Deep Reinforcement Learning and Control

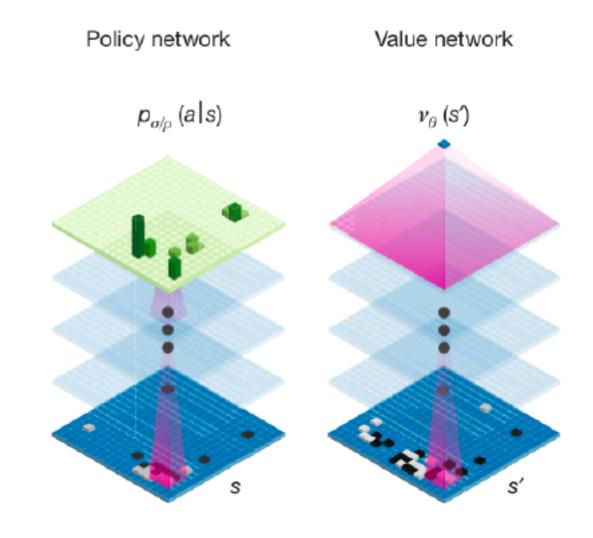
MCTS with neural nets

CMU 10-403

Katerina Fragkiadaki

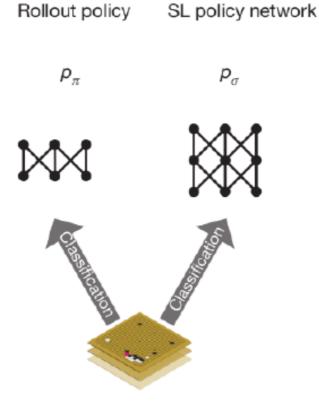
AlphaGo: Learning-guided MCTS

- Value neural net to evaluate board positions
- Policy neural net to select moves
- Combine those networks with MCTS



AlphaGo: Learning-guided search

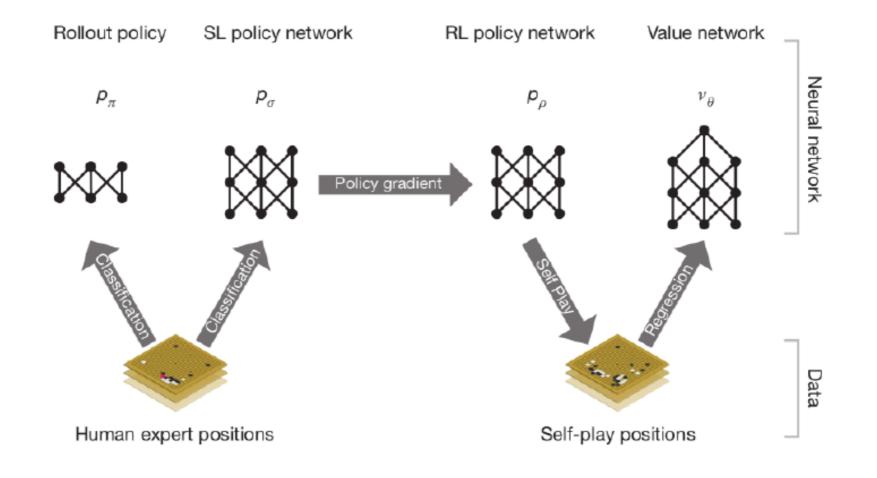
- 1. Train two action policies by mimicking expert moves (standard supervised learning):
 - 1. one cheap (rollout) policy
 - 2. one expensive policy (SL)



Human expert positions

AlphaGo: Learning-guided search

- 1. Train two action policies by mimicking expert moves (standard supervised learning):
 - 1. one cheap (rollout) policy
 - 2. one expensive policy (SL)
- 2. Train a new policy (SLRL) with RL and self-play initialized from SL policy.
- 3. Train a value network that predicts the winner of games played by SLRL against itself, as well as against previous version of policies



Supervised learning of policy networks

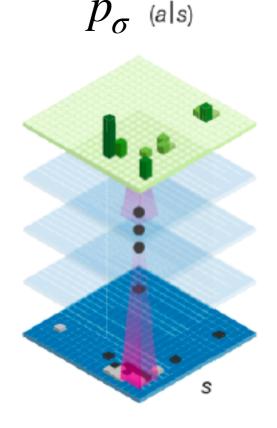
Objective: predicting expert moves

- Input: state (board configuration
- Output: a probability distribution over all legal moves a.

SL policy network

- 13-layer policy network trained from 30 million positions.
- accuracy of 57.0% using all input features, 55.7% using only raw board position and move history
- (compared to the state-of-the-art from other research groups of 44.4%).

Policy network



RL with REINFORCE

Objective: improve over SL policy

- Weight initialization from SL network
- Input: Sampled states during self-play
- Output: a probability distribution over all legal moves a.

Rewards are provided only at the end of the game, +1 for winning, -1 for loosing

Policy network

 $p_{
ho}$ (als)

$$\Delta \rho \propto \frac{\partial \log p_{\rho}(a_t | s_t)}{\partial \rho} z_t$$

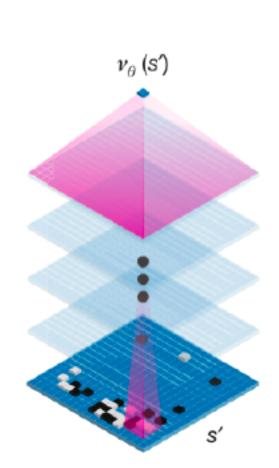
The RL policy won more than 80% of games against the SL policy.

Supervised learning of value networks

Objective: Estimating a value function $v_{\mu}(s)$ that predicts the outcome from position (board configuration) s

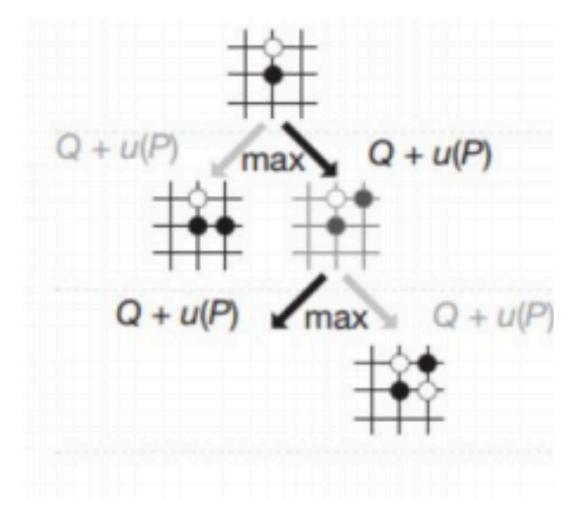
- Input: Sampled states during self-play, 30 million distinct positions, each sampled from a separate game, played by the SLRL policy against itself (and against previous policy versions).
- Output: the board score (a scalar value)

Trained by regression on state-outcome pairs (s, z) to minimize the mean squared error between the predicted value v(s), and the corresponding outcome z.



Value network

Selection: selecting actions within the expanded tree

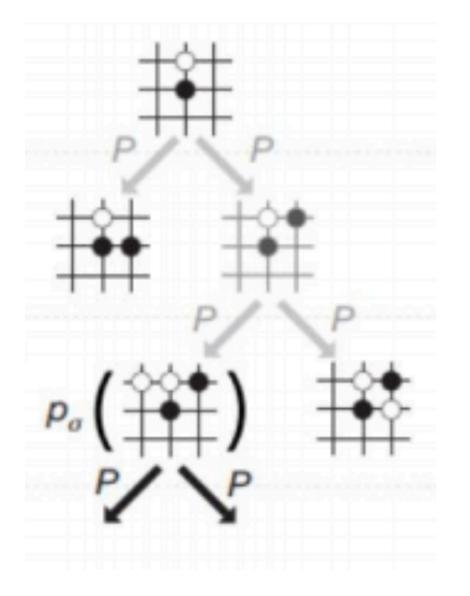


Tree policy

$$a_t = \operatorname{argmax}_a(Q(s_t, a) + u(s_t, a))$$
$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

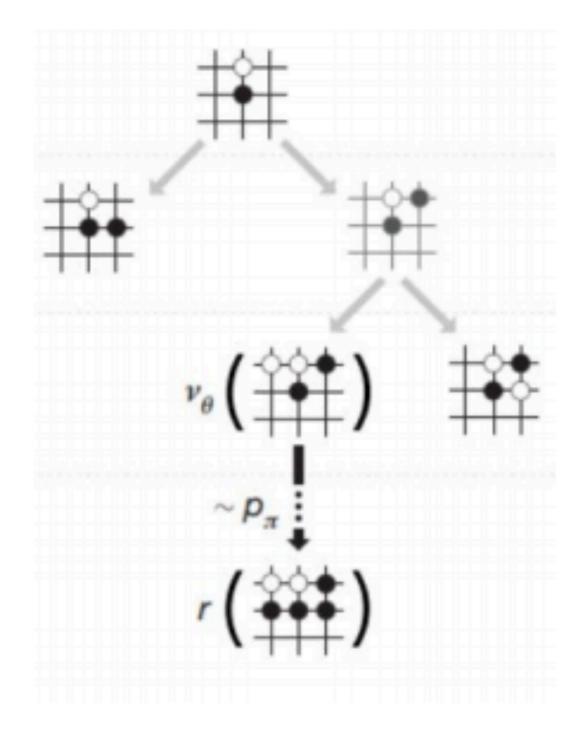
- a_t action selected at time step *t* from board s_t
- $Q(s_r, a)$ average reward collected so far from MC simulations
- *P(s, a)* prior expert probability of playing moving *a* provided by the SL policy
- N(s, a) number of times we have visited parent node
- *u* acts as a bonus value
 - Decays with repeated visits

