Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

MCTS with neural nets

CMU 10-403

Katerina Fragkiadaki

AlphaGo: Learning-guided MCTS

- Value neural net to evaluate board positions
- Policy neural net to select moves
- Combine those networks with MCTS

Policy network Value network

P, (@ |s) vy (S))
<o

ks

00

AlphaGo: Learning-guided search

1. Train two action policies by mimicking expert moves (standard supervised learning):
1. one cheap (rollout) policy
2. one expensive policy (SL)

Rollout policy SL policy network

Human expert positions

AlphaGo: Learning-guided search

1. Train two action policies by mimicking expert moves (standard supervised learning):
1. one cheap (rollout) policy
2. one expensive policy (SL)

2. Train a new policy (SLRL) with RL and self-play initialized from SL policy.

3. Train a value network that predicts the winner of games played by SLRL against itself, as
well as against previous version of policies

Rollout policy SL policy network RL policy network Value network

P, v,

%IOM]BU [eINBN

eleq

Human expert positions Self-play positions

Supervised learning of policy networks

Objective: predicting expert moves
- Input: state (board configuration
- Qutput: a probability distribution over all legal moves a.

Policy network

SL policy network

- 13-layer policy network trained Do G@ls)
from 30 million positions.

- accuracy of 57.0% using all input L. e
features, 55.7% using only raw 1
board position and move history .

 (compared to the state-of-the-art
from other research groups of
44.4%).

RL with REINFORCE

Objective: improve over SL policy
- Weight initialization from SL network
- Input: Sampled states during self-play
- Qutput: a probability distribution over all legal moves a.

Rewards are provided only at the end of
the game, +1 for winning, -1 for loosing

Policy network

pp (als)

dlog p (a;|s;)
Apox gl?, (| Ss .
dp

The RL policy won more than 80% of
games against the SL policy.

Supervised learning of value networks

Objective: Estimating a value function v,(s) that predicts the outcome from
position (board configuration) s

- Input: Sampled states during self-play, 30 million distinct positions, each
sampled from a separate game, played by the SLRL policy against itself
(and against previous policy versions).

» Output: the board score (a scalar value)

Value network

v (8)
<>

Trained by regression on state-outcome pairs (s, z) to
minimize the mean squared error between the predicted
value v(s), and the corresponding outcome z.

MCTS + Policy/ Value networks

Selection: selecting actions within the expanded tree

T&l Tree policy
max Q + ulP) a; = argmax,(Q(s¢, a) + u(st, a))
+- ®
148 o P(s, a)
‘ u(s, @) o 1+ N(s,a)

+:¢

1

a, - action selected at time step ¢ from board s,

Q(s, a) - average reward collected so far from MC simulations

P(s, a) - prior expert probability of playing moving a provided by the SL policy
N(s, a) - number of times we have visited parent node

u acts as a bonus value
o Decays with repeated visits

MCTS + Policy/ Value networks

EXpansion: when reaching a leaf, play the action with highest score from &,

|
R e =

.*_.H

1
= B -
= ®

()
N\

e When leaf node is reached, it has a chance to be expanded
e Processed once by (p,) and stored as prior probs P(s, a)
e Pick child node with highest prior prob

MCTS + Policy/ Value networks

Simulation/Evaluation: use the rollout policy to reach to the end of the game

—— —p—

.?_}_

|

- From the selected leaf node, run
multiple simulations in parallel
using the rollout policy

- Evaluate the leaf node as:

|
|
]
!
s

%_

(38) 8¢
' — - —e -
"\ “?'—F V(sp) = (1 = Avg(sp) + Azg,

p1 i e v, -value from value function of board position s,

e z - Reward from P,

i A
o Played until terminal step
r e A - mixing parameter
 Empirical

MCTS + Policy/ Value networks

Backup: update visitation counts and recorded rewards for the chosen path
inside the tree:

M’\

i

% 4 n
j.ﬁ Bt Q(s,a) = N(i, 2 Zl 1(s, a, ")V(Sz[,)

N(s,a) = Z (s, a,1)
2=1

]
) ((88) (38

e Extraindex i is to denote the " simulation, n total simulations
e Update visit count and mean reward of simulations passing through node

e Once search completes:
Algorithm chooses the most visited move from the root position

AlphaGoZero: Lookahead search during training!

