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Inverse Reinforcement Learning

Q: Why inferring the reward is useful as opposed to learning a policy directly?

A: Because it can generalize better, e.g., if the dynamics of the environment
change, you can use the reward to learn a policy that can handle those new
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A simple example

- Roads have unknown costs linear in features
- Paths (trajectories) have unknown costs, sum of road (state) costs
- Experts (taxi-drivers) demonstrate Pittsburgh traveling behavior
- How can we learn to navigate Pitts like a taxi (or uber) driver?
(IR
o= of,. orf,

- Assumption: cost is independent of the goal state, so it only depends on road
features, e.qg., traffic width tolls etc.



State features

Features f can be:

# Bridges crossed




A good guess: Match expected features

Features f can be:

# Bridges crossed

Feature matching:

== ? # Miles of interstate f
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“If a driver uses136.3 miles of interstate and
crosses 12 bridges in a month’s worth of trips,
the model should also use 136.3 miles of
interstate and 12 bridges in expectation for
those same start-destination pairs.”
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A good guess: Match expected features

Features f can be:

# Bridges crossed

Feature matching:
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a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\St7at)




Ambiguity

Features f can be:

However, many distributions over paths can
match feature counts, and some will be very
different from observed behavior. The model
could produce a policy that avoid the
interstate and bridges for all routes except
one, which drives in circles on the interstate
for 136 miles and crosses 12 bridges.

# Bridges crossed

Feature matching:

a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\3t7at)




Principle of Maximum Entropy

The Principle of Maximum Entropy is based on the premise that when
estimating the probability distribution, you should select that distribution which
leaves you the largest remaining uncertainty (i.e., the maximum entropy)
consistent with your constraints. That way you have not introduced any
additional assumptions or biases into your calculations

H) = — ) p(x)log(p(x))
=1



Resolve Ambiguity by Maximum entropy

Features f can be: _ _ o
Let’s pick the policy that satisfies feature

| count constraints without over-committing!
# Bridges crossed

max. — Z p(t)log p(r)
p

Feature matching constraint:

~/

= ‘ # Miles of interstate Z p(Ti)fq =7

a policy induces a distribution over trajectories
p(T) = p(s1) Hp(at\st)P(3t+1\St7at)




From features to costs

Constraint: Match the cost of expert trajectories in expectation:

r® 1 ~
p(T)c(T)dr = D ) =¢
J | Ddemo ‘

TiEDdemo



Maximum Entropy Inverse Optimal Control

Optimization problem:

min. —H(p(@) = ), p(Dlogp(®

S.1. " p(7)cy(t) = ¢, J p(r) =1

T



From maximum entropy to exponential family

min. —H(p(@) = ), p(nlogp(x)
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From maximum entropy to exponential family

Maximizing the entropy of the distribution over paths subject to the cost
constraints from observed data implies that we maximize the likelihood of the
observed data under the maximum entropy (exponential family) distribution

(Jaynes 1957)

e —cost(z|0)

z e —cost(z'|0)
T/

p(t]|0) =

- Strong preference for low cost trajectories
- Equal cost trajectories are equally probable
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Maximum Likelihood
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Maximum Likelihood
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Maximum Likelihood
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Trajectory cost Is additive over states
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State densities:
how much time
the policy
spends on each
state



State densities can be computed analytically in small MDPs
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State densities can be computed analytically in small MDPs

with known dynamics

uls) : time indexed state density
initialize u,(s)Vs
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State densities can be computed analytically in small MDPs

with known dynamics

uls) : time indexed state density
initialize u,(s)Vs
fort=1,...,T

Hip1(8) = Z Zﬂt(s Iaals)ps|s',a)

Unknown policy

p(s|6) = ZM;(S)