Expansion: when reaching a leaf, play the action with highest score from P_{σ}



- When leaf node is reached, it has a chance to be expanded
- Processed once by SL policy network (p_{σ}) and stored as prior probs *P(s, a)*
- Pick child node with highest prior prob

Simulation/Evaluation: use the rollout policy to reach to the end of the game

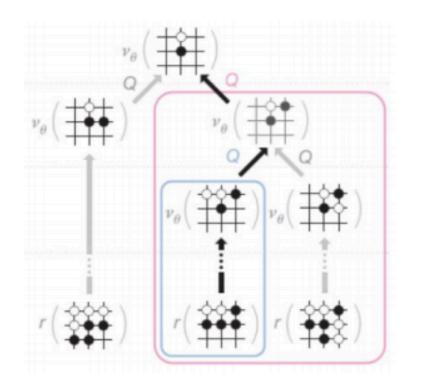


- From the selected leaf node, run multiple simulations in parallel using the rollout policy
- Evaluate the leaf node as:

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z_L$$

- v_{θ} value from value function of board position s_{L}
- z_L Reward from fast rollout p_{π}
 - Played until terminal step
- λ mixing parameter
 - Empirical

Backup: update visitation counts and recorded rewards for the chosen path inside the tree:



$$\begin{split} N(s,a) &= \sum_{i=1}^{n} 1(s,a,i) \\ Q(s,a) &= \frac{1}{N(s,a)} \sum_{i=1}^{n} 1(s,a,i) V(s_{L}^{i}) \end{split}$$

- Extra index i is to denote the ith simulation, n total simulations
- Update visit count and mean reward of simulations passing through node
- Once search completes:
 - Algorithm chooses the most visited move from the root position

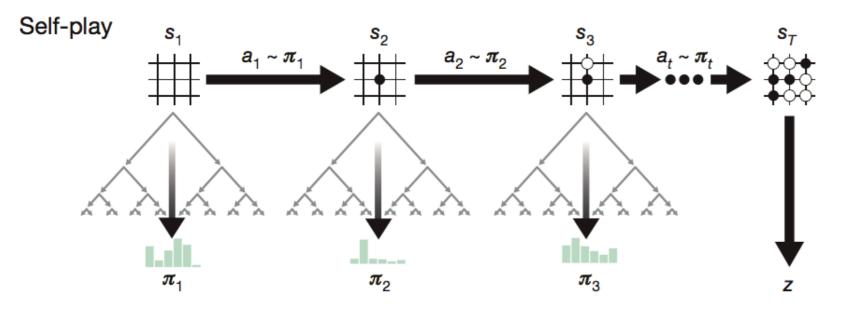
AlphaGoZero: Lookahead search during training!

- So far, MCTS was used for online planning to select moves at test time
- AlphaGoZero uses it during training instead.

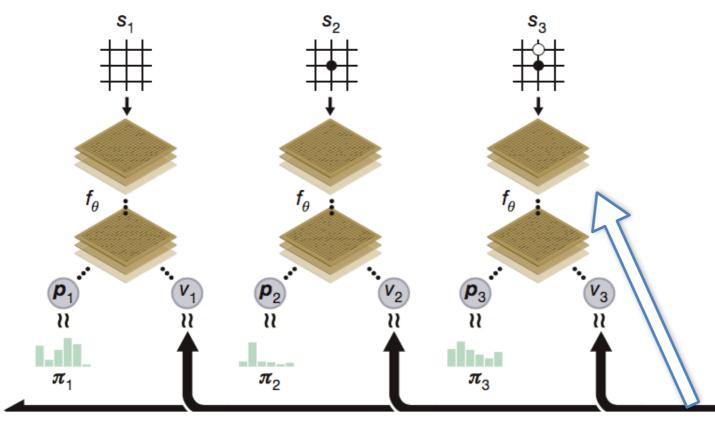
AlphaGoZero: Lookahead search during training!

- Given any policy, a MCTS guided by this policy will produce an improved policy (policy improvement operator)
- Train a policy to iteratively mimic such improved policy
- Policy iteration

MCTS as policy improvement operator



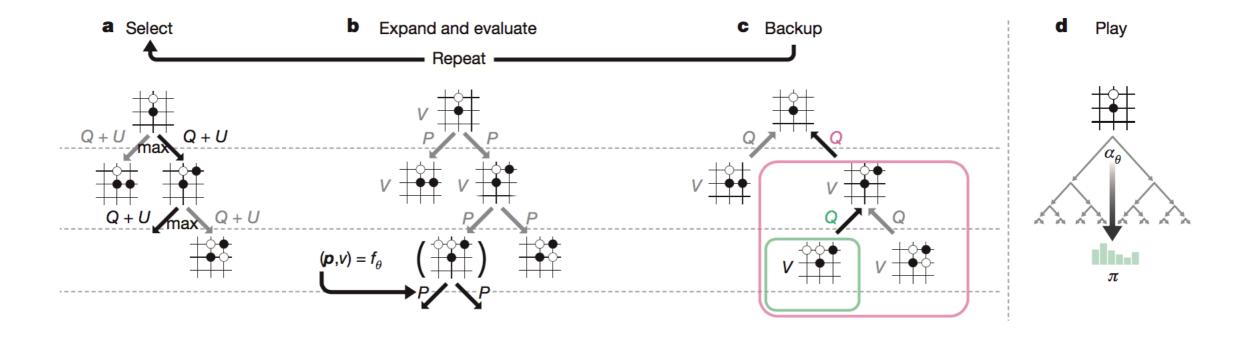
Neural network training



- Supervised training so that the policy network mimics the output of the MCTS (supervision from a planner!)
- Train so that the value network matches the outcome (same as in AlphaGo)

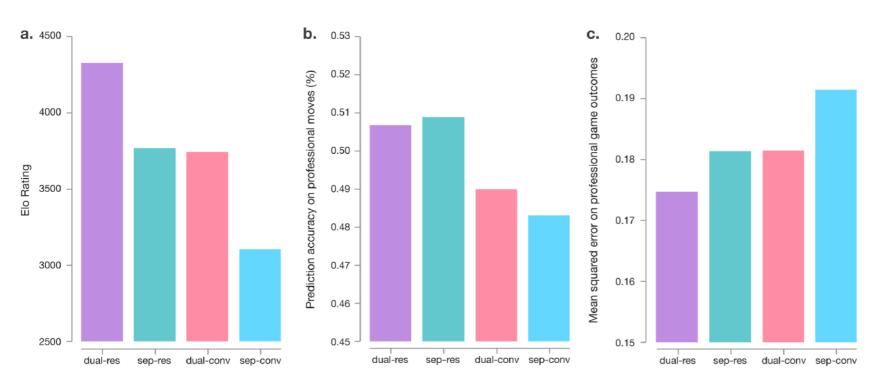
Note that policy and value networks share the backbone!

MCTS: no MC rollouts till termination

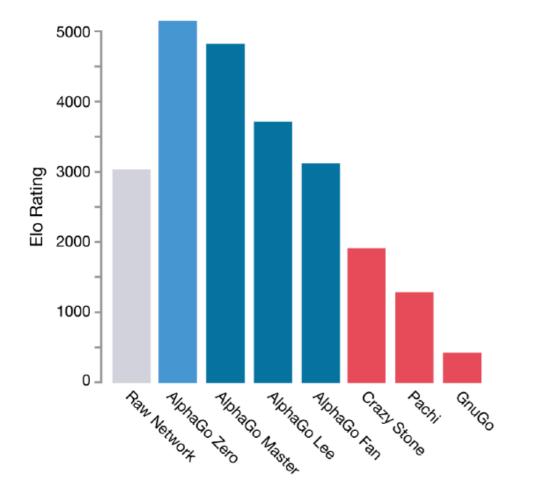


MCTS: using always value net evaluations of leaf nodes, no rollouts!

