Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

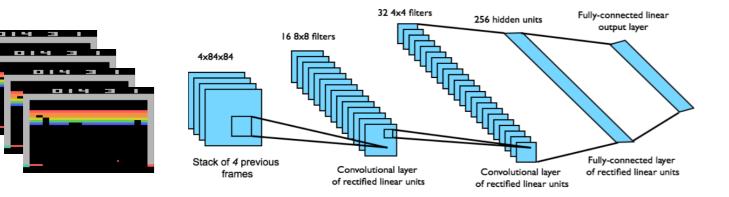
Perceptual front-ends in RL

Katerina Fragkiadaki

- Consider what previous works use as perceptual front-end
- 3D aware feature representation

Visual frame concatenation

k frame concatenation+2D convolutions



Learning to play atari games with deep reinforcement learning,2013

3D object/robot locations/poses

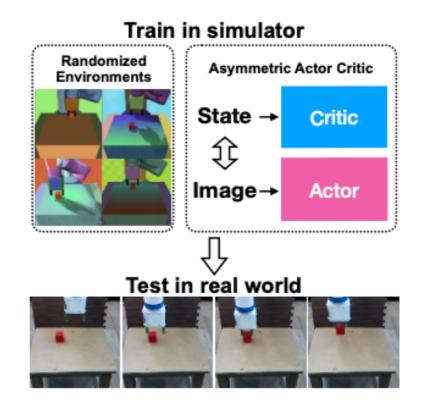
 Angles and velocities of all robot joints as well as 3D positions, rotations and velocities (linear and angular) of all objects



Hindsight experience replay

3D object/robot locations/poses

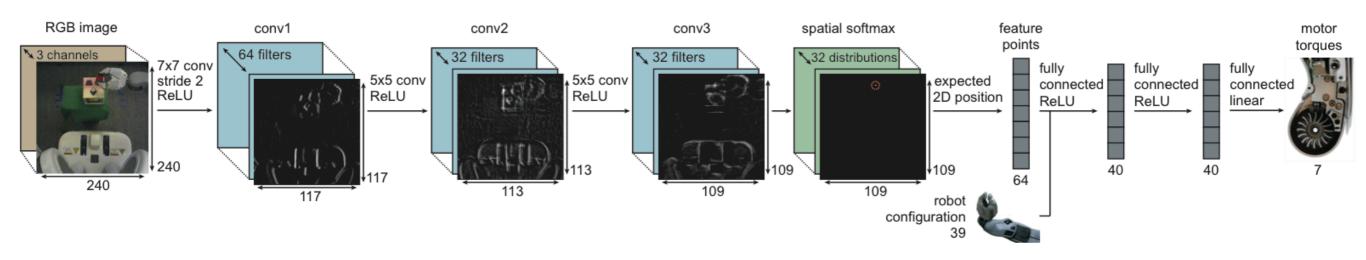
- Angles and velocities of all robot joints as well as 3D positions, rotations and velocities (linear and angular) of all objects for the critic
- Visual frame concatenation for the actor!
- Q: Why having different input for criti and actor is useful?



Asymmetric Actor Critic for Image-Based Robot Learning, Pinto et al.

Spatial Softmax

- frame concatenation as input
- tight bottleneck being the K 2D x,y coordinates of k keypoints



- For each feature map, ``flatten" it and compute a softmax
- Then take X and Y grid coordinates and compute the corresponding weighted averages
- Imposes a very tight bottleneck and avoids overfitting

End-to-end learning of visuomotor policies, Levine et al. 2015

There is something fundamentally unsatisfying about the perceptual front-ends used out there...

Internet Vision

Photos taken by people (and uploaded on the Internet)

Mobile (Embodied) Computer Vision

Photos taken by a NAO robot during a robot soccer game

Registration against known HD maps, 3D object detection, 3D motion forecasting

Image Understanding as Inverse Graphics

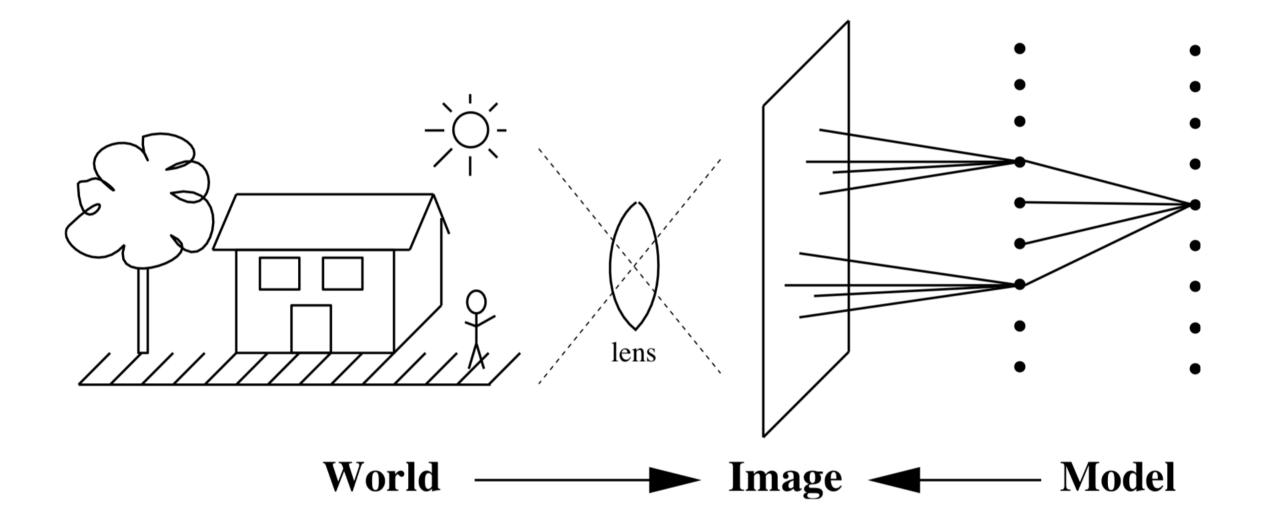
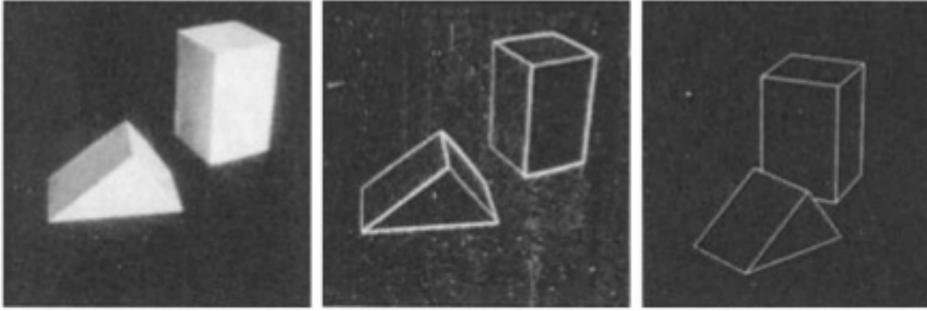


Image Understanding as Inverse Graphics

Blocks world

Larry Roberts

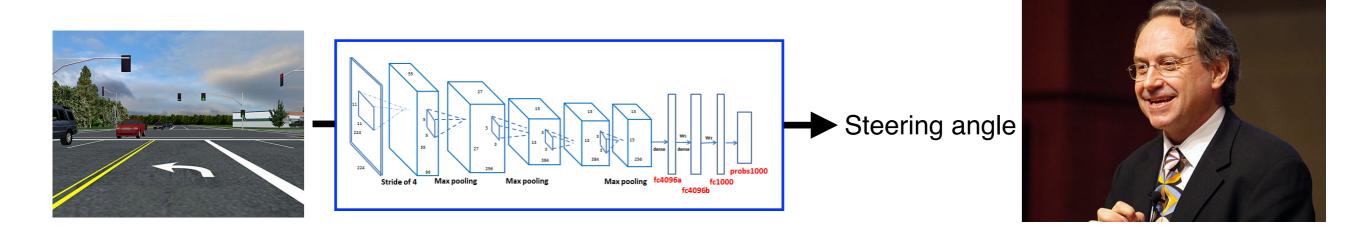


Input image

Image gradient

Computed 3D model rendered from a new viewpoint

3D Models are impossible and unecessary



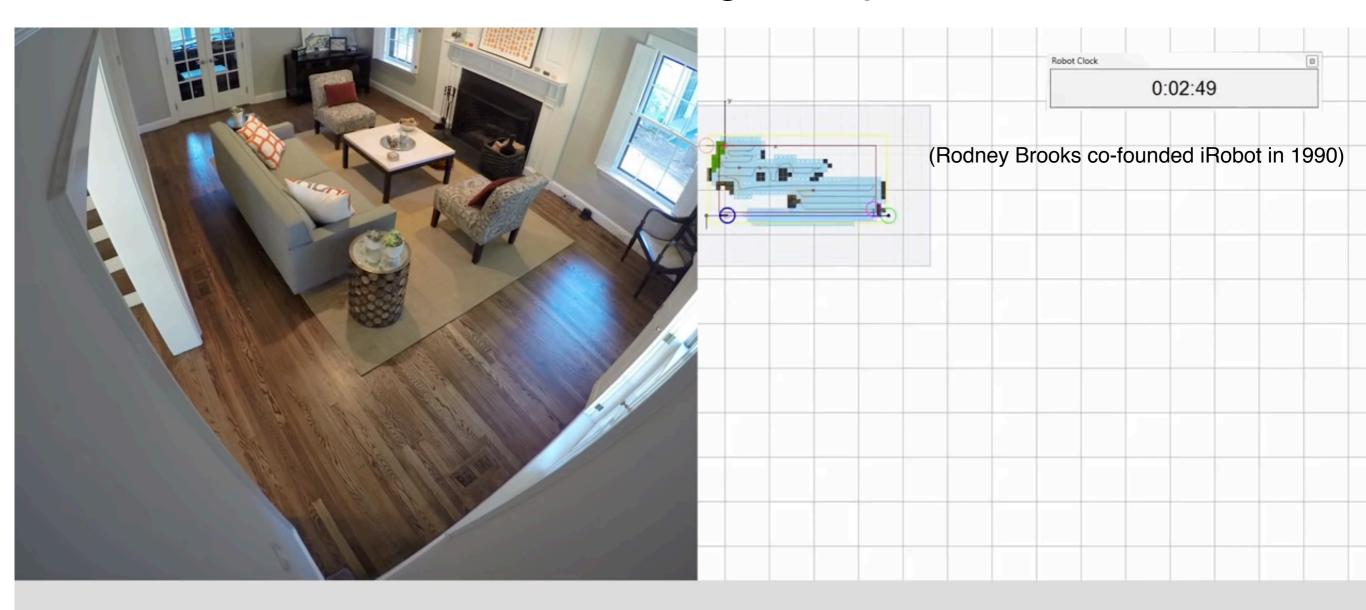
``Internal world models which are complete representations of the external environment, besides being impossible to obtain, are not at all necessary for agents to act in a competent manner."