-+ So far, MCTS was used for online planning to select moves at test time
- AlphaGoZero uses it during training instead.

AlphaGoZero: Lookahead search during training!

- Given any policy, a MCTS guided by this policy will produce
an improved policy (policy improvement operator)

- Train a policy to iteratively mimic such improved policy
- Policy iteration

MCTS as policy improvement operator

+ Supervised training so that the
policy network mimics the

output of the MCTS
(supervision from a planner!)

- Train so that the value network
matches the outcome (same as
in AlphaGo)

MCTS: no MC rollouts till termination

e
Q+U Aa}% U jﬁpl/ \/;m Q /' \Q TANWAN VAW AN
on=f, (1 °4 , e
o ())

MCTS: using always value net evaluations of leaf nodes, no rollouts!

Architectures

o

- - Resnets help
- Jointly training the
policy and value
- function using the
: same main feature
extractor helps
5000
4000 -
o 3000 - .
5 - MCTS improves the
& 2000- basic policy
1000
0

Architectures

a. 4500 b. os3 C. 020 -
= o - Resnets help
- Jointly training the
£ 050 = .
policy and value
g 3500 S 049 ° .)
: function using the
same main feature
o o 0.16
£ o extractor helps
2500 0.45 0.15
dual-res sep‘-res dual-conv sep-conv duaIT-res sep;res dual-conv sep-éonv dual-res sep‘-res dual-lconv sep-‘conv
Separate policy/value nets Joint policy/value nets
Policy network Value network
Pojy (@ |S) vy (8)
<&
e
b, ‘

Elo rating

== Reinforcement learning
== Supervised learning
=== AlphaGo Lee

T T T T T

20 30 40 50 60
Training time (h)

T

70

Prediction accuracy
on professional moves (%)

707

60

501

40 1

301

20

10 1

- Reinforcement learning
== Supervised learning

T

10

T

20

T T

30 40
Training time (h)

T

50

T

60

T

70

MSE of professional

game outcomes

0.35

0.30 1

0.25

0.20 -

0.15 -

== Reinforcement learning
== Supervised learning

0

10

20

30 40 50
Training time (h)

60

70

Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Evolutionary Methods

CMU 10-403

Katerina Fragkiadaki

Part of the slides borrowed by Xi Chen, Pieter Abbeel, John Schulman

Policy Optimization and RL

T
mglx U0) = meax E [R(T) | 7y, ,uO(sO)] = meax E g R(s,) | my, po(s)

action
a,

max. U(0) =L [R(T)We» /40(50)]

0
Policy Optimization Dynamic Programming
Policy Gradlents Policy lteration Value lteration
Q-Learning

Actor-Critic
Methods

max. U(0) =L [R(T)We» /40(50)]

0
Policy Optimization Dynamic Programming
Evolutionary methods \ / \
Policy Gradlents Policy lteration Value lteration
Q-Learning

Actor-Critic
Methods

Black-box Policy Optimization

max. U(0) =L [R(T)We» /40(50)]

0

0 o . > E |[R(D))

No information regarding the structure of the state space or the reward

Evolutionary methods

max. U(f) =L [R(T)|7fea /40(50)]

General algorithm:
Initialize a population of parameter vectors (genotypes)

1. Make random perturbations (mutations) to each parameter

vector
2. Evaluate the perturbed parameter vector (fitness)

3. Keep the perturbed vector if the result improves (selection)
4.GOTO 1

Biologically plausible...