Architectures

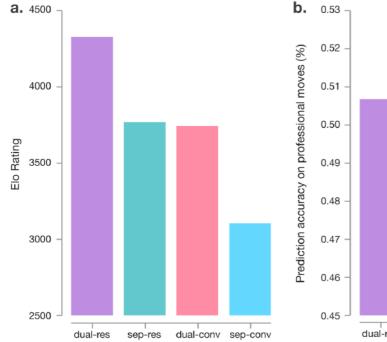


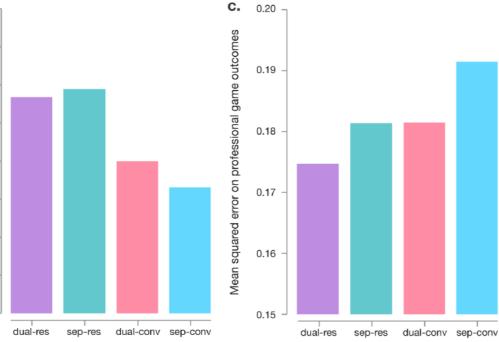
- Resnets help
- Jointly training the policy and value function using the same main feature extractor helps



MCTS improves the basic policy

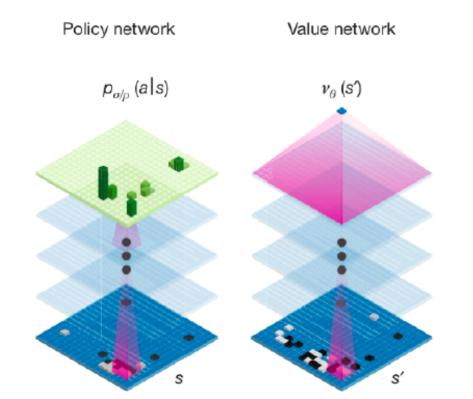
Architectures



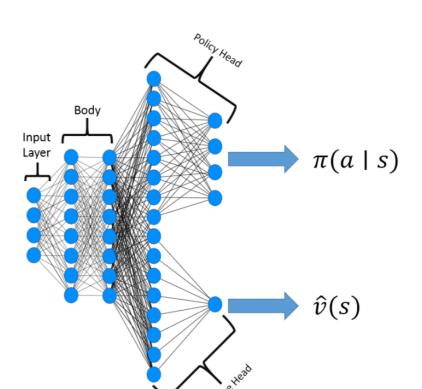


- Resnets help
- Jointly training the policy and value function using the same main feature extractor helps

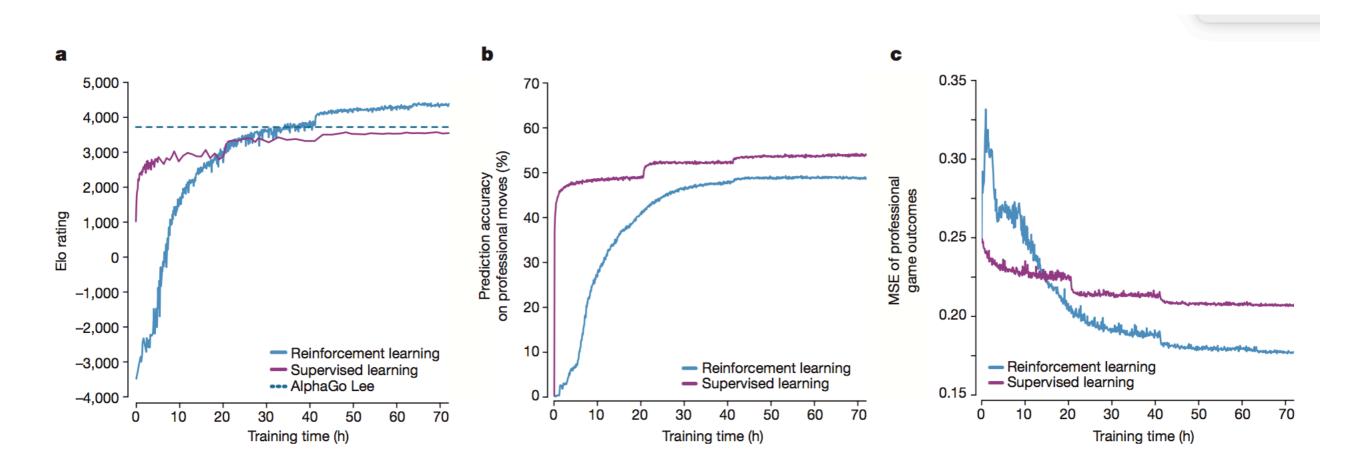
Separate policy/value nets



Joint policy/value nets



RL VS SL



Deep Reinforcement Learning and Control

Evolutionary Methods

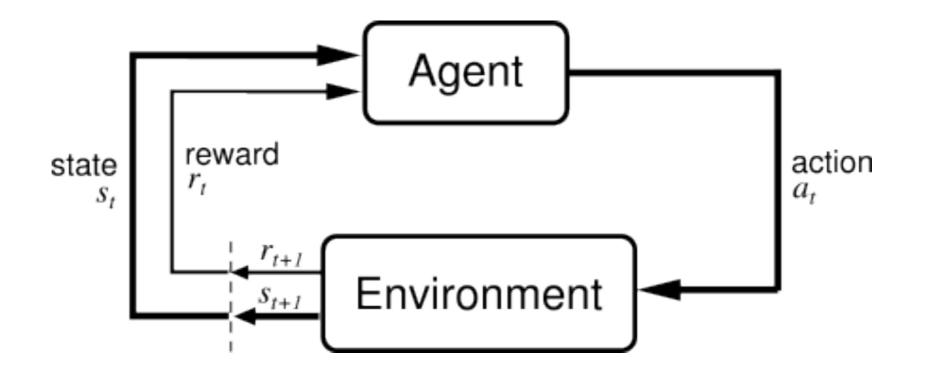
CMU 10-403

Katerina Fragkiadaki

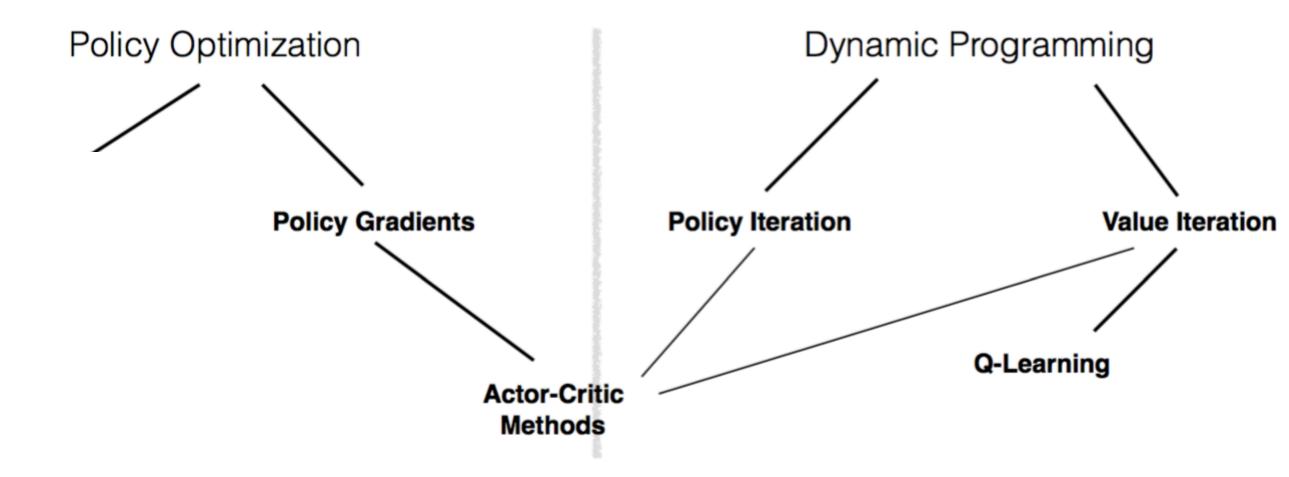
Part of the slides borrowed by Xi Chen, Pieter Abbeel, John Schulman

Policy Optimization and RL

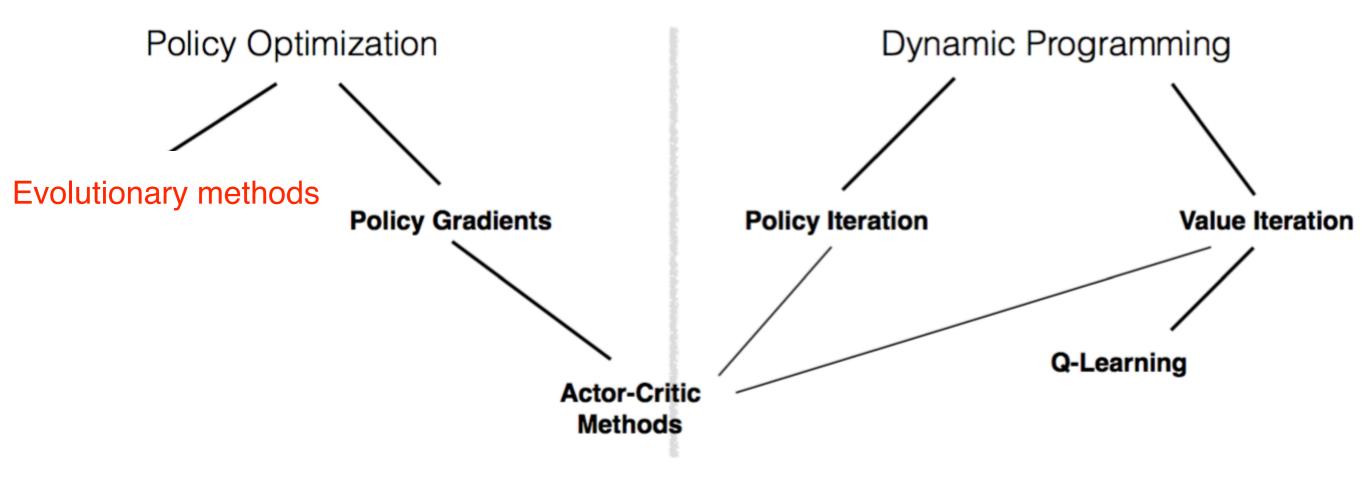
$$\max_{\theta} U(\theta) = \max_{\theta} \mathbb{E} \left[R(\tau) \,|\, \pi_{\theta}, \mu_0(s_0) \right] = \max_{\theta} \mathbb{E} \left[\sum_{t=0}^T R(s_t) \,|\, \pi_{\theta}, \mu_0(s) \right]$$



$$\max_{\theta} U(\theta) = \mathbb{E} \left[R(\tau) \, | \, \pi_{\theta}, \mu_0(s_0) \right]$$



$$\max_{\theta} U(\theta) = \mathbb{E} \left[R(\tau) \,|\, \pi_{\theta}, \mu_0(s_0) \right]$$