``...(1) eventually computer vision will catch up and provide such world models—-I don't believe this based on the biological evidence presented below, or (2) complete objective models of reality are unrealistic and hence the methods of Artificial Intelligence that rely on such models are unrealistic."

"Intelligence without reason", IJCAI, Rodney Brooks (1991)

25 years later

iRobot vacuum cleaner is building a map!



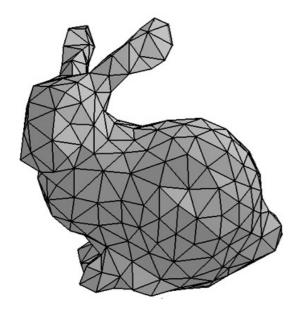
Internet and Mobile Perception have developed independently and have each made great progress

- Internet vision has trained great DeepNets for image labelling and object detection+segmentation
- Mobile computer vision has produced great SLAM (Simultaneous Localization and Mapping) methods

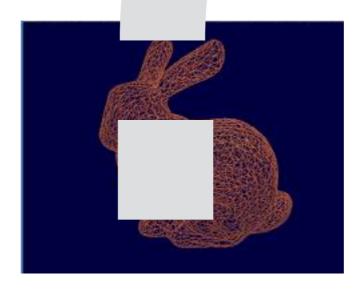
To 3D or not to 3D?

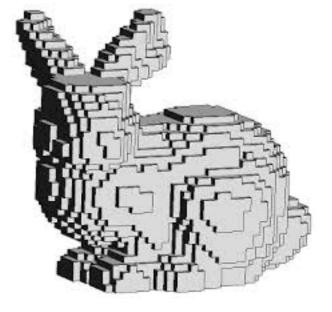
And if to 3D, what 3D representation to use?