Cross-entropy method

Let’s consider our parameters to be sampled from a multivariate isotropic Gaussian
We will evolve this Gaussian towards samples that have highest fithess

CEM:
Initialize y € R%, o € Rio
foriteration=1, 2, ...
Sample n parameters@;, ~ N (u, diag(aQ))
For each ¢,, performonerolloutto get return R(7;)

Select thetop k% of 6, and fit a new diagonal Gaussian
to those samples. Update i, 0

endfor

Covariance Matrix Adaptation

Let’s consider our parameters to be sampled from a multivariate Gaussian
We will evolve this Gaussian towards sampled that have highest fitness

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

0
o
0 © °
ox ©
o
0
0

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

 Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample
e Select elites

L » Update mean
» Update covariance

e |terate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

CMA-ES, CEM

Work embarrassingly well in low-dimensions

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (Bohm et al., 2004) Istvdn Szita and Andrds Lorincz. “Learning
Reinforcement learning Tetris using the noisy cross-entropy method".

Relational reinforcement ~50 Ramon and Driessens (2004) In: Neural computation 18.12 (2006) ,

learning+kernel-based regression op. 2936-2941
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) '
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)

Linear programming + Bootstrap 4274 Farias and van Roy (2006)

Natural policy gradient ~6800 Kakade (2001)

CE+RL 21,252

CE+RL, constant noise 72,705 22

CE+RL, decreasing noise 348,895 ,U/ E R

Approximate Dynamic Programming Finally

Performs Well in the Game of Tetris [NIPS 2013]
Victor Gabillon Mohammad Ghavamzadeh* Bruno Scherrer
INRIA Lille - Nord Europe, INRIA Lille - Team SequeL. INRIA Nancy - Grand Est,
Team SequeL, FRANCE & Adobe Research Team Maia, FRANCE

victor.gabillon@inria.fr mohammad.ghavamzadeh@inria.fr ~ bruno.scherrer@inria.fr

* Evolutionary methods work well on relatively low-
dimensional problems

* Can they be used to optimize deep network policies?

Policy gradients VS Evolutionary methods

We are sampling in both cases...

*PG: sampling in action space
*ES: sampling in parameter space

Policy Gradients

max. U(O) = E.pq R(7)]

VoU(©) = V4E, p o R
= Vy) Py0R(1)

= 2 V,P,(0)R(z)

—ZMﬂ;f)>
9

=) Py(1) Vylog Py(0)R(7)

= E,.po | Volog Py(0)R(7)]

Sample estimate:

V,U@0) ~ Z V log Py(z™)R(z®)
i=1

Evolutionary Methods

max . U(u) = Ep.p (g |F(O)]

U

V,Uw) = V,Eoop o) [F (9)]

= Vﬂ[Pﬂ(H)F(G)dQ

v, P(O)F(0)d0

V,P,(0)

PO)— o F(6)do

U

P,(0)V, log P(0)F(6)d6

= Epup 0 [Vﬂlog PM(Q)F(H)]

Sample estimate:

1 o
VUG~ — YV log P(0D)F(OD)

i=1

Policy gradients VS Evolutionary methods

Considers distribution over actions

max. U(O) = E._pq R(7)]

VoU(O) = V4E, p o) RO
= Vy) PADR()

=) VyPf0R()

=) Py(1)Vylog P()R(7)

= E, p) | Volog Py(0)R(7)]

Sample estimate:

] | .
VoU(O) ~ — ; V, log P(t)R(z®)

Considers distribution over policy parameters

max . U(u) = Ep.p (g |F(O)]
U

V,Uw) = V,Eoop o) [F (9)]

= Vﬂ[PM(H)F(Q)dQ

= v, P 0F@)0

 V,P0)
— P(Q) HH
) P

F(0)do

= | PV, 102 PO)FO)d0

= Epp 0 [Vﬂlog PM(Q)F(H)]
Sample estimate:

1 & . |
VUG~ — YV log P(0D)F(OD)
=1

Policy gradients VS Evolutionary methods

Considers distribution over actions

max. U(O) = E._pq R(7)]