Black-box Policy Optimization

max. $U(\theta) = \mathbb{E} \left[R(\tau) \,|\, \pi_{\theta}, \mu_0(s_0) \right]$ θ

No information regarding the structure of the state space or the reward

Evolutionary methods

$$\max_{\theta} U(\theta) = \mathbb{E} \left[R(\tau) \, | \, \pi_{\theta}, \mu_0(s_0) \right]$$

General algorithm:

Initialize a population of parameter vectors (*genotypes*)

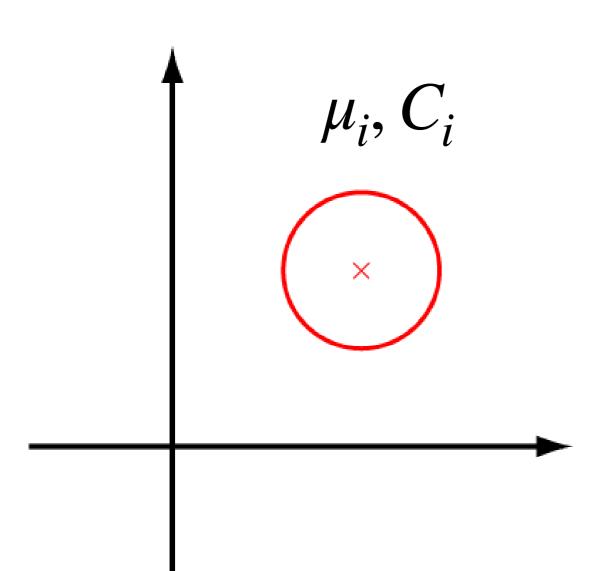
- 1. Make random perturbations (*mutations*) to each parameter vector
- 2. Evaluate the perturbed parameter vector (*fitness*)
- 3. Keep the perturbed vector if the result improves (*selection*)
- 4. GOTO 1

Cross-entropy method

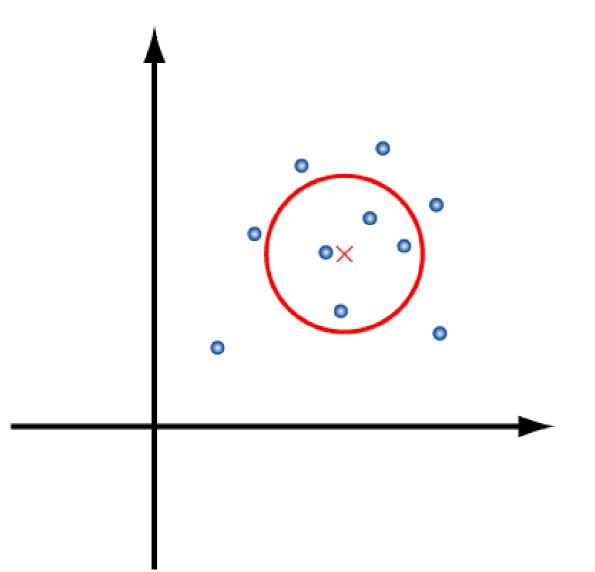
Let's consider our parameters to be sampled from a multivariate isotropic Gaussian We will evolve this Gaussian towards samples that have highest fitness

```
\begin{array}{l} \underline{\mathsf{CEM:}} \\ \text{Initialize } \mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d_{>0} \\ \text{for iteration = 1, 2, ...} \\ & \text{Sample n parameters } \theta_i \sim N(\mu, \operatorname{diag}(\sigma^2)) \\ & \text{For each } \theta_i \text{, perform one rollout to get return } R(\tau_i) \\ & \text{Select the top k\% of } \theta \text{, and fit a new diagonal Gaussian} \\ & \text{to those samples. Update } \mu, \sigma \\ & \text{endfor} \end{array}
```

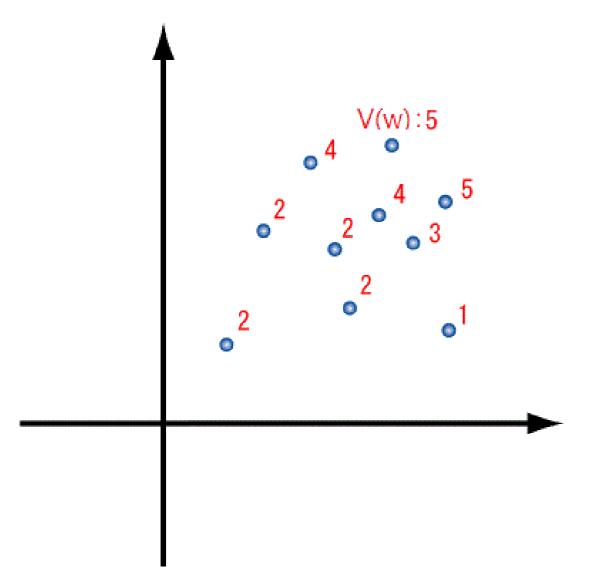
Let's consider our parameters to be sampled from a multivariate Gaussian We will evolve this Gaussian towards sampled that have highest fitness



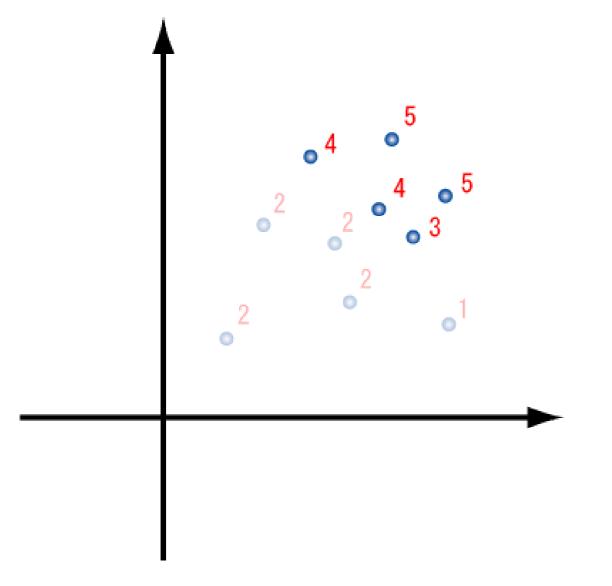
- Sample
- Select elites
- Update mean
- Update covariance
- iterate



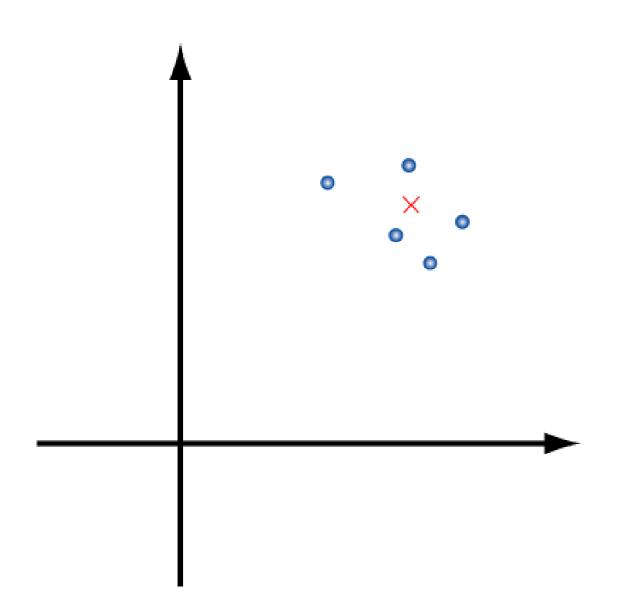
- Sample
- Select elites
- Update mean
- Update covariance
- iterate