Maximum entropy Inverse RL

Known dynamics, small state space, linear costs

0. Initialize 0, gather demonstrations Dgemo

1. Solve for optimal policy m(a|s) w.r.t. ¢y with value iteration
2. Solve for state visitation frequencies p(s|@)

3. Compute gradient V,Z(0) = Z f, — |Ddem0|2 p(s|Of,

SED jemo

4. Update 6 with one gradient step using Vv,Z(6)



Maximum entropy Inverse RL
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Maximum entropy Inverse RL

Demonstrated Behavior Model Behavior (Expectation)

Bridges Bridges
crossed: 3 crossed: 4.7

Miles of
Interstate:
20.7

_Miles of
Interstate:




Limitations of the formulation so tar

 (Cost was assumed linear over features f
 Dynamics were assumed known
« State space was small

Next:
- General function approximations for the cost: Finn et al. 2016

- Unknown Dynamics -> sample based approximations for the
partition function Z: Boularias et al. 2011, Kalakrishnan et al. 2013,
Finn et al. 2016



Recall our maximum likelihood formulation

We need to minimize the following loss function:

1
ZL(0) = D cy(T) +log(Z)

| Ddemo ‘ 7.€Dy...



Sample approximation for Z

This is a huge integral, intractable to compute. / = Je_ce(f)df
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Sample approximation for Z

This is a huge integral, intractable to compute. / = Je_ce(f)df
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What g shall we choose”

1 ng 1 e_CH(TJ') dCe
V,Z£(0) = —(7;) — lo T:
’ ©) | Dgemo | T_E;d do (Tl) © | Dsamp | T€§ Q(T]) do ( ])

j samp

- When is this approximation good?
- When q samples highly probable trajectories..
- Whn q is the expert policy!!

- Finding a good q is a chicken and egg problem. If | knew the expert
reward function, then | ‘d compute the expert policy with RL, and | ‘d
sample highly likely trajectories with that policy!

- Solution: iteration. Refine the sampling distribution g (policy) over time.
(Finn at al. 2016)



MaxEntIRL with Adaptive Importance Sampling

1. Initialize g, either from a random policy or using behavior cloning
on expert demonstations.



MaxEntIRL with Adaptive Importance Sampling

1. Initialize g, either from a random policy or using behavior cloning
on expert demonstations.

2. foriterationk=1...1

3. Generate samples D,, ;. from g,(7)

traj

4. Append samples: D «~D. UD

samp samp traj °

5. Use D, t0O update cost ¢, using gradient descent.

samp

6. Update ¢g,(7) using any RL methoa

1 e~% dc
Vo ZL(0) = > L2y 1o Z (
| demo | 1€D,., . do samp | S Q(T ) d@



MaxEntIRL with Adaptive Importance Sampling

~ )
initial human
distribution q,, demonstrations

N RN

generate policy
samples from g

k Update cost using

samples & demos

!‘! update g w.r.t. cost

policy g cost C

The discriminator adjusts the cost so that it makes the expert trajectories be better
distinguished from the generated ones

Diagram from Chelsea Finn



Generative models-density estimation

- So far we have been seeking to learn a generative model of trajectories,
by computing trajectory densities:

* We were trying to estimate a model that given a trajectory will be able to
output the probability of this trajectory: expert trajectories should be
highly probable, and non-expert less probable

* This is in general what we do when we maximize likelihood of the data

* The problem is that probabilities need to sum to one

¢ —cost(z|0)

Z e —cost(7'|0)
T,

p(t]|0) =



Generative models-sample generation

- Recently, new classes of generative models has been proposed that
instead of computing densities, they learn directly a sampler, without
necessarily having an explicit density.

- Have we done this for trajectories?
» Well, we used behavior cloning, but assumed access to a teacher



Generative models-sample generation

« Have training examples X ~ Pgata(X)

« Want a model that can draw samples: X ~ Pmodel (X)

 Where puodel = Pdata
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X ~ pdata(x )




The sampling can be both conditional and unconditional

male -> female

Adversarial Inverse Graphics Networks, Tung et al. 2017



The sampling can be both conditional and unconditional

anybody -> Tom Cruise

; ll \ 4,.\
.

