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AlphaGo: Learning-guided MCTS

• Value neural net to evaluate board positions
• Policy neural net to select moves
• Combine those networks with MCTS



AlphaGo: Actions Policies
1. Train two action policies by mimicking expert moves (standard supervised learning): 

1. one cheap (rollout) policy 
2. one expensive policy (SL)

AlphaGo: Learning-guided search

pρ



AlphaGo: Actions Policies
1. Train two action policies by mimicking expert moves (standard supervised learning): 

1. one cheap (rollout) policy 
2. one expensive policy (SL)

2. Train a new policy (SLRL) with RL and self-play initialized from SL policy.
3. Train a value network that predicts the winner of games played by SLRL  against itself, as 

well as against previous version of policies

AlphaGo: Learning-guided search

pρ



Supervised learning of policy networks

Objective: predicting expert moves
• Input: state (board configuration
• Output: a probability distribution over all legal moves a.

SL policy network 
• 13-layer policy network trained 

from 30 million positions. 
• accuracy of 57.0% using all input 

features, 55.7% using only raw 
board position and move history 

• (compared to the state-of-the-art 
from other research groups of 
44.4%).
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RL with REINFORCE
Objective: improve over SL policy

• Weight initialization from SL network
• Input: Sampled states during self-play
• Output: a probability distribution over all legal moves a.

Rewards are provided only at the end of 
the game, +1 for winning, -1 for loosing

The RL policy won more than 80% of 
games against the SL policy.

pρ



Supervised learning of value networks
Objective: Estimating a value function vp(s) that predicts the outcome from 
position (board configuration) s

• Input: Sampled states during self-play, 30 million distinct positions, each 
sampled from a separate game, played by the SLRL policy against itself 
(and against previous policy versions). 

• Output: the board score (a scalar value)

Trained by regression on state-outcome pairs (s, z) to 
minimize the mean squared error between the predicted 
value v(s), and the corresponding outcome z. 



MCTS + Policy/ Value networks
Selection: selecting actions within the expanded tree

Tree policy

provided by the SL policy 
average reward collected so far from MC simulations



$
Expansion: when reaching a leaf, play the action with highest score from 

MCTS + Policy/ Value networks



MCTS + Policy/ Value networks
Simulation/Evaluation: use the rollout policy to reach to the end of the game

• From the selected leaf node, run 
multiple simulations in parallel 
using the rollout policy

• Evaluate the leaf node as:



MCTS + Policy/ Value networks
Backup: update visitation counts and recorded rewards for the chosen path 
inside the tree:



AlphaGoZero: Lookahead search during training!

• So far, MCTS was used for online planning to select moves at test time
• AlphaGoZero uses it during training instead.



AlphaGoZero: Lookahead search during training!

• Given any policy, a MCTS guided by this policy will produce 
an improved policy (policy improvement operator)

• Train a policy to iteratively mimic such improved policy
• Policy iteration



MCTS as policy improvement operator

• Supervised training so that the 
policy network mimics the 
output of the MCTS 
(supervision from a planner!)

• Train so that the value network 
matches the outcome (same as 
in AlphaGo)

Note that policy and value networks share the backbone!



MCTS: no MC rollouts till termination

MCTS: using always value net evaluations of leaf nodes, no rollouts!



Architectures

• Resnets help
• Jointly training the 

policy and value 
function using the 
same main feature 
extractor helps

• MCTS improves the 
basic policy



Architectures

• Resnets help
• Jointly training the 

policy and value 
function using the 
same main feature 
extractor helps

Separate policy/value nets Joint policy/value nets
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Policy Optimization and RL
max

θ
U(θ) = max

θ
𝔼 [R(τ) |πθ, μ0(s0)] = max

θ
𝔼 [

T

∑
t=0

R(st) |πθ, μ0(s)]Reinforcement	Learning

[Figure	source:	Sutton	&	Barto,	 1998]



Policy	Optimization	in	the	RL	Landscape

max
✓

U(✓) = max
✓

E[
HX

t=0

R(st)|⇡✓]

max
θ

. U(θ) = 𝔼 [R(τ) |πθ, μ0(s0)]



Policy	Optimization	in	the	RL	Landscape

max
✓

U(✓) = max
✓

E[
HX

t=0

R(st)|⇡✓]

