pmodel(x |θ)

Maximum Likelihood

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
θ * = arg max

θ

N

∑
i=1

log pmodel(xi |θ)
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✓

Ex⇠pdata log pmodel(x | ✓)
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θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ, c)

explicit density
extra conditioning information

Maximum Conditional Likelihood
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Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1
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Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1

θ * = arg max
θ

𝔼x∼pdata
log pmodel(st+1 |θ, st, at)

explicit density
extra conditioning information

Maximum likelihood for model learning
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Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1

θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ)

θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ, c)

Maximum Likelihood

pmodel(x |θ, c) =
1

(2π)− k
2 det(Σ)− 1

2

exp (−
1
2

(x − μ(θ, c))⊤Σ−1(x − μ(θ, c))), where Σ = I



(Goodfellow 2016)

Maximum Likelihood

BRIEF ARTICLE

THE AUTHOR

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

1

θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ)

θ * = arg max
θ

𝔼x∼pdata
log pmodel(x |θ, c)

Maximum Likelihood-Gaussian with fixed covariance

pmodel(x |θ, c) =
1

(2π)− k
2 det(Σ)− 1

2

exp (−
1
2

(x − μ(θ, c))⊤Σ−1(x − μ(θ, c))), where Σ = I

max
θ

𝔼x∼pdata
log pmodel(x |θ, c) min

θ
𝔼x∼pdata

∥x − μ(θ, c)∥2
2equiv. to
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Taxonomy of Generative Models

Maximum Likelihood

Explicit density Implicit density

…

Tractable density
-Fully visible belief nets 
 -NADE 
 -MADE 
 -PixelRNN 
-Change of variables 
models (nonlinear ICA)

Approximate density

Variational
Variational autoencoder

Markov Chain
Boltzmann machine

Markov Chain

Direct

GSN

GAN
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Fully Visible Belief Nets
• Explicit formula based on chain 

rule: 

• Disadvantages: 

• O(n) sample generation cost 

• Generation not controlled by a 
latent code

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

1

(Frey et al, 1996)

PixelCNN elephants 
(van den Ord et al 2016)
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Variational Autoencoder
zz

xx

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

1

(Kingma and Welling 2013, Rezende et al 2014)

CIFAR-10 samples 
(Kingma et al 2016)

Disadvantages: 
-Not asymptotically 
consistent unless q is 
perfect 
-Samples tend to have lower 
quality



Energy based models

pθ(x) =
1
Z

exp (−Eθ(x))

p(τ |θ) =
e−cθ(τ)

∑τ′�e
−cθ(τ′�)

Remember from previous class our energy based model over 
trajectories, where we parametrized the trajectory cost:

where τ = {s1, a1, s2, a2, ⋯, sT, aT} is a state/action trajectory
 and the cost of a trajectory cθ(τ) is additive over states: cθ(τ) = ∑

t

cθ(st, at) .



Energy based models

pθ(x) =
1
Z

exp (−Eθ(x))

Maximizing likelihood requires sampling to estimate Z:

d
dθi

log pθ(x) =
d

dθi
(−Eθ(x) − log Z)



Maximum Likelihood

max
θ

. ∑
τi∈Ddemo

log p(τi)

⟺ max
θ

. ∑
τi∈Ddemo

log
e−cθ(τi)

Z

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − ∑
τi∈Ddemo

log Z

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − ∑
τi∈Ddemo

log(∑
τ

e−cθ(τ))

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − log(∑
τ

e−cθ(τ)) |Ddemo |

⟺ min
θ

. ∑
τi∈Ddemo

cθ(τi) + |Ddemo | log(∑
τ

e−cθ(τ)) → ℒ(θ)
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Maximum Likelihood

max
θ

. ∑
τi∈Ddemo

log p(τi)

⟺ max
θ

. ∑
τi∈Ddemo

log
e−cθ(τi)

Z

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − ∑
τi∈Ddemo

log Z

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − ∑
τi∈Ddemo

log(∑
τ

e−cθ(τ))

⟺ max
θ

. ∑
τi∈Ddemo

− cθ(τi) − log(∑
τ

e−cθ(τ)) |Ddemo |

⟺ min
θ

. ∑
τi∈Ddemo

cθ(τi) + |Ddemo | log(∑
τ

e−cθ(τ)) → ℒ(θ)

This is a huge sum, 
intractable to 
compute in large 
state spaces.