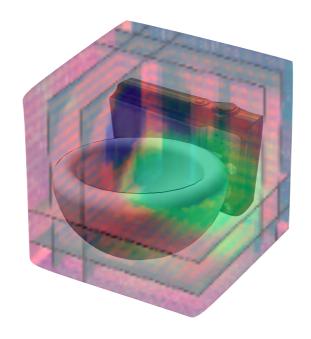
3d mesh



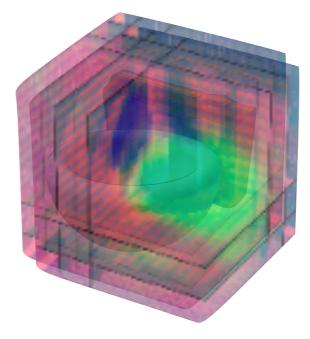
3d po



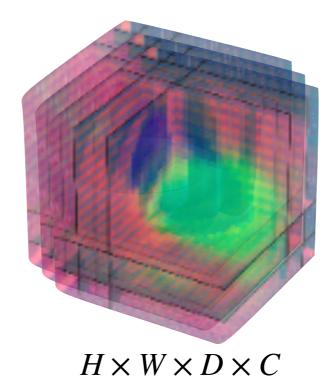


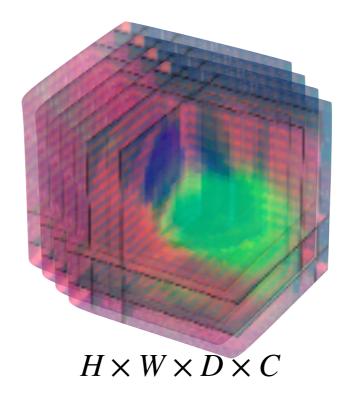


 $H \times W \times D \times C$



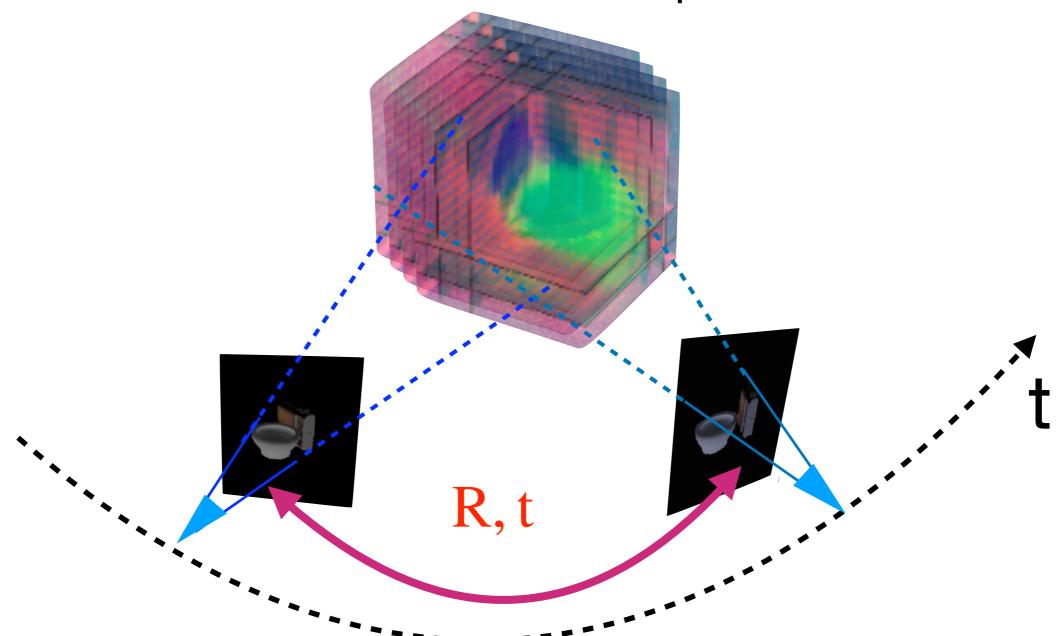
 $H \times W \times D \times C$



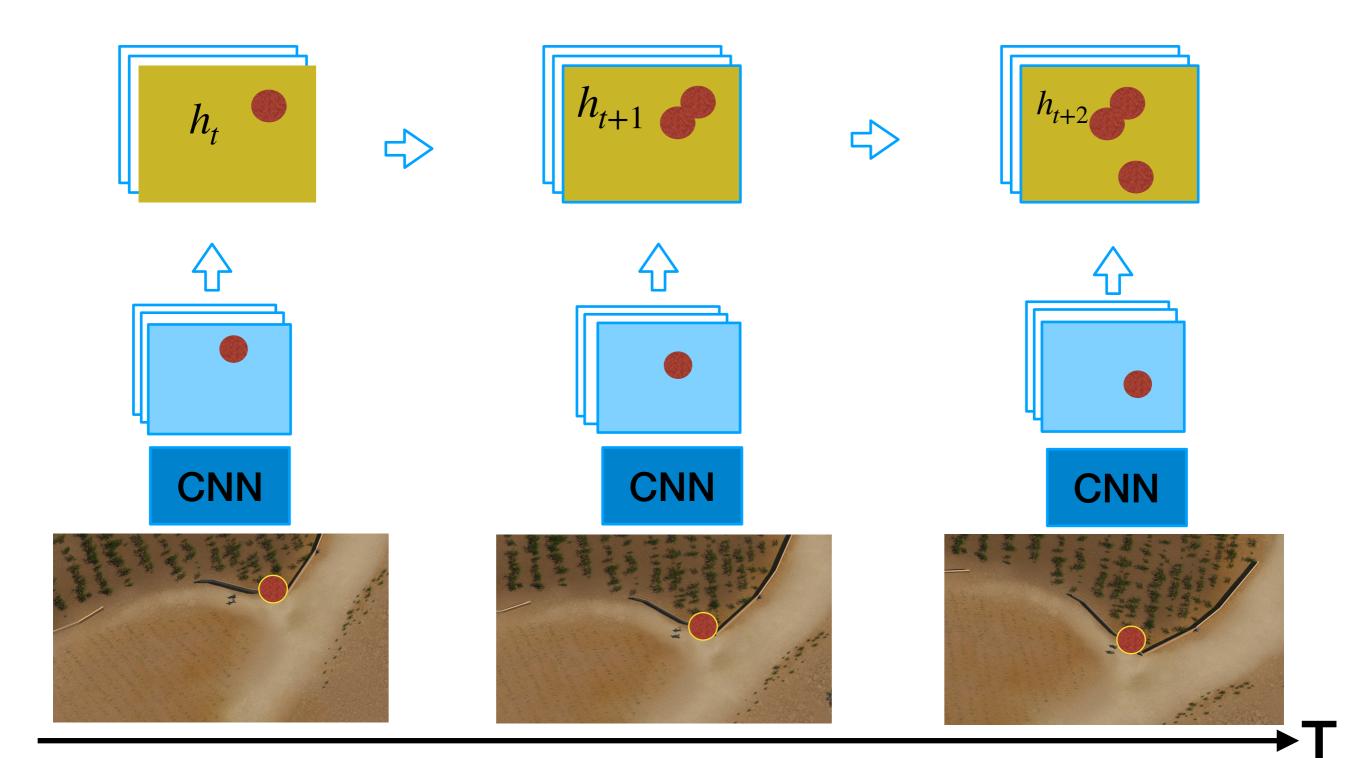


Geometry-Aware Recurrent Networks

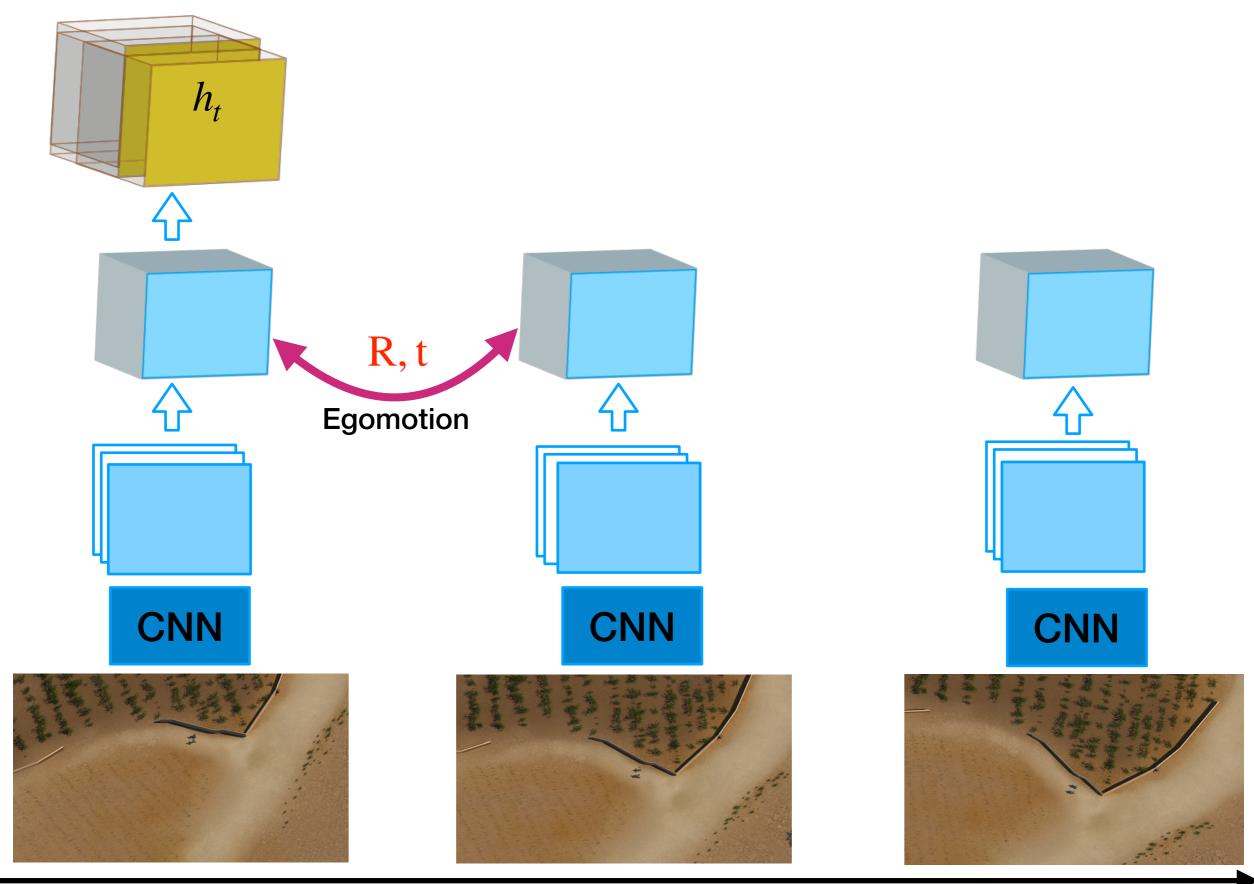
 Hidden state: A 4D deep feature tensor, akin to a 3D (feature as opposed to pointcloud) map of the scene
Egomotion-stabilized hidden state updates



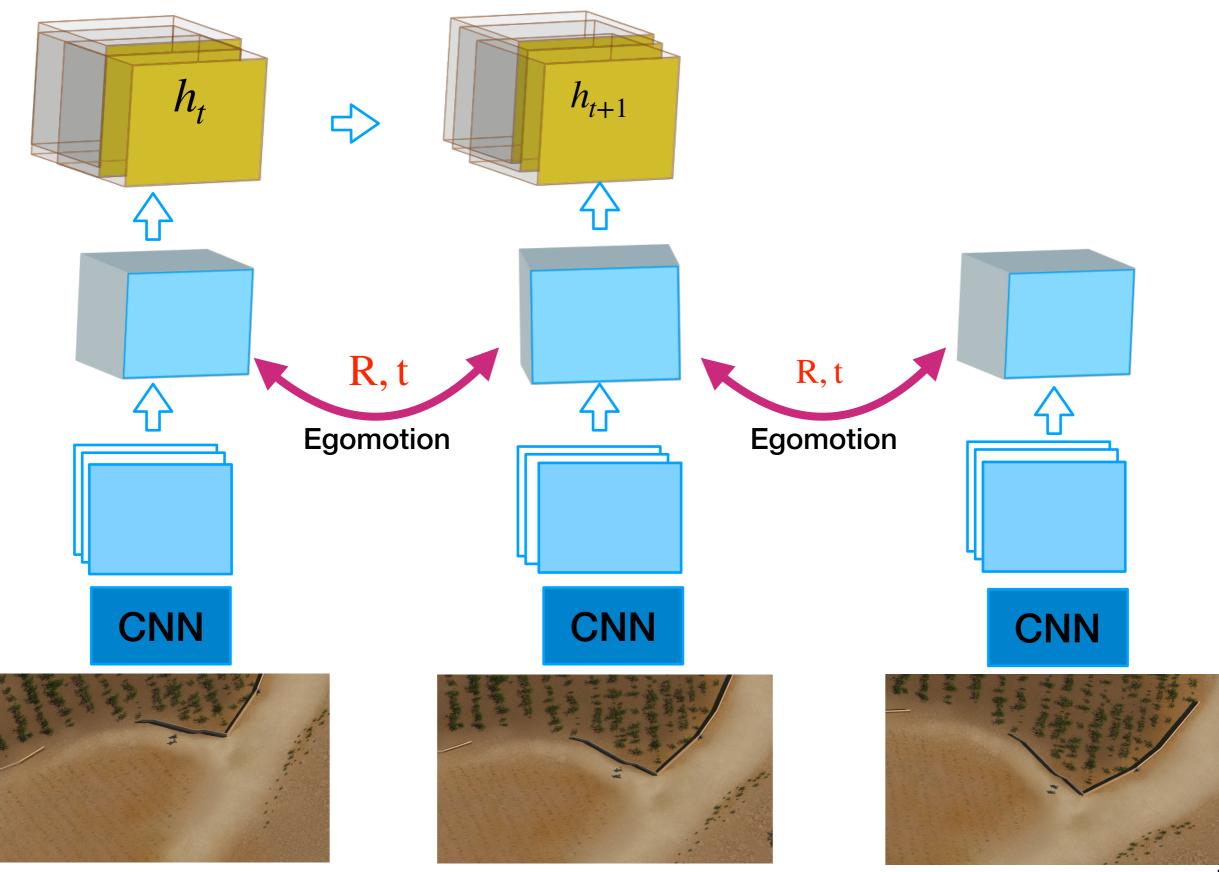
2D Recurrent networks, LSTMs, CONVLSTMs,..



