
Policy gradients

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

CMU 10-403

Used Materials
• Disclaimer: Much of the material and slides for this lecture were
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David
Silver’s class on Reinforcement Learning.

Revision

Deep Q-Networks (DQNs)
‣ Represent action-state value function by Q-network with weights w

Cost function

‣ We do not know the groundtruth value

‣ Minimize MSE loss by stochastic gradient descent

‣ Minimize mean-squared error between the true action-value function
qπ(S,A) and the approximate Q function:

J(w) = 𝔼π [(qπ(S, A) − Q(S, A, w))2]

ℒ = (r + γ max
a′ �

Q(s, a′�, w)−Q(s, a, w))
2

wrong!

Cost function

‣ We do not know the groundtruth value

‣ Minimize MSE loss by stochastic gradient descent

‣ Minimize mean-squared error between the true action-value function
qπ(S,A) and the approximate Q function:

J(w) = 𝔼π [(qπ(S, A) − Q(S, A, w))2]

ℒ = (r + γ max
a′ �

Q(s′�, a′�, w)−Q(s, a, w))
2

Q-Learning: Off-Policy TD Control
‣ One-step Q-learning:

‣ Minimize MSE loss by stochastic gradient descent

‣ Converges to Q∗ using table lookup representation

‣ But diverges using neural networks due to:
1. Correlations between samples
2. Non-stationary targets

Stability of training problems for DQN

‣ Solutions:
1. Experience buffer

2. Targets stay fixed for many iterations

ℒ = (r + γ max
a′ �

Q(s′�, a′ �, w)−Q(s, a, w))
2

‣ Minimize MSE loss by stochastic gradient descent

‣ Boils down to a supervised learning problem

‣ I use MCTS to play 800 games, I gather the Q estimates of states and
actions in the MCTS trees and train a regressor.

‣ Any problems?

‣ Any solutions?

‣ DAGGER!

Learning a DQN supervised from a
planner

ℒ = (QMCTS(s, a)−Q(s, a, w))2

‣ Minimize MSE loss by stochastic gradient descent

‣ Boils down to a supervised learning problem

‣ I use MCTS to play 800 games, I gather the Q estimates of states and
actions in the MCTS trees and train a regressor. Then use it to find a
policy

‣ Any problems?

‣ Any solutions?

‣ DAGGER!

‣ Also: training a classifier directly worked best!

Learning a DQN supervised from a
planner

ℒ = (QMCTS(s, a)−Q(s, a, w))2

Policy-Based Reinforcement Learning
‣ So far we approximated the value or action-value function using

parameters θ (e.g. neural networks)

‣ A policy was generated directly from the value function e.g. using ε-
greedy

‣ We will not use any models, and we will learn from experience, not
imitation

‣ In this lecture we will directly parameterize the policy

Policy-Based Reinforcement Learning
‣ So far we approximated the value or action-value function using

parameters θ (e.g. neural networks)

‣ A policy was generated directly from the value function e.g. using ε-
greedy

‣ In this lecture we will directly parameterize the policy

‣ We will focus again on model-free reinforcement learning

Sometimes I will also use the notation:

Value-Based and Policy-Based RL
‣ Value Based

- Learned Value Function
- Implicit policy (e.g. ε-greedy)

‣ Policy Based
- No Value Function
- Learned Policy

‣ Actor-Critic
- Learned Value Function
- Learned Policy

Advantages of Policy-Based RL
‣ Advantages

- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies  

- We will look into the benefits of stochastic policies in a future lecture 

Policy function approximators

discrete actions

go left
go right

s

Output is a distribution over a discrete set of actions

 With continuous policy
parameterization the action
probabilities change smoothly as
a function of the learned
parameter, whereas in epsilon-
greedy selection the action
probabilities may change
dramatically
for an arbitrarily small change in
the estimated action values, if
that change results in a
different action having the
maximal value.

Policy function approximators
deterministic continuous policy

a = ⇡✓(s)

s a

discrete actions

go left
go right

s

s

stochastic continuous policy

µ✓(s)

�✓(s)

a ⇠ N (µ✓(s),�
2
✓(s))

Output is a distribution over a discrete set of actions

Policy Objective Functions
‣ Goal: given policy πθ(s,a) with parameters θ, find best θ

‣ But how do we measure the quality of a policy πθ?

‣ In episodic environments we can use the start value

‣ In continuing environments we can use the average value

‣ Or the average reward per time-step

where is stationary distribution of Markov chain for πθ

Policy Objective Functions
‣ Goal: given policy πθ(s,a) with parameters θ, find best θ

‣ But how do we measure the quality of a policy πθ?

‣ In continuing environments we can use the average value

‣ In the episodic case, is defined to be
- the expected number of time steps t on which St = s
- in a randomly generated episode starting in s0 and
- following π and the dynamics of the MDP.

Remember: Episode of experience under
policy π:

Policy Optimization
‣ Policy based reinforcement learning is an optimization problem

- Find θ that maximizes J(θ) 

‣ Some approaches do not use gradient
- Hill climbing
- Genetic algorithms

‣ We focus on gradient descent, many extensions possible

‣ And on methods that exploit sequential structure

‣ Greater efficiency often possible using gradient

Policy Gradient
‣ Let J(θ) be any policy objective function

‣ Policy gradient algorithms search for a local
maximum in J(θ) by ascending the gradient of
the policy, w.r.t. parameters θ

α is a step-size
parameter (learning
rate)

is the policy gradient

Computing Gradients By Finite Differences
‣ To evaluate policy gradient of πθ(s, a)

‣ Uses n evaluations to compute policy gradient in n dimensions

‣ Simple, noisy, inefficient - but sometimes effective

‣ Works for arbitrary policies, even if policy is not differentiable

‣ For each dimension k in [1, n]
- Estimate kth partial derivative of objective function w.r.t. θ
- By perturbing θ by small amount ε in kth dimension

 where uk is a unit vector with 1 in kth component, 0 elsewhere

Learning an AIBO running policy

Learning an AIBO running policy

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and
Stone, 2004

Learning an AIBO running policy

Initial Training Final

Policy Gradient: Score Function
‣ We now compute the policy gradient analytically 

‣ Assume
- policy πθ is differentiable whenever it is non-zero
- we know the gradient

‣ Likelihood ratios exploit the following identity

‣ The score function is

Softmax Policy: Discrete Actions
‣ We will use a softmax policy as a running example

‣ Weight actions using linear combination of features

 Think a neural network with a softmax output probabilities

‣ Probability of action is proportional to exponentiated weight

Nonlinear extension: replace with a deep
neural network with trainable weights w

Softmax Policy: Discrete Actions
‣ We will use a softmax policy as a running example

‣ Weight actions using linear combination of features

 Think a neural network with a softmax output probabilities

‣ Probability of action is proportional to exponentiated weight

‣ The score function is

Nonlinear extension: replace with a deep
neural network with trainable weights w

Gaussian Policy: Continuous Actions

‣ Variance may be fixed σ2, or can also parameterized

‣ In continuous action spaces, a Gaussian policy is natural

‣ The score function is

‣ Mean is a linear combination of state features

Nonlinear extension: replace with a deep
neural network with trainable weights w

‣ Policy is Gaussian

One-step MDP
‣ Consider a simple class of one-step MDPs

- Starting in state
- Terminating after one time-step with reward

‣ First, let’s look at the objective:

Intuition: Under MDP:

One-step MDP
‣ Consider a simple class of one-step MDPs

- Starting in state
- Terminating after one time-step with reward

‣ Use likelihood ratios to compute the policy gradient