Sample approximation for Z

∇θ J(θ) = ∑
τ*∈D

dcθ(τ*)
dθ

+ |D |
1

∑τ e−cθ(τ) ∑
τ

(e−cθ(τ)(−
dcθ(τ)

dθ
))

= ∑
τ*∈D

dcθ(τ*)
dθ

− |D |∑
τ

p(τ |θ)
dcθ(τ)

dθ

Z = ∫ e−cθ(τ)dτ

ℒ(θ) =
1

|Ddemo | ∑
τi∈Ddemo

cθ(τi) + log
1

|Dsamp | ∑
τj∈Dsamp

e−cθ(τj)

q(τj)

Z = ∫ e−cθ(τ)dτ = ∫ q(τ)
e−cθ(τ)

q(τ)
dτ ≈

1
|Dsamp | ∑

τj∈Dsamp

e−cθ(τj)

q(τj)

This is a huge integral, intractable to compute:

ℒ(θ) = 𝔼τ∼pdemo
cθ(τ) + log (𝔼τ∼q

exp(−cθ(τ))
q(τ) )

What q shall we use? Let’s adapt it over time!



1. Initialize q0 either from a random policy or using behavior cloning 
 on expert demonstations.
2. for iteration k = 1...I

3. Generate samples Dtraj from qk(τ)
4. Append samples: Dsamp ← Dsamp ∪ Dtraj .
5. Use Dsamp to update cost cθ using gradient descent.
6. Update qk(τ) using any RL method 

MaxEntIRL with Adaptive Importance Sampling

∇θℒ(θ) =
1

|Ddemo | ∑
τi∈Ddemo

dcθ

dθ
(τi) − log

1
|Dsamp | ∑

τj∈Dsamp

e−cθ(τj)

q(τj)
dcθ

dθ
(τj)

Guided cost learning, Finn et al. 2016



1. Initialize q0 either from a random policy or using behavior cloning 
 on expert demonstations.
2. for iteration k = 1...I

3. Generate samples Dtraj from qk(τ)
4. Append samples: Dsamp ← Dsamp ∪ Dtraj .
5. Use Dsamp to update cost cθ using gradient descent.
6. Update qk(τ) using any RL method 

MaxEntIRL with Adaptive Importance Sampling

Guided cost learning, Finn et al. 2016

ℒ(q) = 𝔼τ∼qcθ(τ) + 𝔼τ∼q[log q(τ)]

Minimize cost (equiv. to maximize reward)

maximize entropy of the policy



IRL versus IL
In the first lecture, we had seen methods that imitate the experts 
directly, without trying to recover a reward.

min
θ

N

∑
i=1

∥πθ(si − T . . si) − ai∥2
2or, using an RNN:

One problem we had was distribution shift. 

Scheduled sampling (sampling from the output of the model during 
training) could alleviate that.

min
θ

N

∑
i=1

∥πθ(si) − ai∥2
2equiv. to for a gaussian policy with 

a unit covariance

θ * = arg max
θ

N

∑
i=1

log πθ(ai |si)Behaviour cloning:



min
θ

N

∑
i=1

∥πθ(si − T . . si) − ai∥2

• Or you are asked to map back to the original trajectory

Other problems?

IRL versus IL

• From that point, either you query the expert on what to do
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Is the divergence important?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL(pkq) or DKL(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.

76

(Goodfellow et al 2016)

Maximum likelihood Reverse KL

Behaviour cloning

Non realistic action samples, due to non expressive policy (plain 
regressor)



GANs to the rescue
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Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Generator G
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Adversarial Nets Framework

x sampled from 
data

Differentiable 
function D

D(x) tries to be 
near 1

Input noise z

Differentiable 
function G

x sampled from 
model

D

D tries to make 
D(G(z)) near 0,
G tries to make 
D(G(z)) near 1

Generator G

Discriminator D
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DCGAN Architecture

(Radford et al 2015)

Most “deconvs” are batch normalized

A Generator network (DCGAN)
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Minimax Game

-Equilibrium is a saddle point of the discriminator loss 
-Resembles Jensen-Shannon divergence 
-Generator minimizes the log-probability of the discriminator 
being correct

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

Change of variables

y = g(x) ) px(x) = py(g(x))

����det
✓
@g(x)

@x

◆����

Variational bound

log p(x) � log p(x)�DKL (q(z)kp(z | x))(1)

=Ez⇠q log p(x, z) +H(q)(2)

Boltzmann Machines

p(x) =
1

Z
exp (�E(x, z))(3)

Z =
X

x

X

z

exp (�E(x, z))(4)

Generator equation
x = G(z;✓(G))

Minimax

J
(D) = �1

2
Ex⇠pdata logD(x)� 1

2
Ez log (1�D (G(z)))(5)

J
(G) = �J

(D)(6)