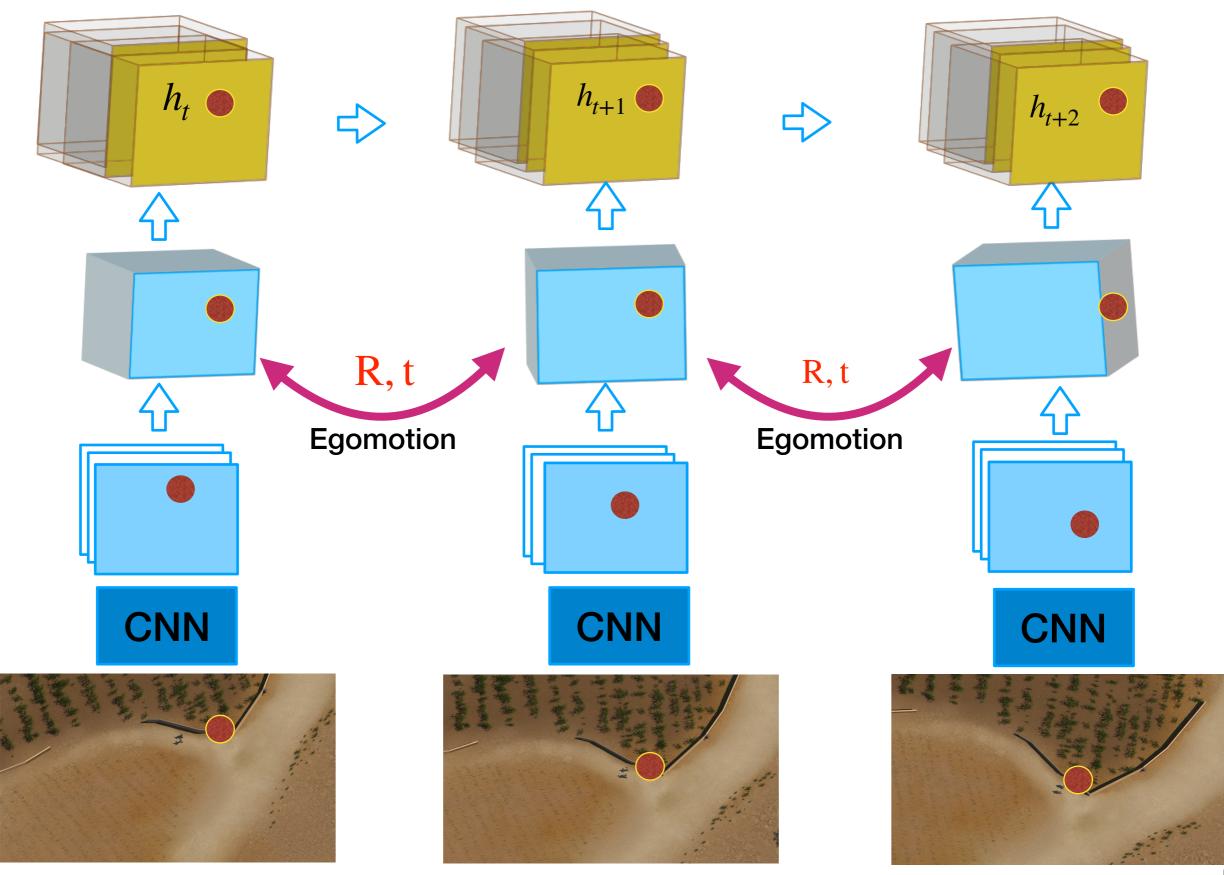
4D latent state



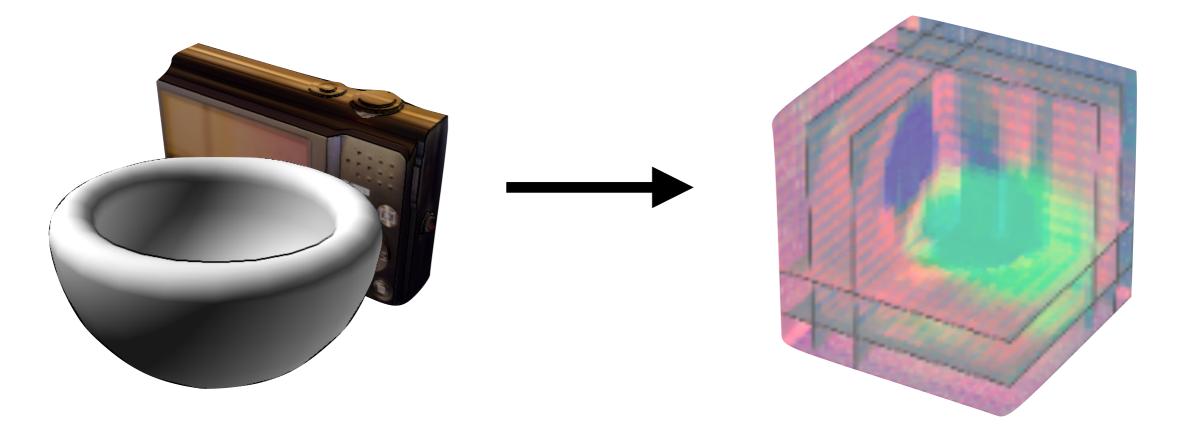
4D latent state



4D latent state

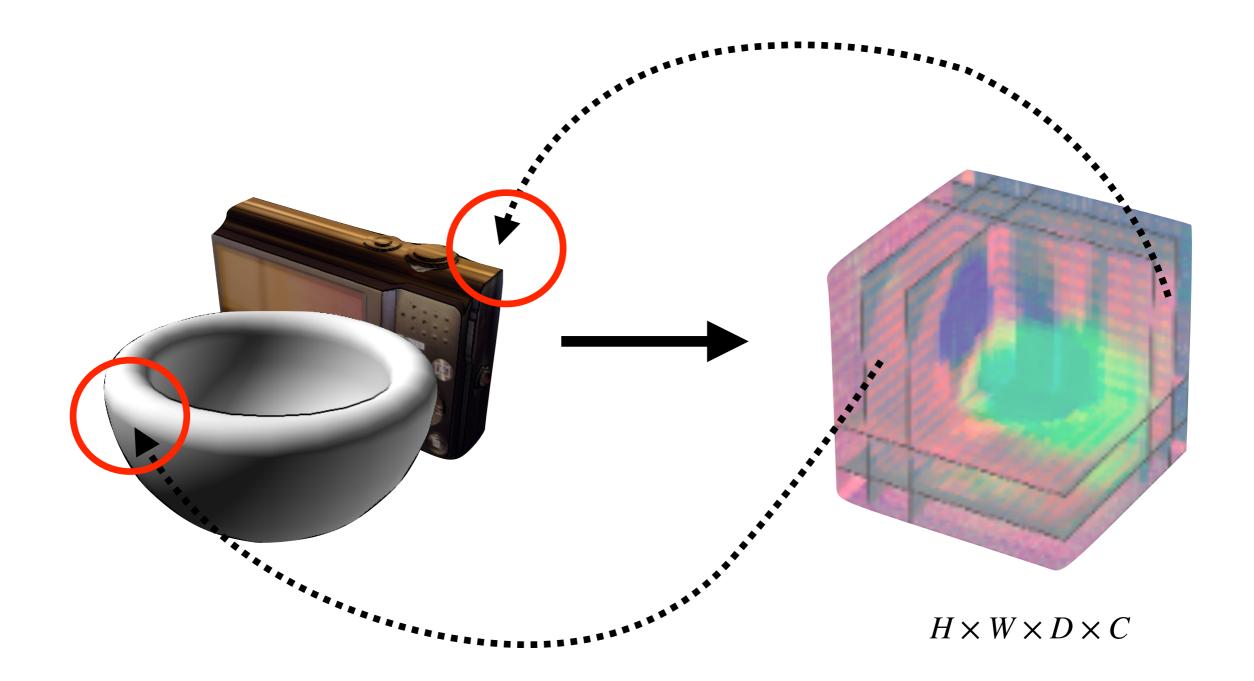


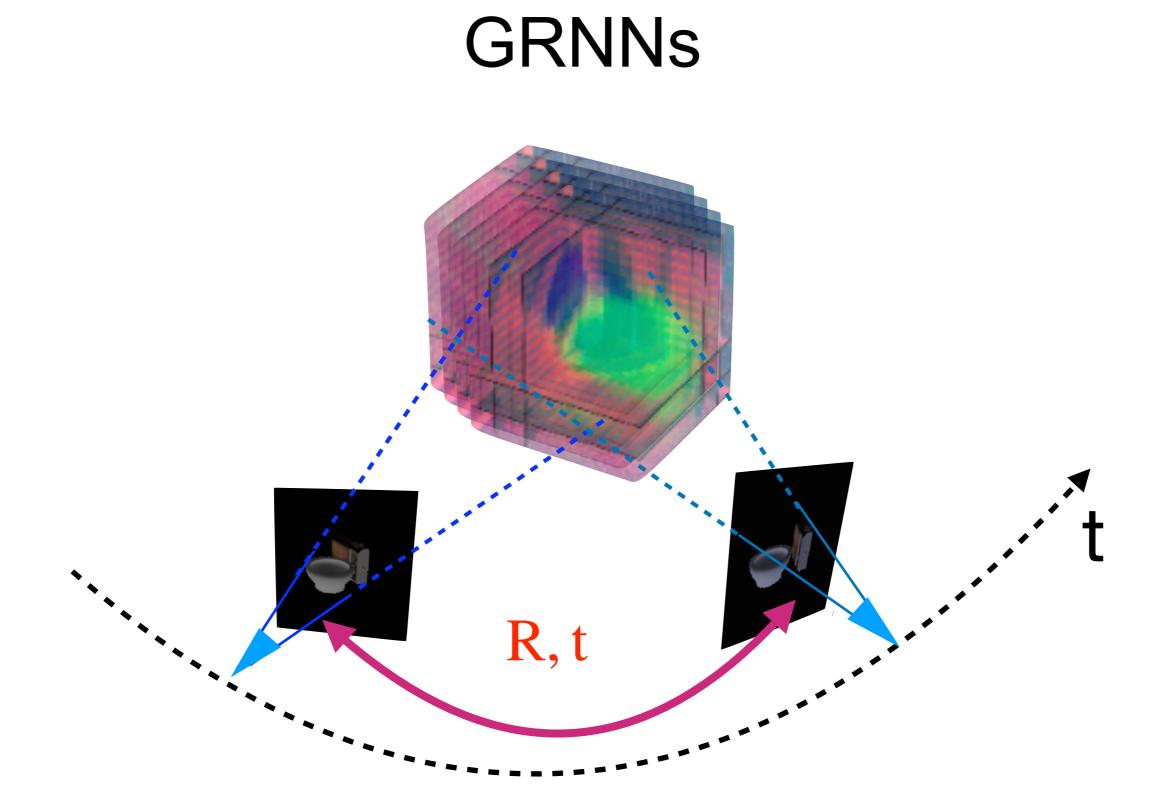
Geometry-Aware Recurrent Networks (GRNNs)



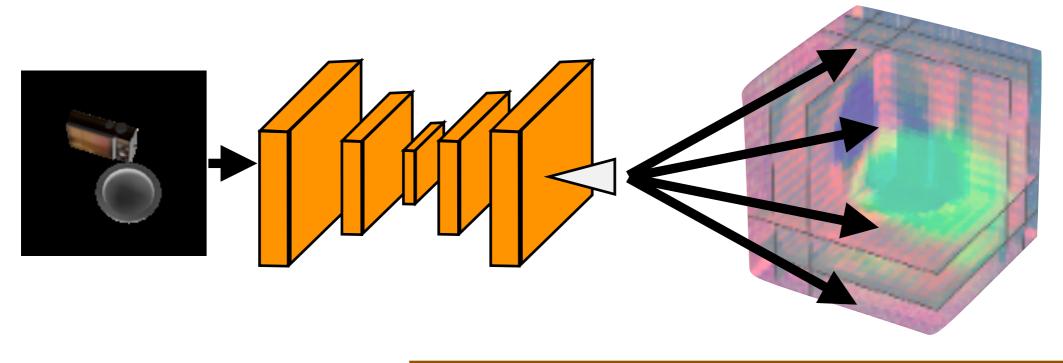
 $H \times W \times D \times C$

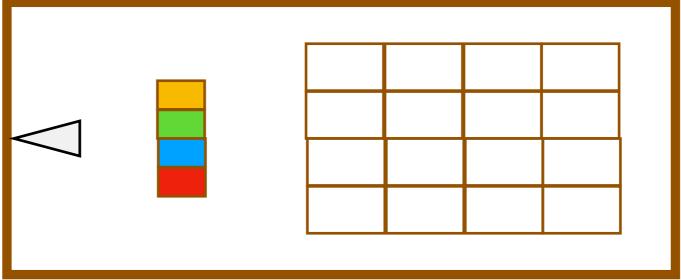
Geometry-Aware Recurrent Networks (GRNNs)

