Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Policy gradients

CMU 10-403

Katerina Fragkiadaki

Used Materials

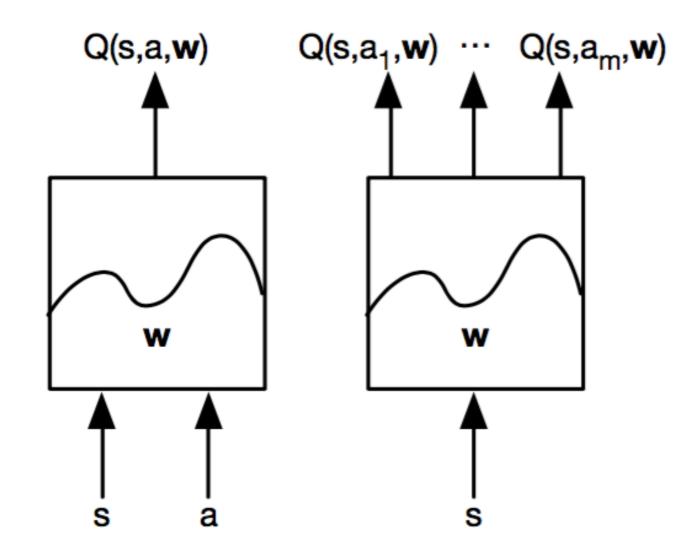
• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Russ Salakhutdinov, Rich Sutton's class and David Silver's class on Reinforcement Learning.

Revision

Deep Q-Networks (DQNs)

Represent action-state value function by Q-network with weights w

 $Q(s, a, \mathbf{w}) \approx Q^*(s, a)$



Cost function

 Minimize mean-squared error between the true action-value function q_π(S,A) and the approximate Q function:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(q_{\pi}(S, A) - Q(S, A, \mathbf{w}) \right)^2 \right]$$

- We do not know the groundtruth value
- Minimize MSE loss by stochastic gradient descent

$$\mathscr{L} = \left(r + \gamma \max_{a'} Q(s, a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

wrong!

Cost function

 Minimize mean-squared error between the true action-value function q_π(S,A) and the approximate Q function:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} \left[\left(q_{\pi}(S, A) - Q(S, A, \mathbf{w}) \right)^2 \right]$$

- We do not know the groundtruth value
- Minimize MSE loss by stochastic gradient descent

$$\mathscr{L} = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

Q-Learning: Off-Policy TD Control

One-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \Big]$$

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode):

Initialize S Repeat (for each step of episode): Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$ $S \leftarrow S';$ until S is terminal

Stability of training problems for DQN

Minimize MSE loss by stochastic gradient descent

$$\mathscr{L} = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

- Converges to Q* using table lookup representation
- But diverges using neural networks due to:
 - 1. Correlations between samples
 - 2. Non-stationary targets
- Solutions:
 - 1. Experience buffer
 - 2. Targets stay fixed for many iterations

Learning a DQN supervised from a planner

Minimize MSE loss by stochastic gradient descent

$$\mathscr{L} = \left(\mathcal{Q}_{MCTS}(s, a) - \mathcal{Q}(s, a, \mathbf{w}) \right)^2$$

- Boils down to a supervised learning problem
- I use MCTS to play 800 games, I gather the Q estimates of states and actions in the MCTS trees and train a regressor.
- Any problems?
- Any solutions?
- DAGGER!

Learning a DQN supervised from a planner

Minimize MSE loss by stochastic gradient descent

$$\mathscr{L} = \left(Q_{MCTS}(s, a) - Q(s, a, \mathbf{w}) \right)^2$$

- Boils down to a supervised learning problem
- I use MCTS to play 800 games, I gather the Q estimates of states and actions in the MCTS trees and train a regressor. Then use it to find a policy
- Any problems?
- Any solutions?
- DAGGER!
- Also: training a classifier directly worked best!