1



Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx



Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx



Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx



Optimal discriminator strategy

min
G

max
D

V(D, G) = 𝔼x∼pdata(x)[log D(x)] + 𝔼z∼pz(z)[log(1−D(G(z)))]

V(D, G) = ∫x
pdata(x)log D(x)dx + ∫z

pz(z)log(1−D(G(z)))dz

∫x
pdata(x)log D(x)dx + ∫x

pG(x)log(1−D(x))dx

∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx



Optimal discriminator strategy

d
dD(x) (pdata(x)log D(x)+pG(x)log(1 − D(x)) = 0

pdata(x)
1

D(x)
−pG(x)

1
1 − D(x)

= 0

pdata(x)
1

D(x)
= pG(x)

1
1 − D(x)

pdata(x)(1 − D(x)) = pG(x)D(x)

D*(x) =
pdata(x)

pdata(x) + pG(x)

V(D, G) = ∫x
pdata(x)log D(x)+pG(x)log(1−D(x))dx
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C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼z∼pz(z)[log(1 − D*G(G(z))]
= 𝔼x∼pdata(x)[log D*G(x)] + 𝔼x∼pG(x)[log(1 − D*G(x)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(1 −

pdata(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)] − log 4 + log 4

= 𝔼x∼pdata(x)[log
2pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

2pG(x)
pdata(x) + pG(x)

)] − log 4

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
2

] + 𝔼x∼pG(x)[log
pG(x)

pdata(x) + pG(x)
2

] − log 4

= DKL (pdata(x) | |
pdata(x) + pG(x)

2 ) + DKL (pG(x)∥
pdata(x) + pG(x)

2 ) − log 4

= 2DJSD (pdata(x) | |pG(x)) − log 4
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Optimal generator strategy

Since DJSD ≥ 0, C(G) ≥ − log 4

C(G) = max
D

V(G, D)

= 𝔼x∼pdata(x)[log
pdata(x)

pdata(x) + pG(x)
] + 𝔼x∼pG(x)[log(

pG(x)
pdata(x) + pG(x)

)]

= 2DJSD (pdata(x) | |pG(x)) − log 4

We setting PG(x) = pdata(x) in the equation above, we get:

C(G) = 𝔼x∼pdata(x) log
1
2

+ 𝔼x∼pG(x) log
1
2

= − log 4

Thus generator achieves the optimum when PG(x) = pdata(x) .
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

pD(data)

Diagram from Ian Goodfellow
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)
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the training criterion allows one to recover the data generating distribution as G and D are given
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log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.
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pdata(x)
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The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1
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4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.
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Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1
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4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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-Equilibrium no longer describable with a single loss 
-Generator maximizes the log-probability of the discriminator 
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-Heuristically motivated; generator can still learn even when 
discriminator successfully rejects all generator samples
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Comparison of Generator Losses

(Goodfellow 2014)
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DCGANs for LSUN Bedrooms

(Radford et al 2015)
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Vector Space ArithmeticCHAPTER 15. REPRESENTATION LEARNING

- + =

Figure 15.9: A generative model has learned a distributed representation that disentangles
the concept of gender from the concept of wearing glasses. If we begin with the repre-
sentation of the concept of a man with glasses, then subtract the vector representing the
concept of a man without glasses, and finally add the vector representing the concept
of a woman without glasses, we obtain the vector representing the concept of a woman
with glasses. The generative model correctly decodes all of these representation vectors to
images that may be recognized as belonging to the correct class. Images reproduced with
permission from Radford et al. (2015).

common is that one could imagine learning about each of them without having to
see all the configurations of all the others. Radford et al. (2015) demonstrated that
a generative model can learn a representation of images of faces, with separate
directions in representation space capturing different underlying factors of variation.
Figure 15.9 demonstrates that one direction in representation space corresponds
to whether the person is male or female, while another corresponds to whether
the person is wearing glasses. These features were discovered automatically, not
fixed a priori. There is no need to have labels for the hidden unit classifiers:
gradient descent on an objective function of interest naturally learns semantically
interesting features, so long as the task requires such features. We can learn about
the distinction between male and female, or about the presence or absence of
glasses, without having to characterize all of the configurations of the n � 1 other
features by examples covering all of these combinations of values. This form of
statistical separability is what allows one to generalize to new configurations of a
person’s features that have never been seen during training.
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(Radford et al, 2015)
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Is the divergence important?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY
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Figure 3.6: The KL divergence is asymmetric. Suppose we have a distribution p(x) and
wish to approximate it with another distribution q(x). We have the choice of minimizing
either DKL(pkq) or DKL(qkp). We illustrate the effect of this choice using a mixture of
two Gaussians for p, and a single Gaussian for q. The choice of which direction of the
KL divergence to use is problem-dependent. Some applications require an approximation
that usually places high probability anywhere that the true distribution places high
probability, while other applications require an approximation that rarely places high
probability anywhere that the true distribution places low probability. The choice of the
direction of the KL divergence reflects which of these considerations takes priority for each
application. (Left)The effect of minimizing DKL(pkq). In this case, we select a q that has
high probability where p has high probability. When p has multiple modes, q chooses to
blur the modes together, in order to put high probability mass on all of them. (Right)The
effect of minimizing DKL(qkp). In this case, we select a q that has low probability where
p has low probability. When p has multiple modes that are sufficiently widely separated,
as in this figure, the KL divergence is minimized by choosing a single mode, in order to
avoid putting probability mass in the low-probability areas between modes of p. Here, we
illustrate the outcome when q is chosen to emphasize the left mode. We could also have
achieved an equal value of the KL divergence by choosing the right mode. If the modes
are not separated by a sufficiently strong low probability region, then this direction of the
KL divergence can still choose to blur the modes.
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Next Video Frame PredictionCHAPTER 15. REPRESENTATION LEARNING