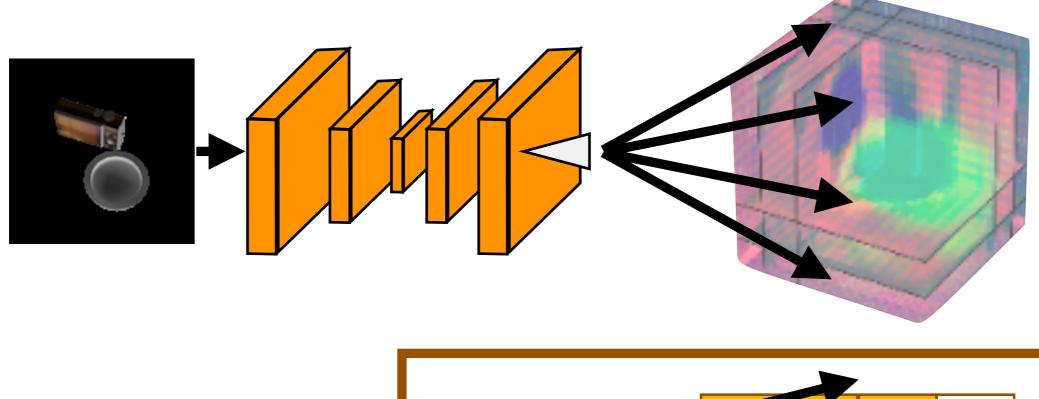


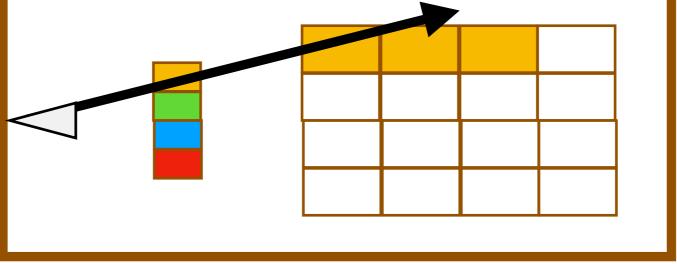


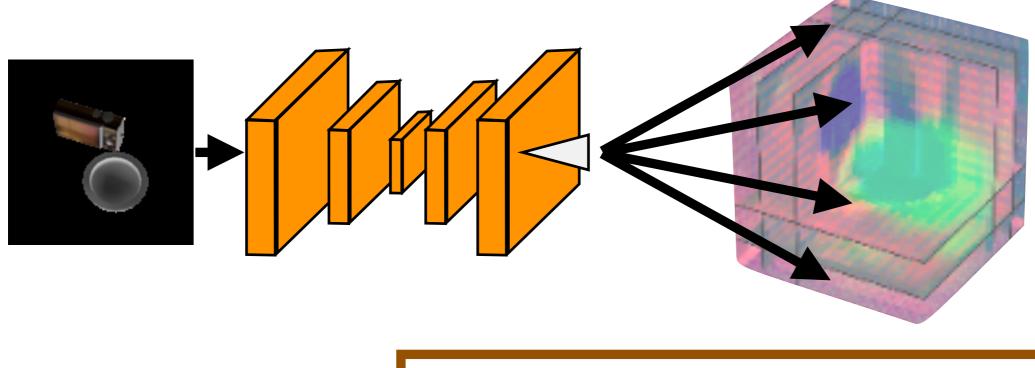
- A set of differentiable neural modules to learn to go from 2D to 3D and back
- A lot of SLAM ideas into the neural modules