Evolutionary methods

max
θ

. U(θ) = 𝔼 [R(τ) |πθ, μ0(s0)]



Black-box Policy Optimization

θ 𝔼 [R(τ)]

No information regarding the structure of the state space or the reward

max
θ

. U(θ) = 𝔼 [R(τ) |πθ, μ0(s0)]



General algorithm:
Initialize a population of parameter vectors (genotypes) 
1.Make random perturbations (mutations) to each parameter 

vector
2.Evaluate the perturbed parameter vector (fitness)
3.Keep the perturbed vector if the result improves (selection)
4.GOTO 1

Evolutionary methods

Biologically plausible…

max
θ

. U(θ) = 𝔼 [R(τ) |πθ, μ0(s0)]



Cross-Entropy	Method

CEM:
Initialize			
for iteration	=	1,	2,	…
Sample	n	parameters
For	each					,	perform	one	rollout	to	get	return	
Select	the	top	k%	of				,	and	fit	a	new	diagonal	Gaussian	

to	those	samples.	Update
endfor

✓i ⇠ N(µ, diag(�2))

µ 2 Rd,� 2 Rd
>0

✓i R(⌧i)
✓

µ,�

Cross-entropy method
Let’s consider our parameters to be sampled from a multivariate isotropic Gaussian
We will evolve this Gaussian towards samples that have highest fitness



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖, 𝐶𝑖 

Covariance Matrix Adaptation 

μi, Ci

Let’s consider our parameters to be sampled from a multivariate  Gaussian
We will evolve this Gaussian towards sampled that have highest fitness
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• Select elites 
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• Update covariance 
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Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖+1, 𝐶𝑖+1 

Covariance Matrix Adaptation 

μi+1, Ci+1



n Can	work	embarrassingly	well

Cross-Entropy	Method

[NIPS	2013]

µ 2 R22

CMA-ES, CEM
Work embarrassingly well in low-dimensions



• Evolutionary methods work well on relatively low-
dimensional problems

• Can they be used to optimize deep network policies?

Question



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Policy gradients VS Evolutionary methods

We are sampling in both cases…

•PG: sampling in action space
•ES: sampling in parameter space



Policy Gradients
max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]
∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]

= ∇θ ∑
τ

Pθ(τ)R(τ)

= ∑
τ

∇θPθ(τ)R(τ)

= ∑
τ

Pθ(τ)
∇θPθ(τ)

Pθ(τ)
R(τ)

= ∑
τ

Pθ(τ)∇θlog Pθ(τ)R(τ)

= 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

∇θU(θ) ≈
1
N

N

∑
i=1

∇θlog Pθ(τ(i))R(τ(i))

Sample estimate:



∇μ𝔼θ∼Pμ(θ) [F(θ)] = ∇μ ∫ Pμ(θ)F(θ)dθ
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= ∫ Pμ(θ)
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Pμ(θ)
F(θ)dθ

= ∫ Pμ(θ)∇μlog Pμ(θ)F(θ)dθ

= 𝔼θ∼Pμ(θ) [∇μlog Pμ(θ)F(θ)]

max
μ

. U(μ) = 𝔼θ∼Pμ(θ) [F(θ)]

ESEvolutionary Methods

∇μU(μ) ≈
1
N

N

∑
i=1

∇μlog Pμ(θ(i))F(θ(i))

Sample estimate:
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PG ES
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∇θU(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(s(i)
t , a(i)

t )



n Suppose																				is	a	Gaussian	distribution	with	mean					,	
and	covariance	matrix

n If	we	draw	two	parameter	samples											,	and	obtain	two	
trajectories										:

A	Concrete	Example
✓ ⇠ Pµ(✓) µ

logPµ(✓) = � ||✓ � µ||2

2�2
+ const

�2I

rµ logPµ(✓) =
✓ � µ

�2

✓1, ✓2
⌧1, ⌧2

E✓⇠Pµ(✓),⌧⇠⇡✓
[rµ logPµ(✓)R(⌧)] ⇡ 1

2


R(⌧1)

✓1 � µ

�2
+R(⌧2)