- Sample
- Select elites
- Update mean
- Update covariance
- iterate

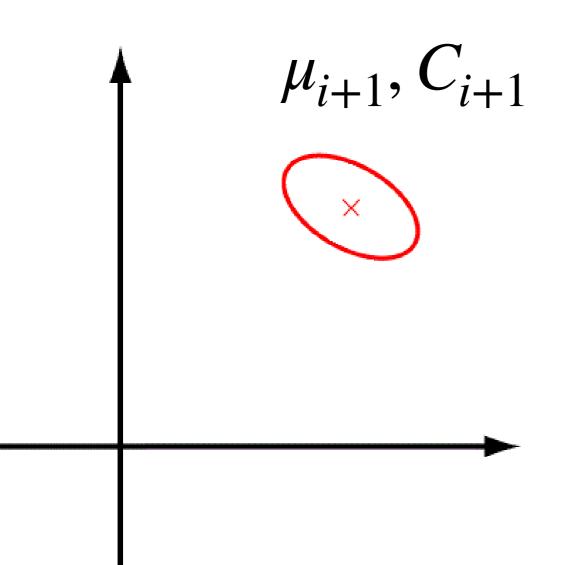


- Sample
- Select elites
- Update mean
- Update covariance
- iterate



- Sample
- Select elites
- Update mean
- Update covariance
- iterate

- Sample
- Select elites
- Update mean
- Update covariance
- iterate



- Sample
- Select elites
- Update mean
- Update covariance
- iterate

CMA-ES, CEM

Work embarrassingly well in low-dimensions

Method	Mean Score	Reference
Nonreinforcement learning		
Hand-coded	631,167	Dellacherie (Fahey, 2003)
Genetic algorithm	586,103	(Böhm et al., 2004)
Reinforcement learning		
Relational reinforcement	≈ 50	Ramon and Driessens (2004)
learning+kernel-based regression		
Policy iteration	3183	Bertsekas and Tsitsiklis (1996)
Least squares policy iteration	<3000	Lagoudakis, Parr, and Littman (2002)
Linear programming + Bootstrap	4274	Farias and van Roy (2006)
Natural policy gradient	≈ 6800	Kakade (2001)
CE+RL	21,252	
CE+RL, constant noise	72,705	
CE+RL, decreasing noise	348,895	

István Szita and András Lörincz. "Learning Tetris using the noisy cross-entropy method". In: Neural computation 18.12 (2006), pp. 2936–2941

 $\boldsymbol{\mu} \in \mathbb{R}^{22}$

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris

[NIPS 2013]

Victor Gabillon INRIA Lille - Nord Europe, Team SequeL, FRANCE victor.gabillon@inria.fr Mohammad Ghavamzadeh* INRIA Lille - Team SequeL & Adobe Research mohammad.ghavamzadeh@inria.fr Bruno Scherrer INRIA Nancy - Grand Est, Team Maia, FRANCE bruno.scherrer@inria.fr

- Evolutionary methods work well on relatively lowdimensional problems
- Can they be used to optimize deep network policies?

We are sampling in both cases...

- •PG: sampling in action space
- •ES: sampling in parameter space

Policy Gradients

$$\begin{aligned} \max_{\theta} \, . \, U(\theta) &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right] \\ \nabla_{\theta} U(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right] \\ &= \nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \\ &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right] \end{aligned}$$

$$\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)})$$

Evolutionary Methods

$$\max_{\mu} \quad U(\mu) = \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[F(\theta) \right]$$
$$\nabla_{\mu} U(\mu) = \nabla_{\mu} \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[F(\theta) \right]$$
$$= \nabla_{\mu} \int P_{\mu}(\theta) F(\theta) d\theta$$
$$= \int \nabla_{\mu} P_{\mu}(\theta) F(\theta) d\theta$$
$$= \int P_{\mu}(\theta) \frac{\nabla_{\mu} P_{\mu}(\theta)}{P_{\mu}(\theta)} F(\theta) d\theta$$
$$= \int P_{\mu}(\theta) \nabla_{\mu} \log P_{\mu}(\theta) F(\theta) d\theta$$
$$= \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[\nabla_{\mu} \log P_{\mu}(\theta) F(\theta) \right]$$

$$\nabla_{\mu} U(\mu) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\mu} \log P_{\mu}(\theta^{(i)}) F(\theta^{(i)})$$

Policy gradients VS Evolutionary methods

Considers distribution over actions max. $U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left| R(\tau) \right|$ $\nabla_{\theta} U(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$ $= \nabla_{\theta} \sum P_{\theta}(\tau) R(\tau)$ $= \sum \nabla_{\theta} P_{\theta}(\tau) R(\tau)$ $=\sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau)$ $= \sum P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau)$ $= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right]$

Sample estimate:

$$\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)})$$

Considers distribution over policy parameters max. $U(\mu) = \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[F(\theta) \right]$ μ $\nabla_{\mu} U(\mu) = \nabla_{\mu} \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left| F(\theta) \right|$ $= \nabla_{\mu} \left[P_{\mu}(\theta) F(\theta) d\theta \right]$ $= \int \nabla_{\mu} P_{\mu}(\theta) F(\theta) d\theta$ $= \int P_{\mu}(\theta) \frac{\nabla_{\mu} P_{\mu}(\theta)}{P_{\mu}(\theta)} F(\theta) d\theta$ $= \int P_{\mu}(\theta) \nabla_{\mu} \log P_{\mu}(\theta) F(\theta) d\theta$ $= \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[\nabla_{\mu} \log P_{\mu}(\theta) F(\theta) \right]$

$$\nabla_{\mu} U(\mu) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\mu} \log P_{\mu}(\theta^{(i)}) F(\theta^{(i)})$$

Policy gradients VS Evolutionary methods

Considers distribution over actions max. $U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left| R(\tau) \right|$ $\nabla_{\theta} U(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$ $= \nabla_{\theta} \sum P_{\theta}(\tau) R(\tau)$ $= \sum \nabla_{\theta} P_{\theta}(\tau) R(\tau)$ $= \sum P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau)$ $= \sum P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau)$ $= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right]$

Sample estimate:

 $\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_t^{(i)} | s_t^{(i)}) R(s_t^{(i)}, a_t^{(i)})$

Considers distribution over policy parameters max. $U(\mu) = \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[F(\theta) \right]$ μ $\nabla_{\mu} U(\mu) = \nabla_{\mu} \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left| F(\theta) \right|$ $= \nabla_{\mu} \left[P_{\mu}(\theta) F(\theta) d\theta \right]$ $= \int \nabla_{\mu} P_{\mu}(\theta) F(\theta) d\theta$ $= \int P_{\mu}(\theta) \frac{\nabla_{\mu} P_{\mu}(\theta)}{P_{\mu}(\theta)} F(\theta) d\theta$ $= \int P_{\mu}(\theta) \nabla_{\mu} \log P_{\mu}(\theta) F(\theta) d\theta$ $= \mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[\nabla_{\mu} \log P_{\mu}(\theta) F(\theta) \right]$

$$\nabla_{\mu} U(\mu) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\mu} \log P_{\mu}(\theta^{(i)}) F(\theta^{(i)})$$

A concrete example

Suppose $\theta \sim P_{\mu}(\theta)$ is a Gaussian distribution with mean μ , and covariance matrix $\sigma^2 I$

$$\log P_{\mu}(\theta) = -\frac{||\theta - \mu||^2}{2\sigma^2} + \text{const}$$
$$\nabla_{\mu} \log P_{\mu}(\theta) = \frac{\theta - \mu}{\sigma^2}$$

A concrete example

Suppose $\theta \sim P_{\mu}(\theta)$ is a Gaussian distribution with mean μ , and covariance matrix $\sigma^2 I$

$$\log P_{\mu}(\theta) = -\frac{||\theta - \mu||^2}{2\sigma^2} + \text{const}$$
$$\nabla_{\mu} \log P_{\mu}(\theta) = \frac{\theta - \mu}{\sigma^2}$$

If we draw two parameter samples θ_1, θ_2 , and obtain two trajectories τ_1, τ_2 :

$$\mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[\nabla_{\mu} \log P_{\mu}(\theta) R(\tau) \right] \approx \frac{1}{2} \left[R(\tau_1) \frac{\theta_1 - \mu}{\sigma^2} + R(\tau_2) \frac{\theta_2 - \mu}{\sigma^2} \right]$$

Sampling parameter vectors

Suppose $\theta \sim P_{\mu}(\theta)$ is a Gaussian distribution with mean μ , and covariance matrix $\sigma^2 I$

Imagine we have access to random vectors $\epsilon \sim \mathcal{N}(0,I)$

$$\begin{aligned} \theta_1 &= \mu + \sigma^* \epsilon_1, \ \epsilon_1 \sim \mathcal{N}(0,I) \\ \theta_2 &= \mu + \sigma^* \epsilon_2, \ \epsilon_2 \sim \mathcal{N}(0,I) \end{aligned}$$

The theta samples have the desired mean and variance

A concrete example

Suppose $\theta \sim P_{\mu}(\theta)$ is a Gaussian distribution with mean μ , and covariance matrix $\sigma^2 I$

$$\log P_{\mu}(\theta) = -\frac{||\theta - \mu||^2}{2\sigma^2} + \text{const}$$
$$\nabla_{\mu} \log P_{\mu}(\theta) = \frac{\theta - \mu}{\sigma^2}$$

A concrete example

Suppose $\theta \sim P_{\mu}(\theta)$ is a Gaussian distribution with mean μ , and covariance matrix $\sigma^2 I$

$$\log P_{\mu}(\theta) = -\frac{||\theta - \mu||^2}{2\sigma^2} + \text{const}$$
$$\nabla_{\mu} \log P_{\mu}(\theta) = \frac{\theta - \mu}{\sigma^2}$$