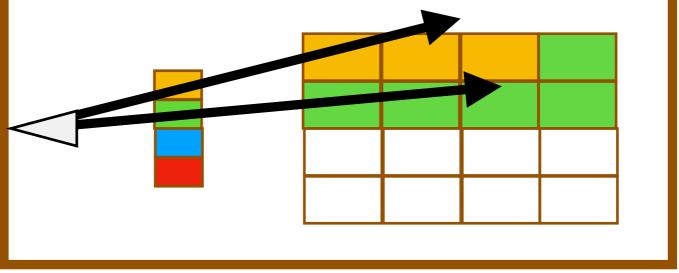


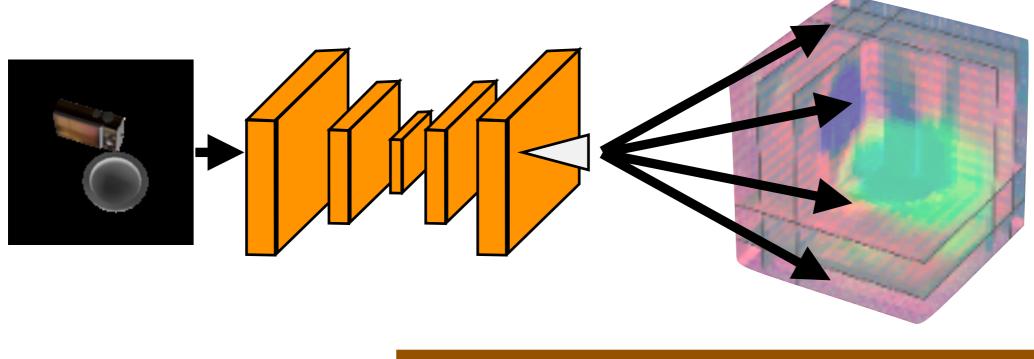


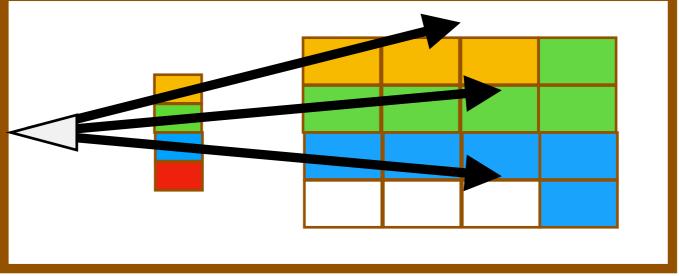


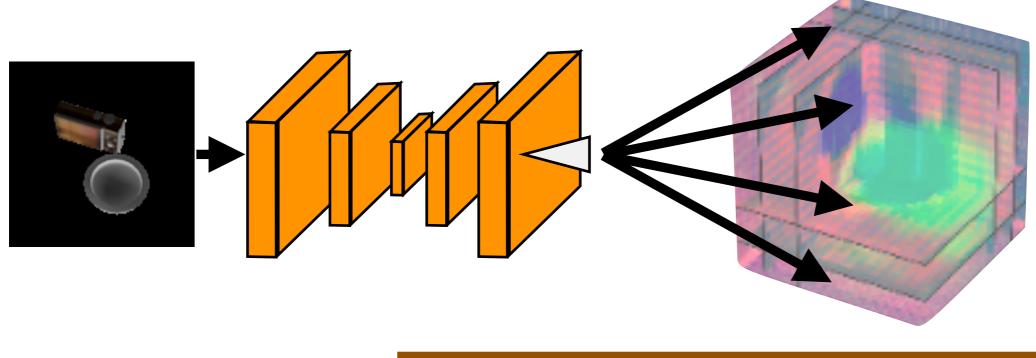


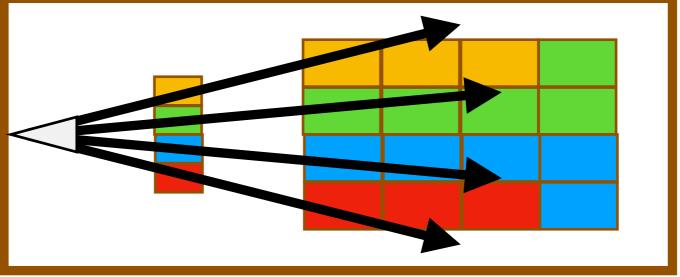






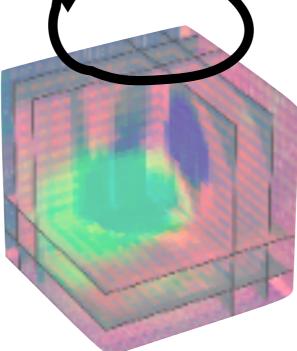




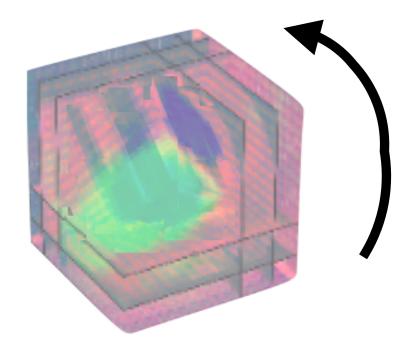


Rotation

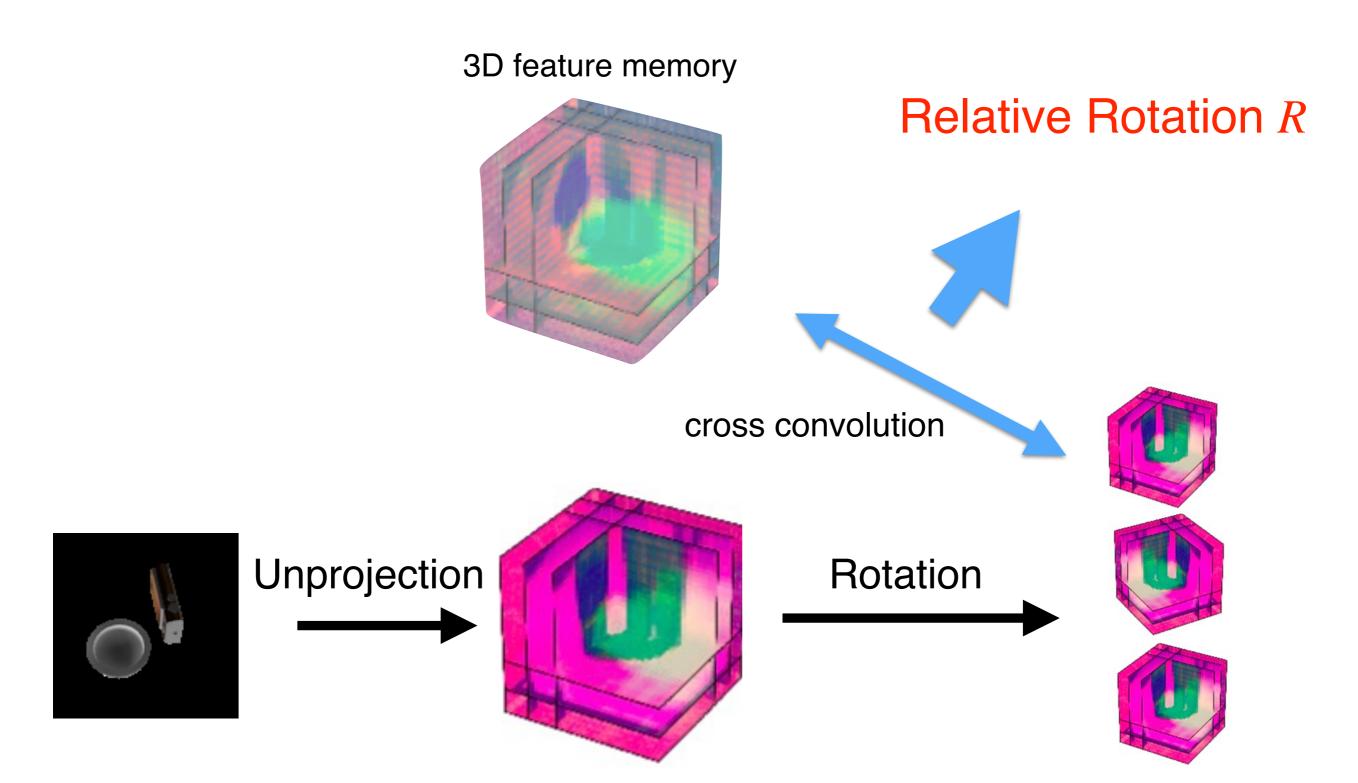
azimuth



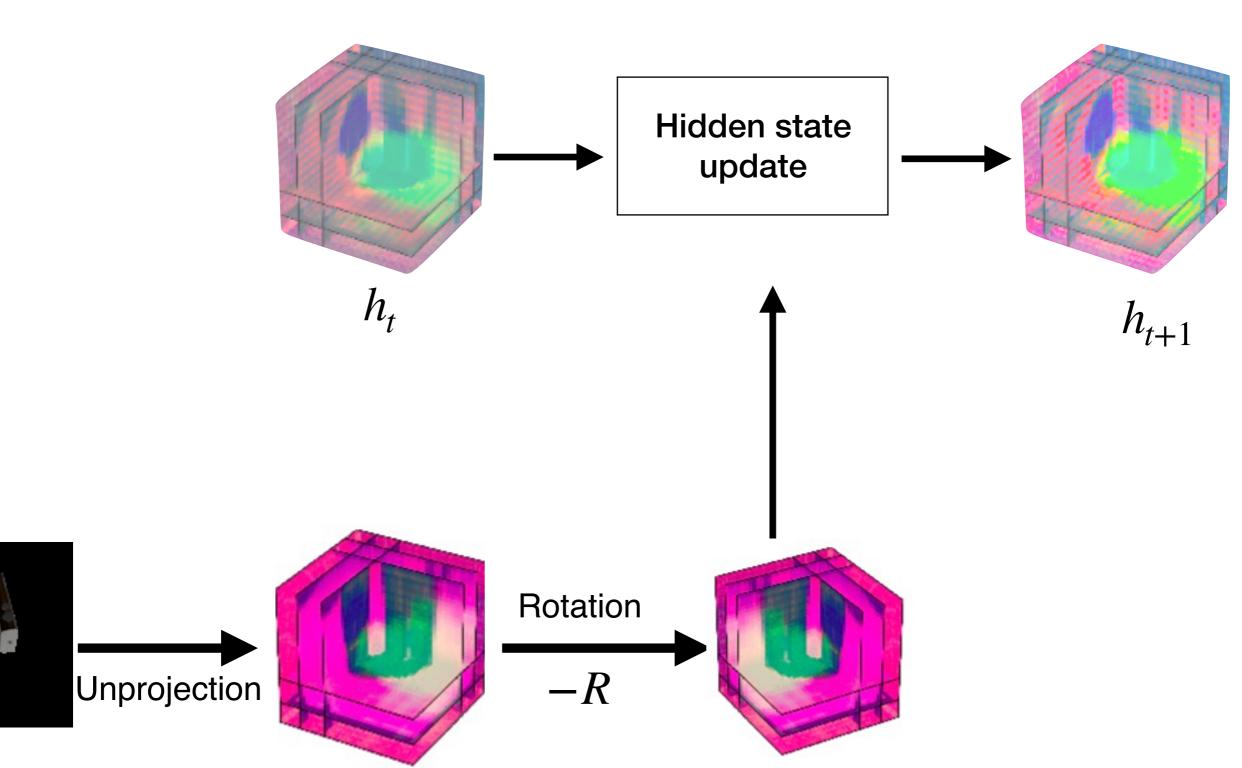
elevation

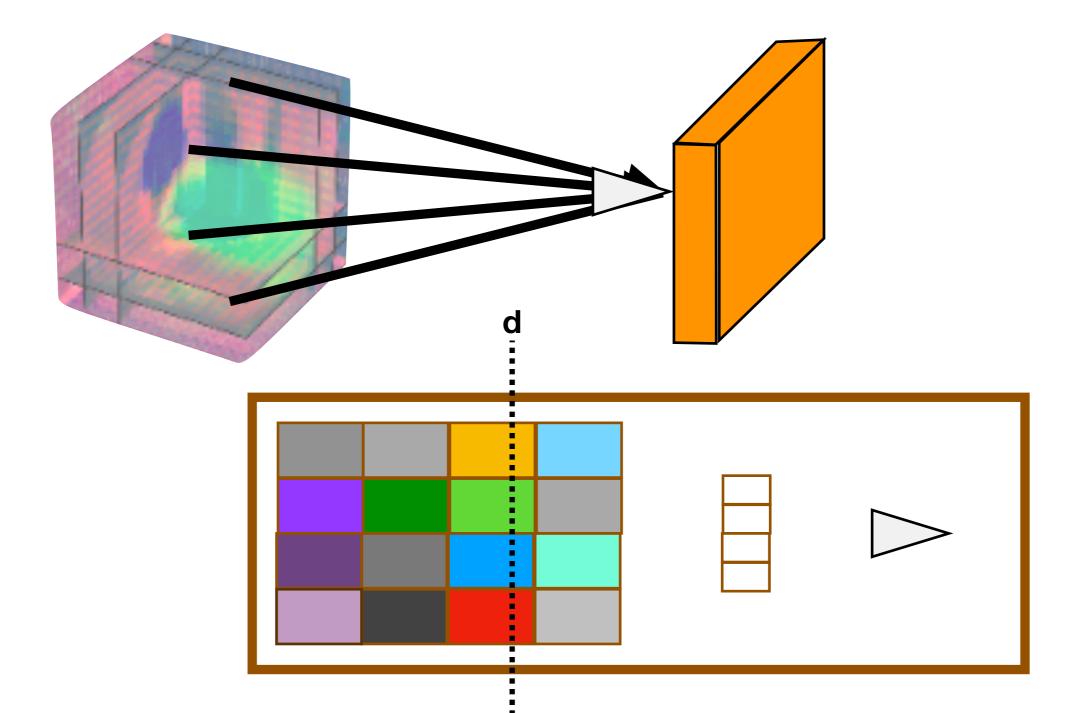


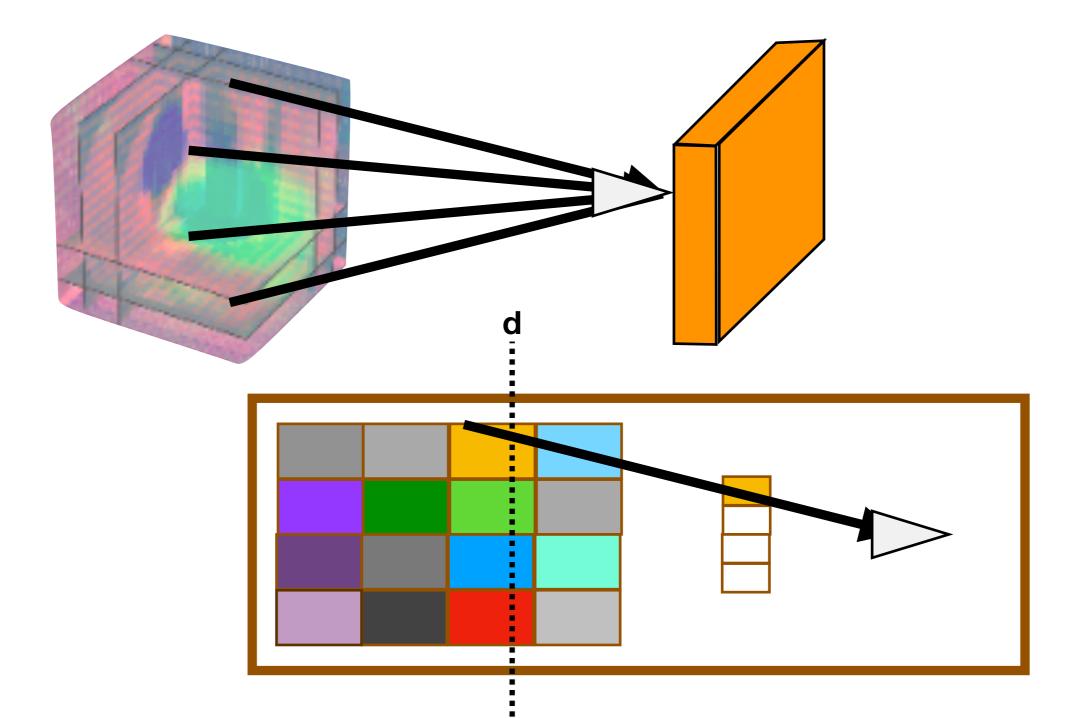
Egomotion-stabilized memory update

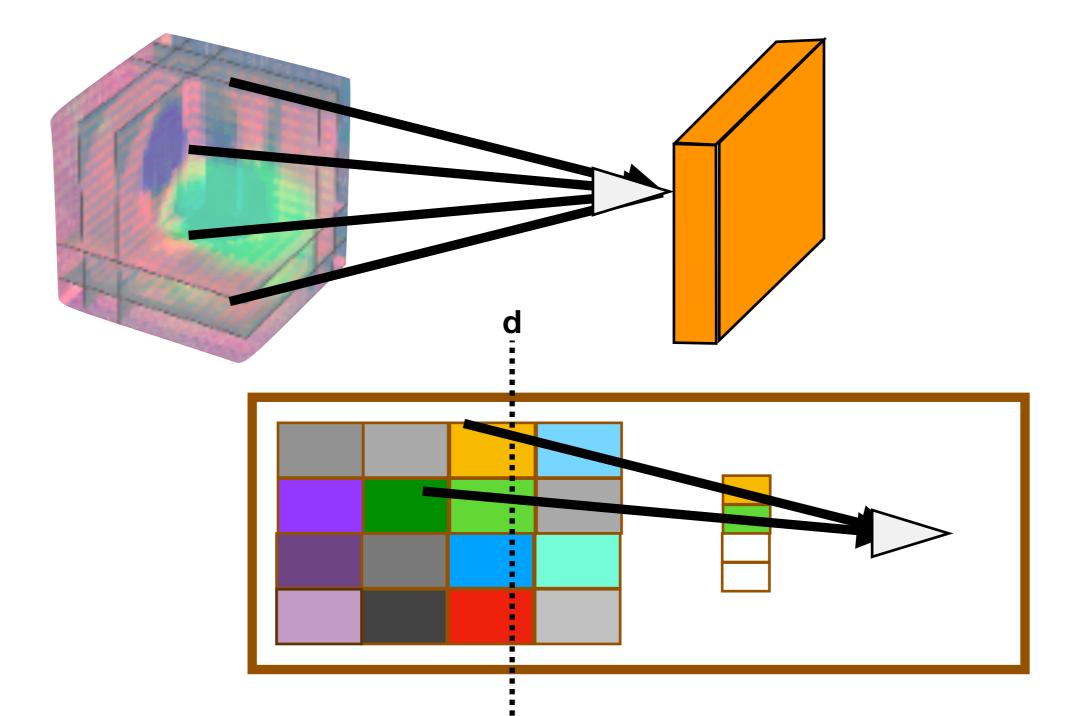