✓2 � µ

�2

�

A concrete example
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𝔼θ∼Pμ(θ) [∇μlog Pμ(θ)R(τ)]

≈
1
2σ [R(τ1)ϵ1 + R(τ2)ϵ2]

≈
1
2 [R(τ1)

θ1 − μ
σ2

+ R(τ2)
θ2 − μ

σ2 ]
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Sampling parameter vectors

θ1 = μ + σ * ϵ1, ϵ1 ∼ 𝒩(0,I)

θ2 = μ + σ * ϵ2, ϵ2 ∼ 𝒩(0,I)

Imagine we have access to random vectors ϵ ∼ 𝒩(0,I)

The theta samples have the desired mean and variance



n Suppose																				is	a	Gaussian	distribution	with	mean					,	
and	covariance	matrix

n If	we	draw	two	parameter	samples											,	and	obtain	two	
trajectories										:

A	Concrete	Example
✓ ⇠ Pµ(✓) µ

logPµ(✓) = � ||✓ � µ||2

2�2
+ const

�2I

rµ logPµ(✓) =
✓ � µ

�2

✓1, ✓2
⌧1, ⌧2

E✓⇠Pµ(✓),⌧⇠⇡✓
[rµ logPµ(✓)R(⌧)] ⇡ 1

2


R(⌧1)

✓1 � µ

�2
+R(⌧2)

✓2 � µ

�2

�

A concrete example



n Suppose																				is	a	Gaussian	distribution	with	mean					,	
and	covariance	matrix

n If	we	draw	two	parameter	samples											,	and	obtain	two	
trajectories										:

A	Concrete	Example
✓ ⇠ Pµ(✓) µ

logPµ(✓) = � ||✓ � µ||2

2�2
+ const

�2I

rµ logPµ(✓) =
✓ � µ

�2

✓1, ✓2
⌧1, ⌧2

E✓⇠Pµ(✓),⌧⇠⇡✓
[rµ logPµ(✓)R(⌧)] ⇡ 1

2


R(⌧1)

✓1 � µ

�2
+R(⌧2)

✓2 � µ

�2

�

A concrete example

𝔼θ∼Pμ(θ) [∇μlog Pμ(θ)R(τ)]

≈
1
2σ [R(τ1)ϵ1 + R(τ2)ϵ2]

≈
1
2 [R(τ1)

θ1 − μ
σ2

+ R(τ2)
θ2 − μ

σ2 ]
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Natural Evolutionary Strategies



n Antithetic	sampling
n Sample	a	pair	of	policies	with	mirror	noise

n Get	a	pair	of	rollouts	from	environment

n SPSA:	Finite	Difference	with	random	direction

Connection	to	Finite	Difference

(⌧+, ⌧�)

rµE [R(⌧)] ⇡ 1

2


R(⌧+)

✓+ � µ

�2
+R(⌧�)

✓� � µ

�2

�

=
1

2


R(⌧+)

�✏

�2
+R(⌧�)

��✏

�2

�

=
✏

2�
[R(⌧+)�R(⌧�)]

(✓+ = µ+ �✏, ✓� = µ� �✏)

vs

Finite Difference

Connection to Finite Differences
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Black	Box	Gradient	Computation
Finite Differences



Main contribution:
• Parallelization with a need for tiny only cross-worker communication



Distributed	Deep	Learning

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Distributed SGD

Used in Asynchronous RL!



Distributed	Deep	Learning

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

Worker 6

Worker 1 Worker 2

Worker 3

Worker 5 Worker 4

ALL
REDUCE

Each	worker	sends	
big	gradient	vectors

Distributed SGD
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Distributed	Evolution

Worker 6

Worker 1 Worker 2

Worker 3
θ and R(τ)?

θ is big!

✓ = µ+ �✏but

Same for all workers

Only need seed of random number generator!

Distributed Evolution



[Salimans,	Ho,	Chen,	Sutskever,	2017]

Scalability
Distributed Evolution
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Scalability
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[Salimans,	Ho,	Chen,	Sutskever,	2017]

Pro:	Scalability
Distributed Evolution Scales Very Well :-)



[Salimans,	Ho,	Chen,	Sutskever,	2017]

Con:	Sample	Efficiency
Distributed Evolution Requires More Samples :-(
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