If we draw two parameter samples θ_1, θ_2 , and obtain two trajectories τ_1, τ_2 :

$$\mathbb{E}_{\theta \sim P_{\mu}(\theta)} \left[\nabla_{\mu} \log P_{\mu}(\theta) R(\tau) \right] \approx \frac{1}{2} \left[R(\tau_1) \frac{\theta_1 - \mu}{\sigma^2} + R(\tau_2) \frac{\theta_2 - \mu}{\sigma^2} \right]$$

$$\approx \frac{1}{2\sigma} \left[R(\tau_1)\epsilon_1 + R(\tau_2)\epsilon_2 \right]$$

 $\theta_1 = \mu + \sigma * \epsilon_1, \ \epsilon_1 \sim \mathcal{N}(0, I)$ $\theta_2 = \mu + \sigma * \epsilon_2, \ \epsilon_2 \sim \mathcal{N}(0, I)$

Natural Evolutionary Strategies

Algorithm 1 Evolution Strategies

- 1: Input: Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: for $t = 0, 1, 2, \dots$ do
- 3: Sample $\epsilon_1, \ldots \epsilon_n \sim \mathcal{N}(0, I)$
- 4: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for i = 1, ..., n
- 5: Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^n F_i \epsilon_i$
- 6: end for

Antithetic sampling

• Sample a pair of policies with mirror noise $(\theta_+ = \mu + \sigma \epsilon, \theta_- = \mu - \sigma \epsilon)$

- Antithetic sampling
 - Sample a pair of policies with mirror noise $(\theta_+ = \mu + \sigma \epsilon, \theta_- = \mu \sigma \epsilon)$
 - Get a pair of rollouts from environment (τ_+, τ_-)

Antithetic sampling

- Sample a pair of policies with mirror noise $(\theta_+ = \mu + \sigma \epsilon, \theta_- = \mu \sigma \epsilon)$
- Get a pair of rollouts from environment (τ_+, τ_-)
- SPSA: Finite Difference with random direction

$$\nabla_{\mu} \mathbb{E} \left[R(\tau) \right] \approx \frac{1}{2} \left[R(\tau_{+}) \frac{\theta_{+} - \mu}{\sigma^{2}} + R(\tau_{-}) \frac{\theta_{-} - \mu}{\sigma^{2}} \right]$$
$$= \frac{1}{2} \left[R(\tau_{+}) \frac{\sigma \epsilon}{\sigma^{2}} + R(\tau_{-}) \frac{-\sigma \epsilon}{\sigma^{2}} \right]$$
$$= \frac{\epsilon}{2\sigma} \left[R(\tau_{+}) - R(\tau_{-}) \right]$$

Antithetic sampling

- Sample a pair of policies with mirror noise $(\theta_+ = \mu + \sigma \epsilon, \theta_- = \mu \sigma \epsilon)$
- Get a pair of rollouts from environment (τ_+, τ_-)
- SPSA: Finite Difference with random direction

$$\begin{split} \nabla_{\mu} \mathbb{E} \left[R(\tau) \right] &\approx \frac{1}{2} \left[R(\tau_{+}) \frac{\theta_{+} - \mu}{\sigma^{2}} + R(\tau_{-}) \frac{\theta_{-} - \mu}{\sigma^{2}} \right] \\ &= \frac{1}{2} \left[R(\tau_{+}) \frac{\sigma \epsilon}{\sigma^{2}} + R(\tau_{-}) \frac{-\sigma \epsilon}{\sigma^{2}} \right] \\ &= \frac{\epsilon}{2\sigma} \left[R(\tau_{+}) - R(\tau_{-}) \right] \quad \text{vs} \quad \frac{\partial U}{\partial \theta_{j}}(\theta) = \frac{U(\theta + \epsilon e_{j}) - U(\theta - \epsilon e_{j})}{2\epsilon} \end{split}$$

Finite Differences

We can compute the gradient g using standard finite difference methods, as follows:

$$\frac{\partial U}{\partial \theta_j}(\theta) = \frac{U(\theta + \epsilon e_j) - U(\theta - \epsilon e_j)}{2\epsilon}$$

Where:

$$e_{j} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow j' \text{th entry}$$

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Jonathan Ho

Xi Chen OpenAI Szymon Sidor

Ilya Sutskever

Algorithm 1 Evolution Strategies

1: Input: Learning rate α , noise standard deviation σ , initial policy parameters θ_0

2: for
$$t = 0, 1, 2, \dots$$
 do

3: Sample
$$\epsilon_1, \ldots \epsilon_n \sim \mathcal{N}(0, I)$$

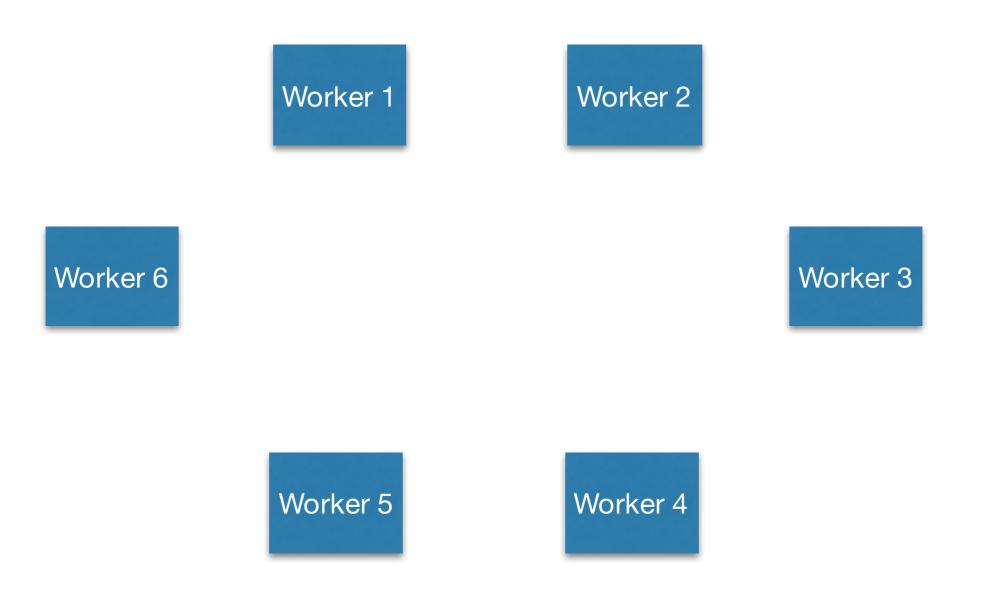
4: Compute returns
$$F_i = F(\theta_t + \sigma \epsilon_i)$$
 for $i = 1, ..., n$

5: Set
$$\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^n F_i \epsilon_i$$

Main contribution:

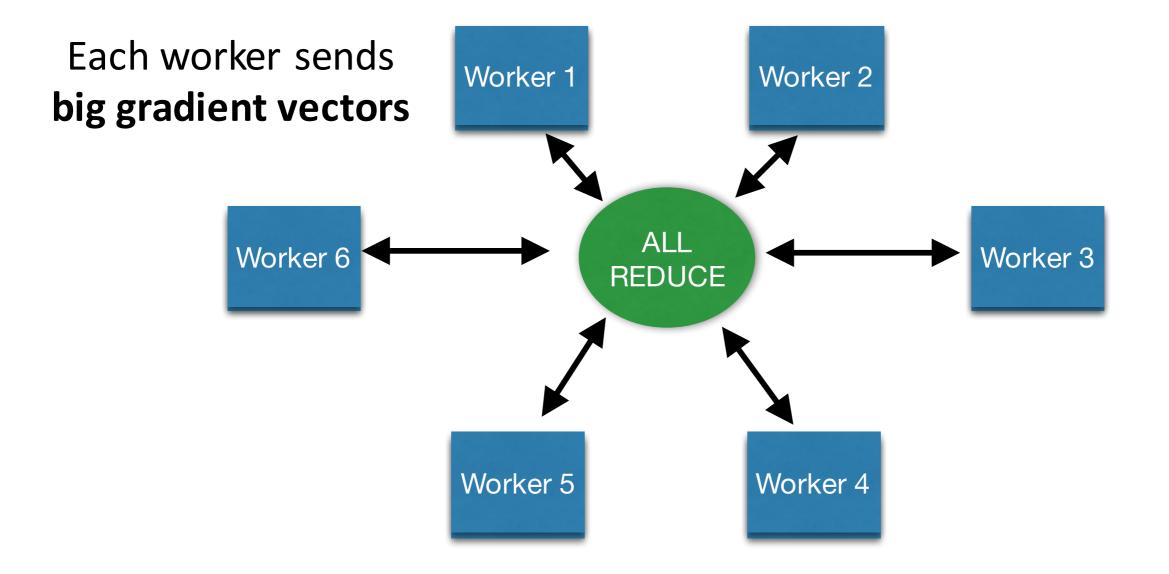
Parallelization with a need for tiny only cross-worker communication

Distributed SGD



Used in Asynchronous RL!