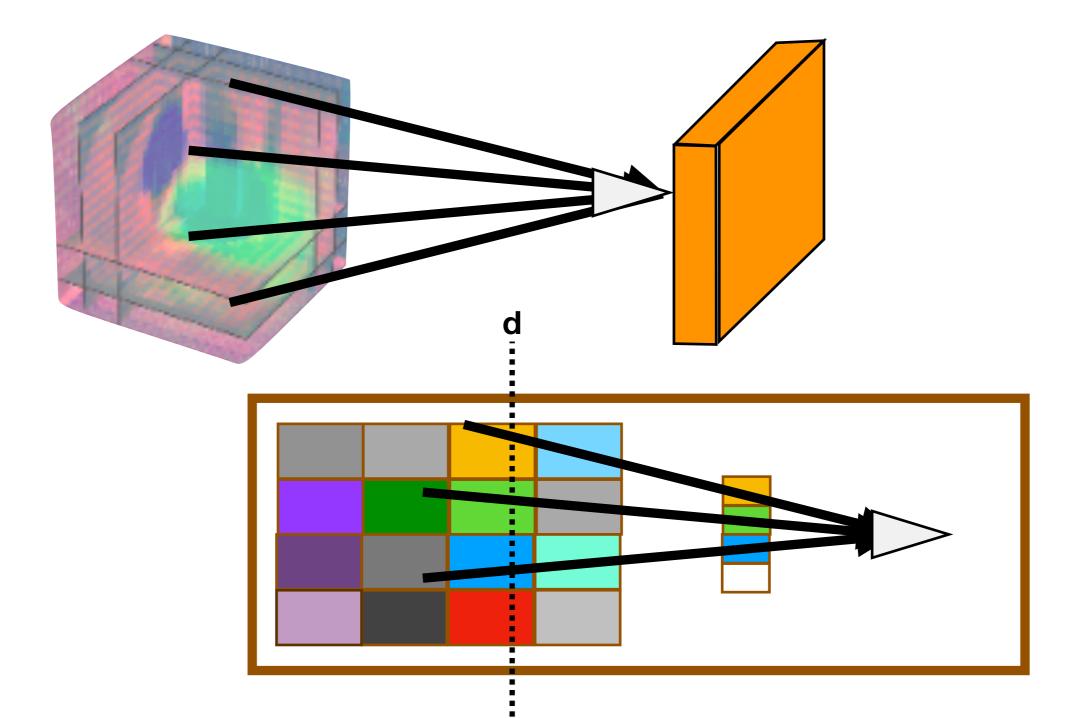
Egomotion-stabilized memory update





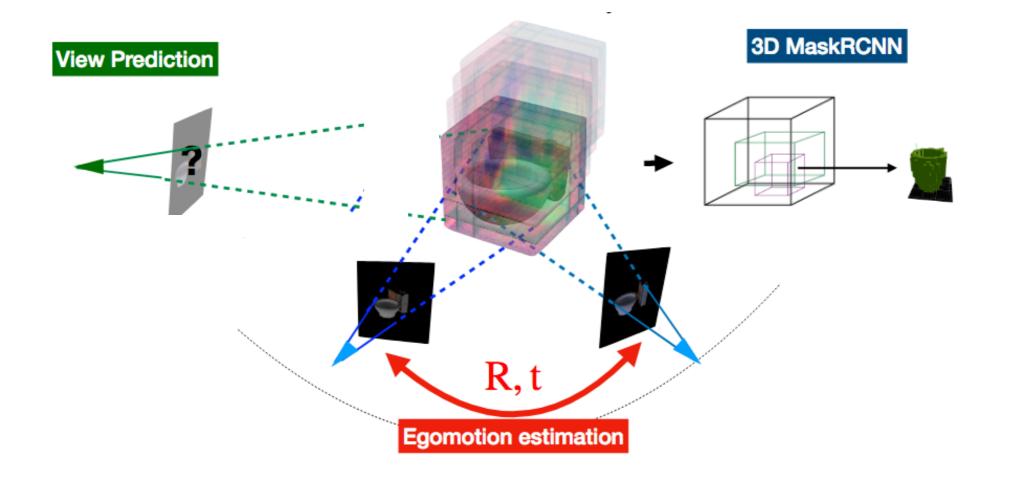






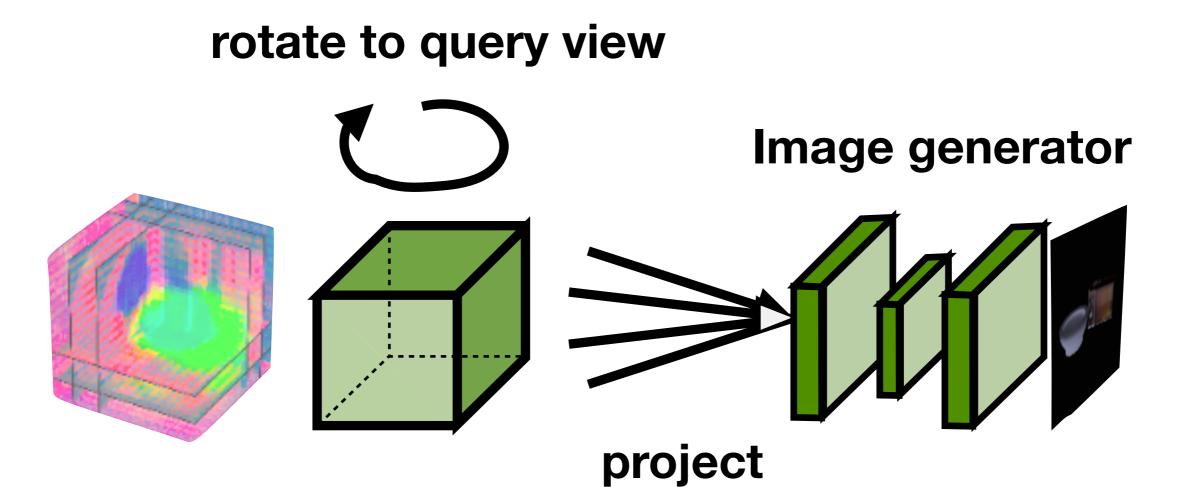


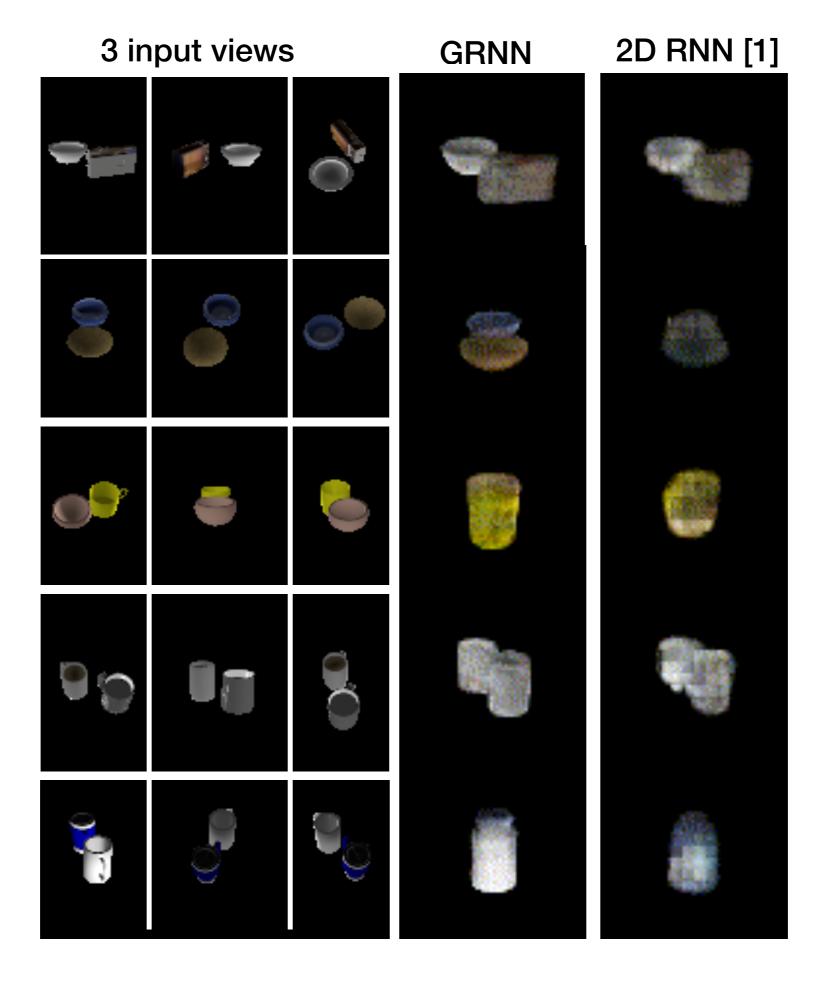
Training GRNNs



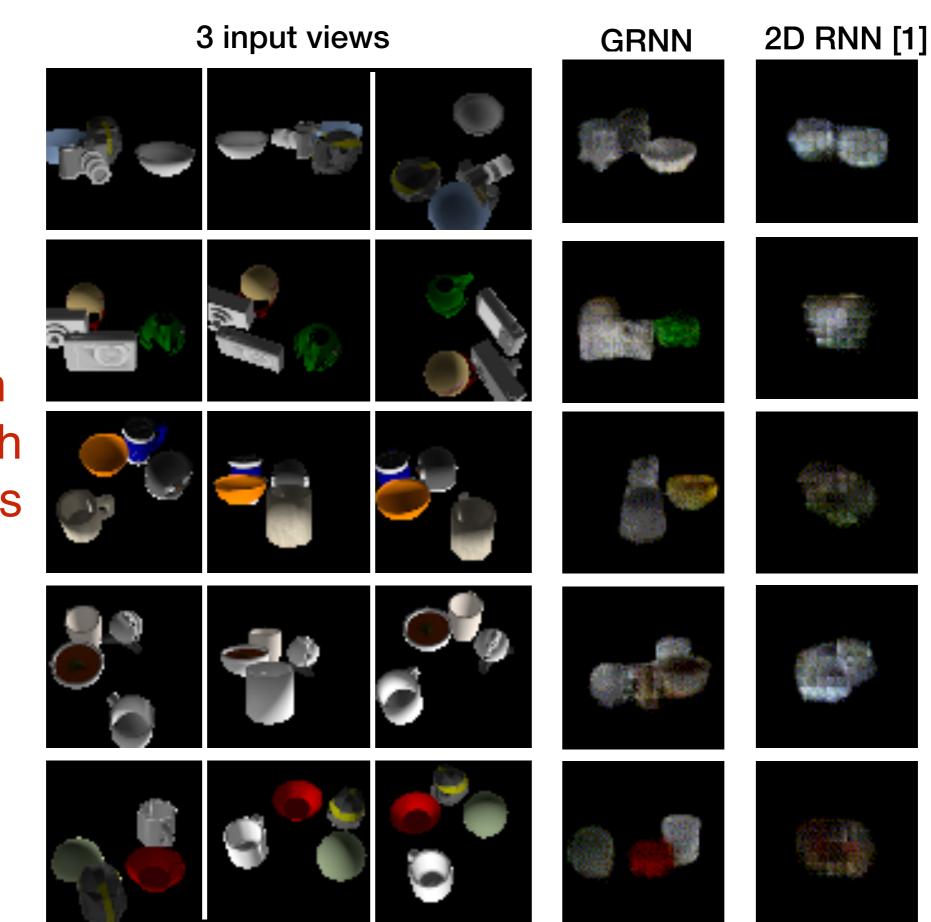
 Self-supervised via predicting images the agent will see under novel viewpoints
Supervised for 3D object detection

Image generation





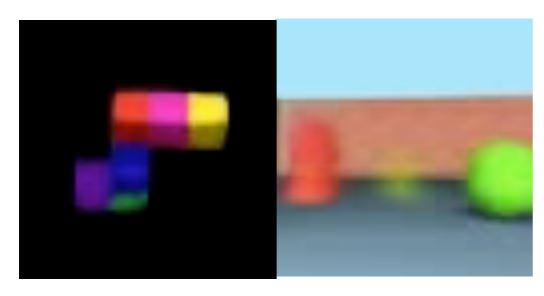
[1] Neural scene representation and rendering DeepMind, Science, 2018



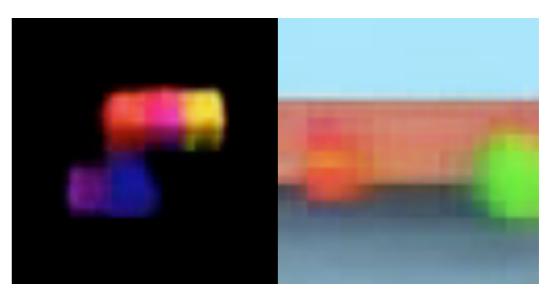