VoU(O) = V4E, p o) RO
= Vy) PADR()

=) VyPf0R()

=) Py(1)Vylog P()R(7)

= E, p) | Volog Py(0)R(7)]

Sample estimate:
T

1 < o o
VoU(O) » — Y Y Vylog mya® | sOR(s?, a)

i=1 r=1

Considers distribution over policy parameters

max . U(u) = Ep.p (g |F(O)]
U

V,Uw =V, Eqp) [F (9)]

= Vﬂ[PM(H)F(Q)dQ

= v, P 0F@)0

 V,P0)
— P(Q) HH
) P

F(0)do

= | PV, 102 PO)FO)d0

= Epp 0 [Vﬂlog PM(Q)F(H)]
Sample estimate:

1 & . |
VUG~ — YV log P(0D)F(OD)
i=1

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

6 — pl]*)
20_2 — COINS

0 — 1
0-2

log P,(0) = — ‘

V,logP,(0) =

A concrete example

Suppose 6 ~ P,(0) is a Gaussian distribution with mean ¢,
and covariance matrix o271

16— pl*
log P,(0) = — SPCE const
0 _
Vv, log P,(0) = 02“

If we draw two parameter samples 6,0, , and obtain two
trajectories 7, m»:

T §

0, —
- R(7,) >
%

1] 0, —
R(T1) >

Ey- (0 [Vﬂlog Pﬂ(Q)R(T)] >3 -

Sampling parameter vectors

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o1

Imagine we have access to random vectors € /V (O,I)

91=ﬂ+6*€1, 61 N,/V(O,])
O, =pu+o*e, ¢, ~ N(O,I)

The theta samples have the desired mean and variance

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

6 — pl]*)
20_2 — COINS

0 — 1
0-2

log P,(0) = — ‘

V,logP,(0) =

A concrete example

= Suppose 6~ P,(9) is a Gaussian distribution with mean g,
and covariance matrix o271

16— pl*
log P,(0) = — SPCE const
0 _
Vv, log P,(0) = 02“

= If we draw two parameter samples 6,0, , and obtain two
trajectories 7, m»:

1| 0 —u 0, —p
o0 | V,dog PORD |~ = |RE)——= + Rz
1
0, =u+o%e, e ~ N0, ~ L [R(Tl)el T R(Tz)ez]

92:ﬂ+6*€2, €2N./V(O,I)

Natural Evolutionary Strategies

Algorithm 1 Evolution Strategies

l:
2:
3:

4.
5:
b

Input: Learning rate «, noise standard deviation o, initial policy parameters

fort=0,1,2,... do
Sample €1, ..., ~ N(0,1)
Compute returns F; = F(0; +o¢;)fori =1,...,n
Set 0t+l — 0t + O’n—lo,' Z?:l Fifi

end for

Connection to Finite Differences

= Antitheticsampling

= Sample a pair of policies with mirror noise (0. = u+ oe€,0_ =y — oe)

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe€,0_ =y — oe)

= Geta pairofrolloutsfromenvironment (7,,7_)

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe,0_ =y — oe)
= Geta pairofrolloutsfromenvironment (74,7_)

s SPSA: Finite Difference with random direction

VLERD) ~ g | R T 4 RS
— % :R(u)g +R(r.) _;1

[R(74) — R(7-)]

€
20

Connection to Finite Differences

= Antitheticsampling
= Sample a pair of policies with mirror noise (0. = u+ oe,0_ =y — oe)
= Geta pairofrolloutsfromenvironment (74,7_)

s SPSA: Finite Difference with random direction

L[, 0y —p 0 —n
V,.E[R(T)] ~ 5 R(7y) +02 - R(1_) 52]
1 i O€E —0€
~ 5 _R(T+)§ + R(7-) 52 } Finite Difference
€ oU . U(0+ee;) —U(0 — eey)
=5 R =R v GO =——— 5