Adversarial Inverse Graphics Networks, Tung et al. 2017



GGenerative Adversarial Networks

* General strategy: Do not write a formula for p(x), just learn to sample
directly. No intractable summations!

A game between two players:
1. Discriminator D
2. Generator G
» D tries to discriminate between:
« A sample from the data distribution
* And a sample from the generator G

« @ tries to “trick” D by generating samples that are had for D to
distinguish from data



Generative Adversarial Networks
D tries to make

D(G(z)) near 0,

(z tries to make

D(G(z)) near 1 )

x sampled from
model
Differentlable
function G

Input noise z )

D(x) tries to be
near 1

Differentiable
function D

f

x sampled from
data

N N N
‘NN (N

(Goodfellow 2016)



GGenerative Adversarial Networks

(G tries to make

D(G(z)) near 1

. D tries to make
A D(x) tries to be D(G(z)) near 0, A
, \ near 1 ) .

M leferentlable M
OO0 +«+ OO function D
== ’
-

- | ( z sampled from ) - sample T
4 Qj data mOdel
Differentiable =
function G M:

f

0.2
0.15 .y
A1
0.1 i
A';rl'luv,
0.05 R
AR S Input noise z
5 s T o
2
0 ) 0
2
4 _4

That’s our sampler! The rest are only used at training time.




GGenerative Adversarial Networks

D(x): the probability that x came from the real data rather than the generator

min max E
G D

prdam(x)[log D(x)] + "ZNpZ(Z)[IOg(l_D(G(Z)))]

X ~ Pdata

z ~ N0 Generator

Discriminator



Generative Adversarial Networks-in practise

D(x): the probability that x came from the real data rather than the generator

max £y, ollog DI + .. o [log(1-D(G(2)))]

max E__, [log(D(G(2)))]

Discriminator




Comparison of generator losses

J(G)
|
ot
I

—0 — Minimax -
_15 | — Non-saturating heuristic i
——  Maximum likelihood cost
—20 | |
0.0 0.2 0.4 0.6 0.8 1.0

D(G(2))

(Goodfellow 2014) (Goion 2010



Generative Adversarial Networks

Probability Density

q" = argmin, Dk (p||q) ¢" = argmin, Dk1.(q|/p)
—  p(x) ,\\ —  p(x)
* > *
- g (z) = I - ¢ (z)
- \
)
a
e
'.'E
®
e
o
A

Maximum likelihood Reverse KL

(Goodfellow et al 2016)

(Goodfellow 2016)



Generative Adversarial Imitation learning

Find a policy 7Tg that makes it impossible for a discriminator network to
distinguish between trajectory chunks visited by the expert and by the learner’s
application of g

mén max V(D,G) = Egppyu(eylog D(x)| +E,p_ () log(1 — D(G(2)))]

D outputs 1 if state comes from the demo policy

min mgx *'3; [log D(S)] + K, [log(l — D(S))]
o

Reward for the policy optimization is how well | matched the demo
trajectory distribution, else, how well | confused the discriminator:
logD(s)



Generative Adversarial Imitation Learning

Jonathan Ho Stefano Ermon
Stanford University Stanford University
hoj@cs.stanford.edu ermon@cs.stanford.edu
NIPS 2016

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories 7 ~ g, initial policy and discriminator parameters 6, w
2: for:=0,1,2,... do

3:  Sample trajectories 7; ~ my,

4 Update the discriminator parameters from w; to w;1 with the gradient

Er, (Vo log(Du(s, a))] + Er,[Vo log(1 — Dy (s, a))] (17)
5:  Take a policy step from 6; to 6, , using the TRPO rule with cost function log(D,,, ,, (s, a)).
Specifically, take a KL-constrained natural gradient step with

Iﬁ)ﬂ. (Vg log mg(als)Q(s,a)] — AVgH (my),

. 18
where Q(3,a) = E,, [log(D,, ., (s,a))|so = 5,a9 = @l o

6: end for




Generative Adversarial Imitation learning
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