[1] Neural scene representation and rendering DeepMind, Science, 2018

Testing on scenes with more objets than train time

View prediction

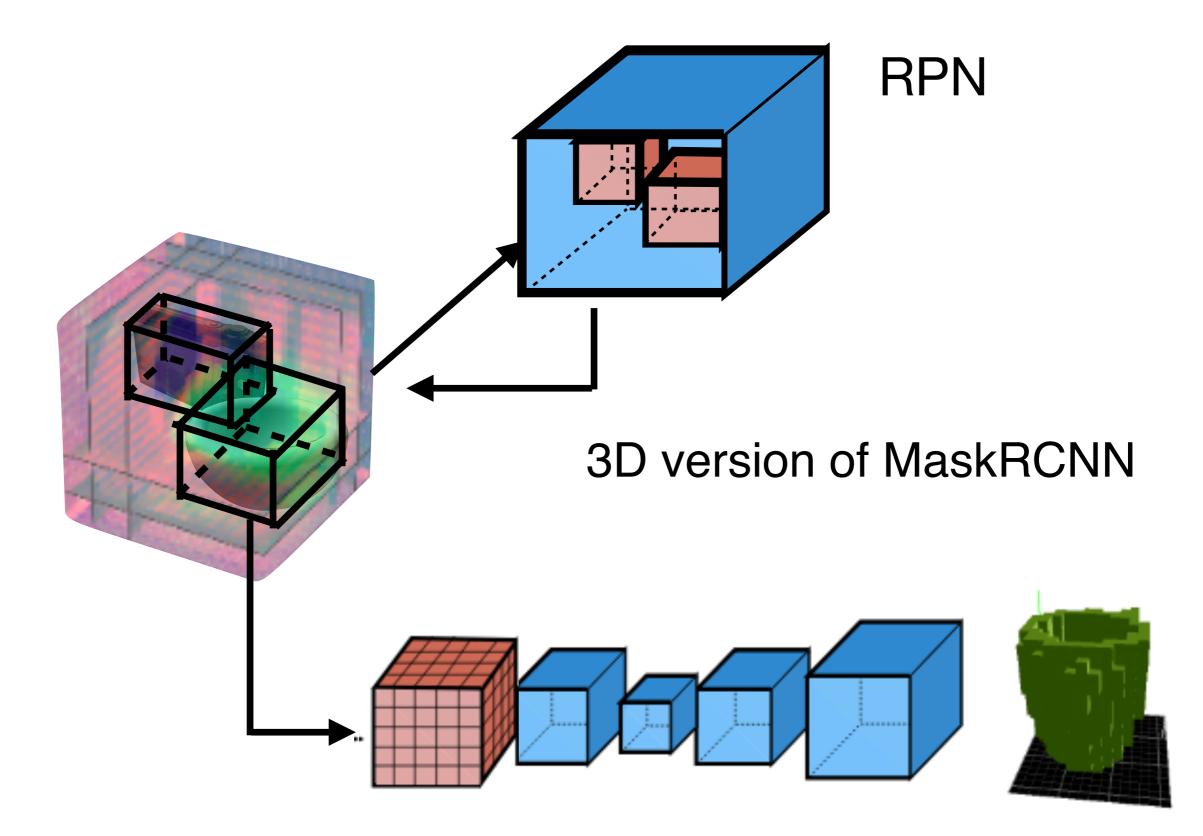


geometry-aware RNN



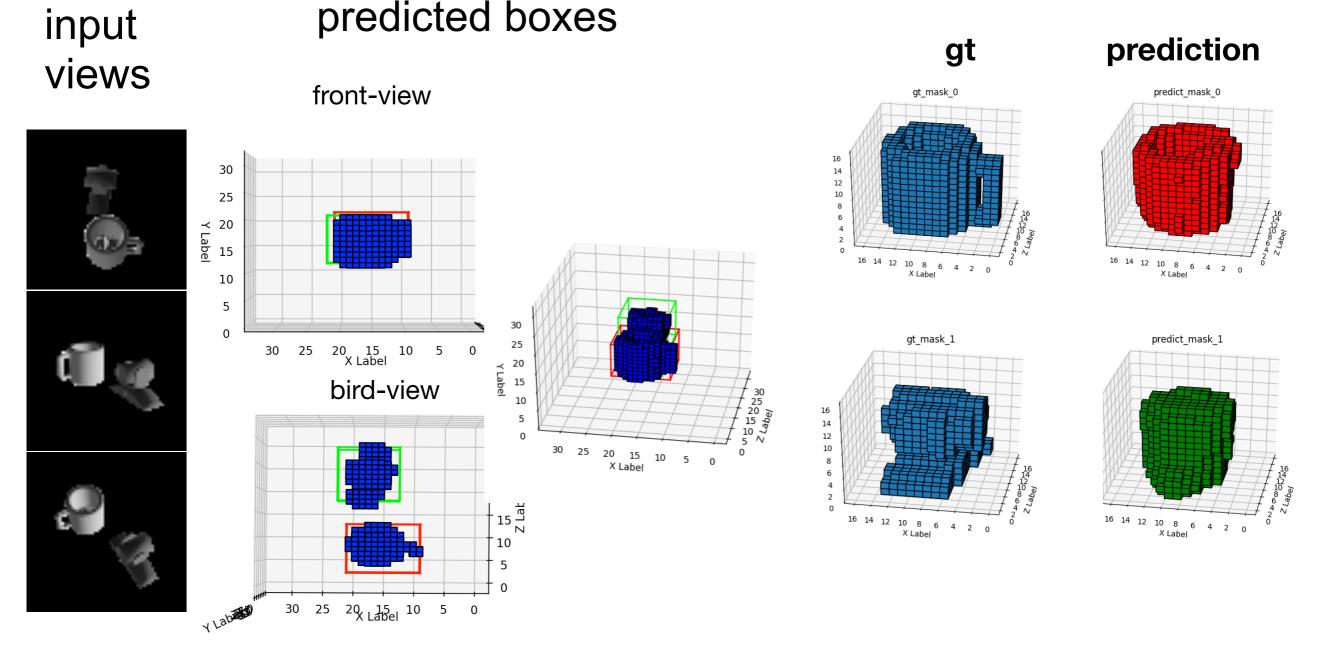
2D RNN [1]

3D Object Detection



3D object detection

predicted segmentations



Objects detections learn to perist in time, they do not switch on and off from frame to frame

A dream

Use the latent hidden map of GRNNs to learn models of Physics of the world, and build agents with persistent models of the world scene, not hostages of 2d projections