FiNnite Differences

We can compute the gradient g using standard finite difference methods, as

follows:
oU (0) = U+ ee;) — U0 — ee;)
8_0j - 2€
Where:)
(0
e; = 0
7 1 | < j4'th entry
0
\ 0/

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Algorithm 1 Evolution Strategies

: Input: Learning rate «, noise standard deviation o, initial policy parameters
cfort=0.,1,2.... do

Sample €1, ..., ~ N(0,1)

Compute returns F; = F(0; + o¢;) fori =1,...,n

Set 9(+1 — 01, -+ (’t% Z?:l Fif.i
end for

—

AR N

Main contribution:
- Parallelization with a need for tiny only cross-worker communication

Distributed SGD

Used in Asynchronous RL!

Distributed SGD

I?aCh W(.)rker sends Worker 1 Worker 2
big gradient vectors

Distributed Evolution

What need to be sent??

Distributed Evolution

Algorithm 1 Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters 6
2: fort =0,1,2,... do

3: Sample €1,...e, ~ N(0,1)

4: Compute returns F; = F(0; + o¢;) fori =1,...,n

5: Set Ht-l-l — 9t + O’n% Z?:l Fi.ei

b: end for

Distributed Evolution

MHHH
Worker 6 Worker 3
0 is big!

but 0 = u+ oe

/'

Same for all workers

Only need seed of random number generator!

Distributed Evolution

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6

2: Initialize: n workers with known random seeds, and
initial parameters 6
3: fort=0,1,2,... do
4. for each workeri =1,...,n do
5: Sample ¢; ~ N(0,)
6: Compute returns F; = F(6; + o¢;)
7: end for
8: Send all scalar returns F; from each worker to every
other worker
9. foreach worker: =1,...,ndo
10: Reconstruct all perturbations €; forj =1,...,n
11: Set Ht_|_1 <—0t—|—a% Z?:l FjGj
12: end for
13: end for

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate «, noise standard deviation o,
initial policy parameters 6

2: Initialize: n workers with ' known random seeds, and
initial parameters 6
3: fort=0,1,2,... do
4. for each workeri =1,...,n do
5: Sample ¢; ~ N(0,)
6: Compute returns F; = F(6; + o¢;)
7. end for
8: Send all scalar returns F; from each worker to every
other worker
9. foreach worker: =1,...,ndo
10: Reconstruct all perturbations €; forj =1,...,n
11: Set Ht_|_1 <—9t—|—a% Z?:l FjGj
12: end for
13: end for

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution

Each worker
broadcasts

tiny scalars

Worker 6 : ' L Worker 3

Worker 5

Distributed Evolution

Each worker
broadcasts Worker 1 Worker 2
tiny scalars
¢ - - = - :.;4 ~
- . .|) \

.- /
o’ °
-
.
-
.
-

Worker 6 aEill : \ Worker 3

Worker 4

Distributed Evolution

Each worker
broadcasts Worker 1 Worker 2
tiny scalars

-. _ \

1/

Worker 6 [it o Worker 3

.
P4 .

Worker 4

Distributed Evolution Scales Very Well :-)

«— 18 cores, 657 minutes

)

=

=

E}

()

>

S 102

S

Q

E

o

(av]

.S

(D)

= .

10} 1440 cores, 10 minutes ——
102 103
Number of CPU cores

Figure 1. Time to reach a score of 6000 on 3D Humanoid with
different number of CPU cores. Experiments are repeated 7 times
and median time is reported.