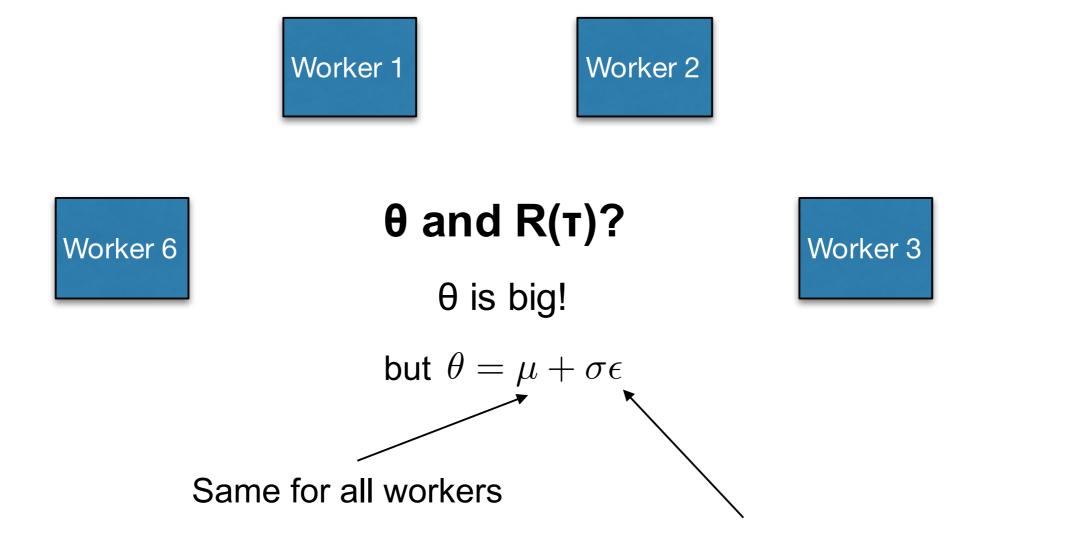
Distributed SGD



What need to be sent??

Algorithm 1 Evolution Strategies

- 1: Input: Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: for $t = 0, 1, 2, \dots$ do
- 3:
- Sample $\epsilon_1, \ldots, \epsilon_n \sim \mathcal{N}(0, I)$ Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$ for $i = 1, \ldots, n$ 4:
- Set $\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{i=1}^{n} F_i \epsilon_i$ 5:
- 6: end for



Only need seed of random number generator!

Algorithm 2 Parallelized Evolution Strategies

- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: Initialize: *n* workers with known random seeds, and initial parameters θ_0
- 3: for $t = 0, 1, 2, \dots$ do
- 4: for each worker $i = 1, \ldots, n$ do
- 5: Sample $\epsilon_i \sim \mathcal{N}(0, I)$
- 6: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$
- 7: end for
- 8: Send all scalar returns F_i from each worker to every other worker
- 9: for each worker $i = 1, \ldots, n$ do
- 10: Reconstruct all perturbations ϵ_j for j = 1, ..., n

11: Set
$$\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j$$

- 12: **end for**
- 13: **end for**

[Salimans, Ho, Chen, Sutskever, 2017]

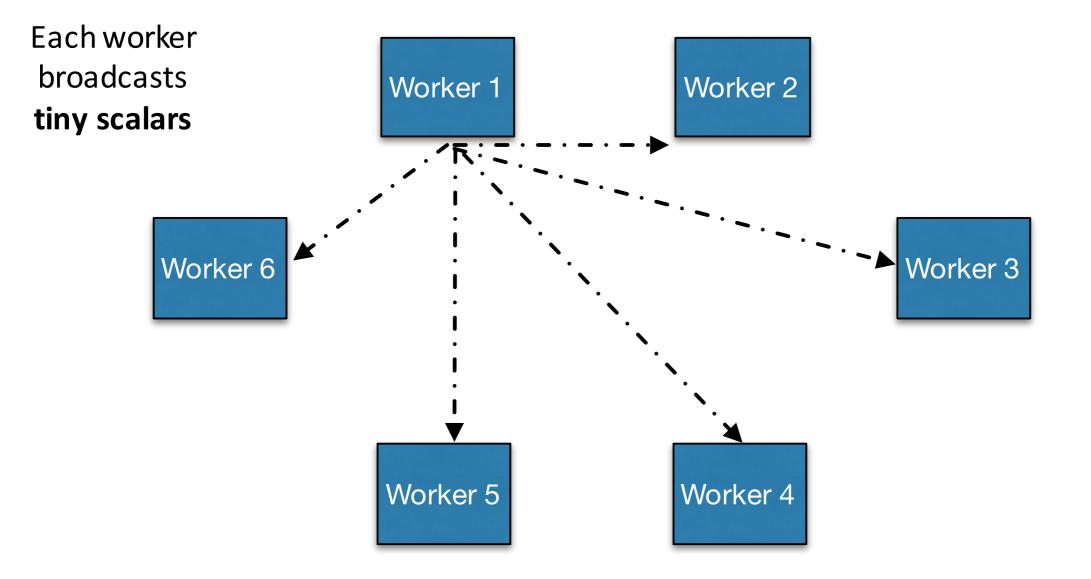
Algorithm 2 Parallelized Evolution Strategies

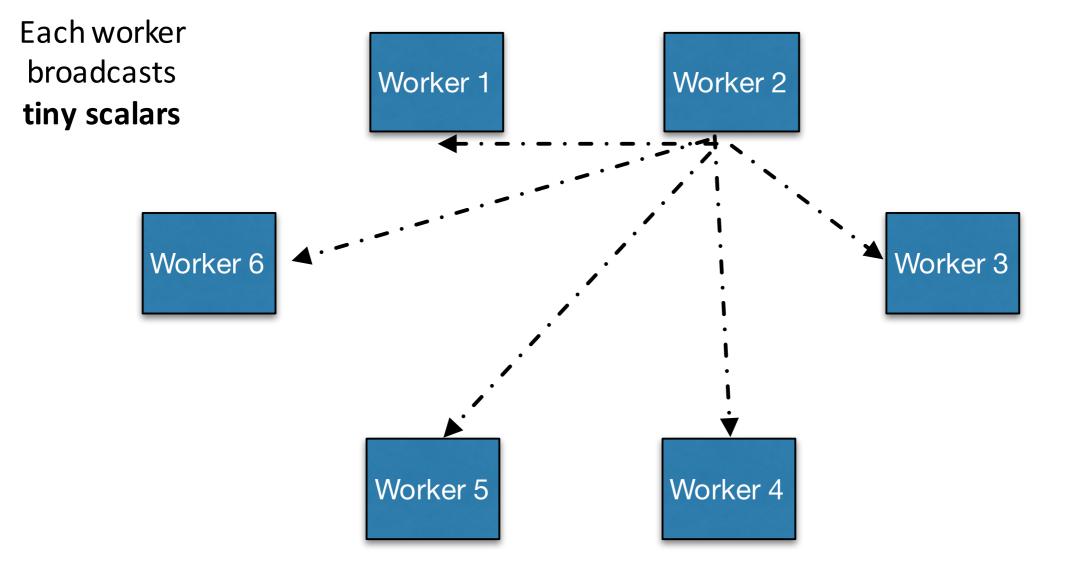
- 1: **Input:** Learning rate α , noise standard deviation σ , initial policy parameters θ_0
- 2: **Initialize:** *n* workers with known random seeds, and initial parameters θ_0
- 3: for $t = 0, 1, 2, \dots$ do
- 4: for each worker $i = 1, \ldots, n$ do
- 5: Sample $\epsilon_i \sim \mathcal{N}(0, I)$
- 6: Compute returns $F_i = F(\theta_t + \sigma \epsilon_i)$
- 7: end for
- 8: Send all scalar returns F_i from each worker to every other worker
- 9: for each worker $i = 1, \ldots, n$ do
- 10: Reconstruct all perturbations ϵ_j for j = 1, ..., n

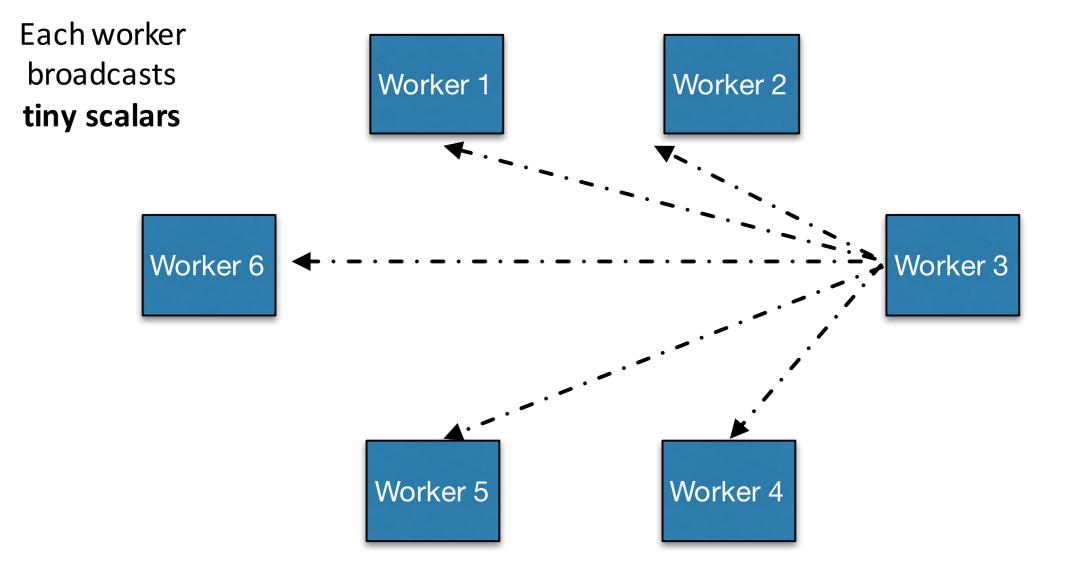
11: Set
$$\theta_{t+1} \leftarrow \theta_t + \alpha \frac{1}{n\sigma} \sum_{j=1}^n F_j \epsilon_j$$