Ground Truth MSE Adversarial

Figure 15.6: Predictive generative networks provide an example of the importance of
learning which features are salient. In this example, the predictive generative network
has been trained to predict the appearance of a 3-D model of a human head at a specific
viewing angle. (Left)Ground truth. This is the correct image, that the network should
emit. (Center)Image produced by a predictive generative network trained with mean
squared error alone. Because the ears do not cause an extreme difference in brightness
compared to the neighboring skin, they were not sufficiently salient for the model to learn
to represent them. (Right)Image produced by a model trained with a combination of
mean squared error and adversarial loss. Using this learned cost function, the ears are
salient because they follow a predictable pattern. Learning which underlying causes are
important and relevant enough to model is an important active area of research. Figures
graciously provided by Lotter et al. (2015).

recognizable shape and consistent position means that a feedforward network
can easily learn to detect them, making them highly salient under the generative
adversarial framework. See figure 15.6 for example images. Generative adversarial
networks are only one step toward determining which factors should be represented.
We expect that future research will discover better ways of determining which
factors to represent, and develop mechanisms for representing different factors
depending on the task.

A benefit of learning the underlying causal factors, as pointed out by Schölkopf
et al. (2012), is that if the true generative process has x as an effect and y as
a cause, then modeling p(x | y) is robust to changes in p(y). If the cause-effect
relationship was reversed, this would not be true, since by Bayes’ rule, p(x | y)
would be sensitive to changes in p(y). Very often, when we consider changes in
distribution due to different domains, temporal non-stationarity, or changes in
the nature of the task, the causal mechanisms remain invariant (the laws of the
universe are constant) while the marginal distribution over the underlying causes
can change. Hence, better generalization and robustness to all kinds of changes can
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Loss does not seem to explain 
why GAN samples are sharp

KL

Reverse 
KL

KL samples from LSUN

Takeaway:  the approximation strategy 
matters more than the loss

(Nowozin et al 2016)



Conditional GANs

There is extra conditioning information as input to the 
generator
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Find a policy       that makes it impossible for a discriminator 
network to distinguish between state-action pairs from the expert 
demonstations and those produced by the learnt policy
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• Minimax objective function:

• In practice, to estimate G we use:

Why? Stronger gradient for G when D is very good.

Zero-sum game
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

max
G

Ez∼pz(z)[logD(G(z))]
Reward for the policy optimization is how well I matched the demo 
trajectory distribution, else, how well I confused the discriminator: 
logD(s)

min
⇡✓

max
D

E⇤
⇡[logD(s)] + E⇡✓ [log(1�D(s))]

⇡✓

⇡✓

D outputs 1 if states comes from the demo policy

Generative Adversarial Imitation learning
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Case Study: Generative Adversarial Imitation Learning

- demonstrations from TRPO-optimized policy 
- use TRPO as a policy optimizer  
- OpenAI gym tasksGenerative Adversarial Imitation learning

• GAIL performs better but it requires interactions with the 
environment, 


• Behaviour cloning wo DAGGER simply fits expert demonstations

• DAGGER requires both interactive expert and interactions with the 

environment  



• Combining learning from demonstations with RL from sparse extrinsic rewards

• Used adersarial rewards, where state features were supplied to the discriminator

• Used state information for training the critic, while the actor(policy) was trained directly from 

pixels

• Varies appearance and dynamics to permit sim2real tranfer

• Auxiliary tasks to help train visual features for the policy net



• GAIL on state object-centric features: including actions of the robot deteriorated policy learning!