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution Requires More Samples :-(

HalfCheetah Hopper Walker
5000] —— TRPO 40001 —— TRPO 700071 __ 1rpo
ES 3500 - ES 6000 A ES

6000 A 3000 1 5000 A
2500 -

c 4000 -
S 4000 - 2000 1

4 3000 -
1500 -

2000 - 2000 -
1000 A

1000 A
5 .

0 00
0 0
10° 10° 107 108 104 10° 10° 107 104 10° 10° 107 108
Timesteps Timesteps Timesteps

[Salimans, Ho, Chen, Sutskever, 2017]

Population Based Training of Neural Networks

Max Jaderberg Valentin Dalibard Simon Osindero Wojciech M. Czarnecki
Jeff Donahue Ali Razavi Oriol Vinyals Tim Green Iain Dunning

Karen Simonyan Chrisantha Fernando Koray Kavukcuoglu

DeepMind, London, UK

Searching for Hyperparameters

(a) Sequential Optimisation
Performance
1 €

— | — 1 [[1
O Hyperparameters O—*O O_’O

Training

Weights

Searching for Hyperparameters

(a) Sequential Optimisation

Performance
E 1 E 1
O—0.

| e |
R R R R E SIS RET 2 vevsrsuverersrraverersrraver ey e s TR,
Training

—
O Hyperparameters O—>O
Weights

(b) Parallel Random/Grid Search

=
o,
D e U
E

| sm— — —

OOl @O

—=0] o] =0
of

o0
o0
OO0

Algorithm 1 Population Based Training (PBT)

1: procedure TRAIN(P) > initial population P

2: for (6, h, p, t) € P (asynchronously in parallel) do
3: while not end of training do
4: 0 < step(f|h) > one step of optimisation using hyperparameters
5: p < eval() > current model evaluation
6: if ready(p, t,P) then
7 h', 0 « exploit(h,0,p,P) > use the rest of population to find better solution
8: if 0 # 0’ then
9: h,0 < explore(h’,0,P) > produce new hyperparameters h
10: p < eval(f) > new model evaluation
11: end if
12: end if
13: update P with new (6, h,p,t + 1) > update population
14: end while
15: end for

16: return ¢ with the highest p in P
17: end procedure

Searching for Hyperparameters

(a) Sequential Optimisation

Performance
| e |

Hyperparameters O—*O

Weights

Creremsararerencararane s arenseratarencareranen P L
Training D D

O0—0..

rrene) D U B R T TR P N TR RN 2 D

0] =0] =]

(b) Parallel Random/Grid Search

O
=50
O

(c) Population Based Training

Performance (\
— —

 — | ===
Hyperparameters O O O O

Weights U s ireerr e, ,D

> exploit

|

= | — (= |
O—»explore—»O. O

e .
U - LD) D DD

- - 6.89

- - 645

=
<t
O
1 1
1 1
S n o W o \n o
r~ [Ve) V<] i i e <t
21005 Jauabew| uondaoul
c
o
S
o
"))
C
1]
|
-
w
L=
[L
O
LI | ©
XL % ® &4 &R 8 @ =82
31025 N319
&
18]
L.
O
| .
©
R
1] n
1 I
-] u (o] u (=] u (=] (T2 [=}
= ™ M o~ N ~ - = S
o o o o o o (=] o o
9ouewiopad pasijewliou uewny
— r~
@ <
— —
I I
1 I
‘=
2
1 1
I I
o n o W o
™~ — e o o
2ouewiopad pasijewliou uewny
(o) m
S o
o o
I I
1 I
Q0
©
-
=
0
I I
I I
~ o © © <+ ~ =
— — o [=] =} (=] [=]

@ouewioyad pasiewlou uewny

L
3
-~ @
4 A 18d ubnoayy snndepy S
= - : m
2 o
=z d 2
€do] 1o jeuld w
-
=
~
b -
ot —
-
sjybia
5 _ JYDIS\ —
o : 48]
U m Q-
M sweiediadAH
-r ™~ m o] w0 -t
— — — o o o
—
< & uonesuNn. | b
g - o
—_ a
o) X
= n

jusweulno) Aieuig

105

12

; Q
" : N
s 03 B
= :
T o : m
£ -
< - ov 5
— i - ald
L.y o e
o O
o a
g oL
-t ™~ o o w -t
— — — = p= =

aul|@seq pPasi|euwiou J3A0 Juawanoidul]