- 12: **end for**
- 13: **end for**

[Salimans, Ho, Chen, Sutskever, 2017]







Distributed Evolution Scales Very Well :-)

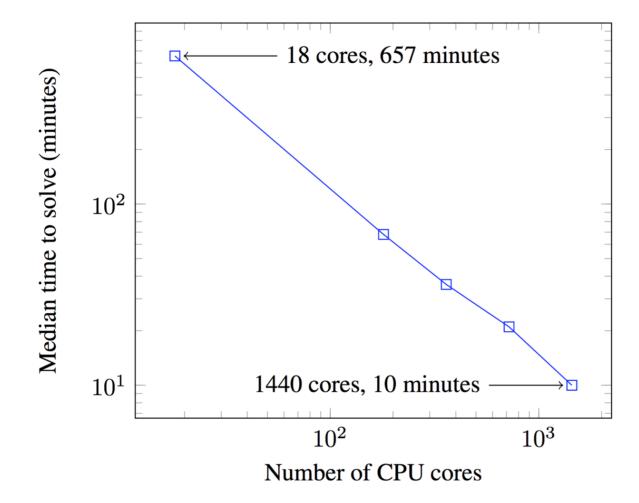
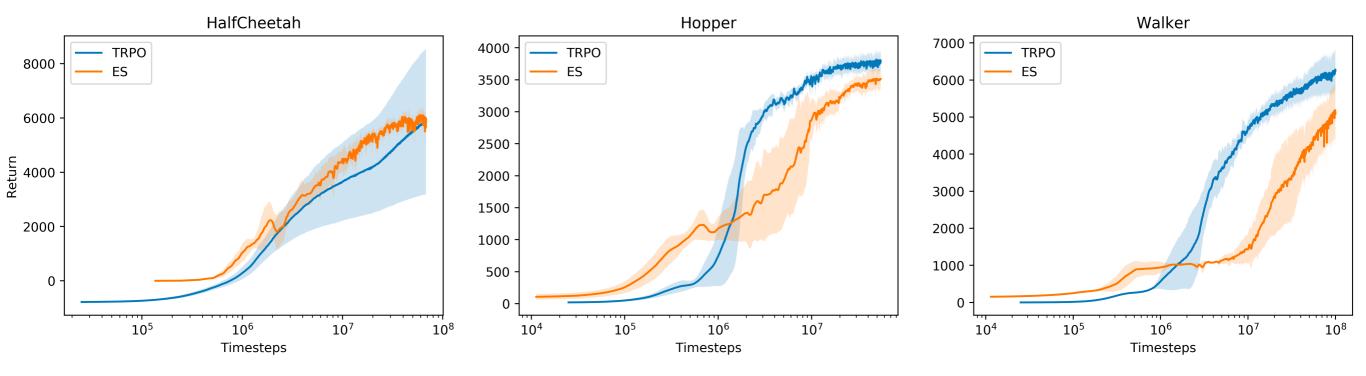


Figure 1. Time to reach a score of 6000 on 3D Humanoid with different number of CPU cores. Experiments are repeated 7 times and median time is reported.

[Salimans, Ho, Chen, Sutskever, 2017]

Distributed Evolution Requires More Samples :-(

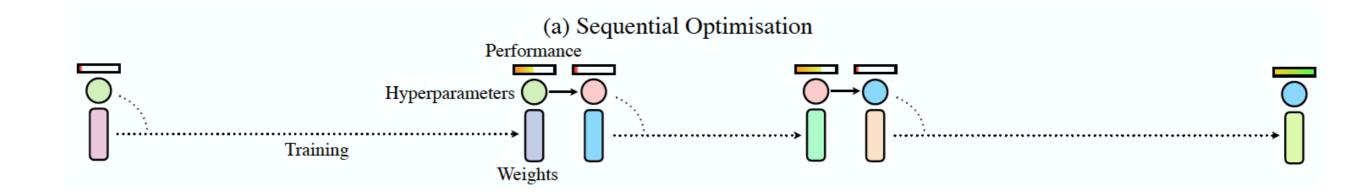


[Salimans, Ho, Chen, Sutskever, 2017]

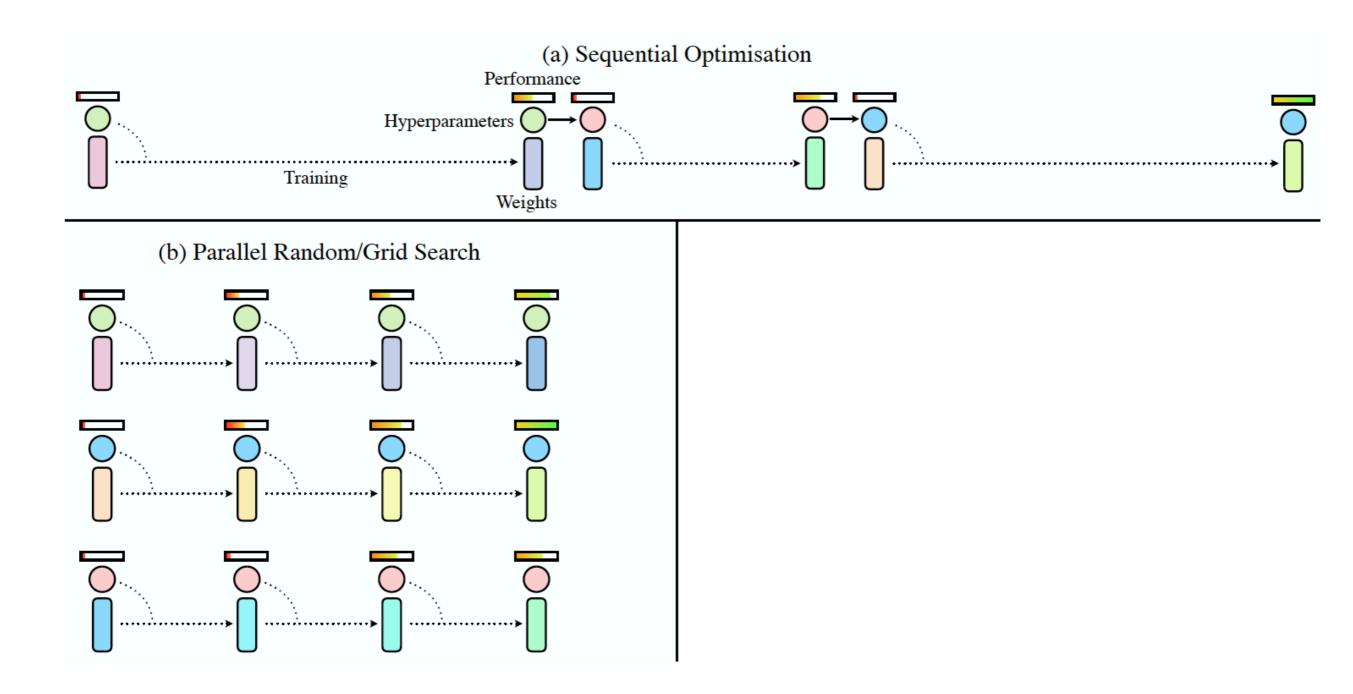
Population Based Training of Neural Networks

Max Jaderberg Valentin Dalibard Simon Osindero Wojciech M. Czarnecki Jeff Donahue Ali Razavi Oriol Vinyals Tim Green Iain Dunning Karen Simonyan Chrisantha Fernando Koray Kavukcuoglu DeepMind, London, UK

Searching for Hyperparameters



Searching for Hyperparameters



Algorithm 1 Population Based Training (PBT)	
1: procedure TRAIN(\mathcal{P})	\triangleright initial population \mathcal{P}
2: for $(\theta, h, p, t) \in \mathcal{P}$ (asynchronously in parallel) do	
3: while not end of training do	
4: $\theta \leftarrow \mathtt{step}(\theta h)$	\triangleright one step of optimisation using hyperparameters h
5: $p \leftarrow eval(\theta)$	▷ current model evaluation
6: if ready (p, t, \mathcal{P}) then	
7: $h', \theta' \leftarrow exploit(h, \theta, p, \mathcal{P})$	use the rest of population to find better solution
8: if $\theta \neq \theta'$ then	
9: $h, \theta \leftarrow \texttt{explore}(h', \theta', \mathcal{P})$	\triangleright produce new hyperparameters h
10: $p \leftarrow eval(\theta)$	▷ new model evaluation
11: end if	
12: end if	
13: update \mathcal{P} with new $(\theta, h, p, t+1)$	▷ update population
14: end while	
15: end for	
16: return θ with the highest p in \mathcal{P}	
17: end procedure	

Searching for Hyperparameters