Policy-Based Reinforcement Learning

 So far we approximated the value or action-value function using parameters θ (e.g. neural networks)

$$Q_{ heta}(s,a) pprox Q^{\pi}(s,a)$$

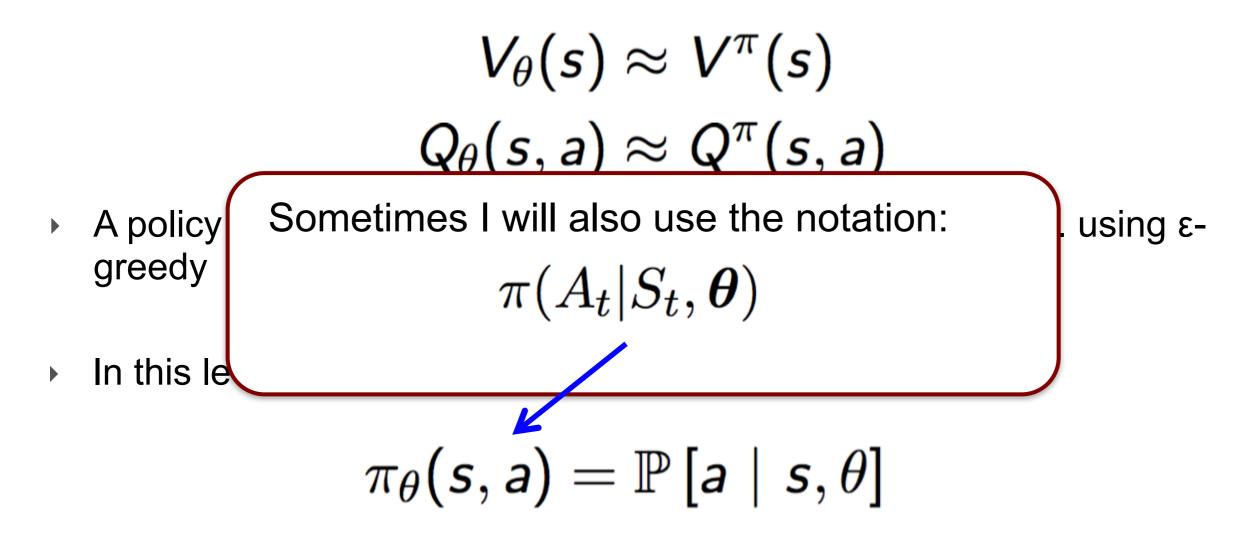
- A policy was generated directly from the value function e.g. using εgreedy
- In this lecture we will directly parameterize the policy

$$\pi_{ heta}(s, a) = \mathbb{P}\left[a \mid s, heta
ight]$$

 We will not use any models, and we will learn from experience, not imitation

Policy-Based Reinforcement Learning

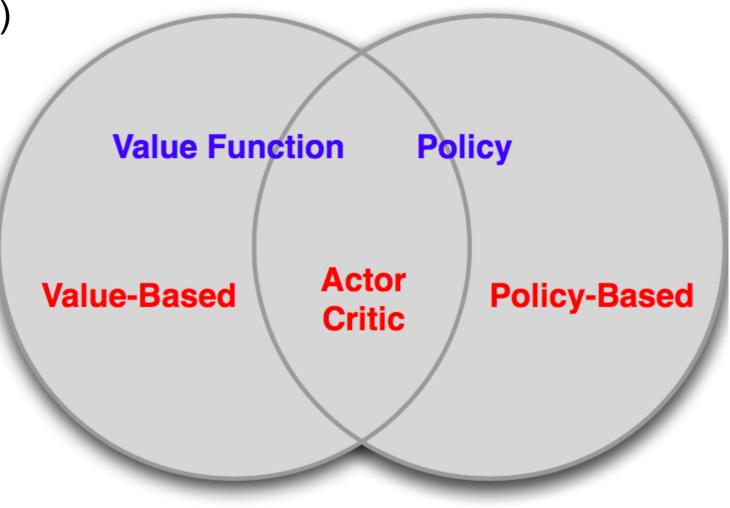
 So far we approximated the value or action-value function using parameters θ (e.g. neural networks)



We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

- Value Based
 - Learned Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learned Policy
- Actor-Critic
 - Learned Value Function
 - Learned Policy

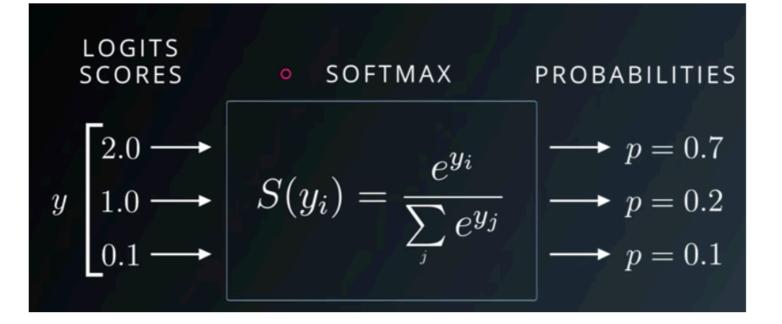


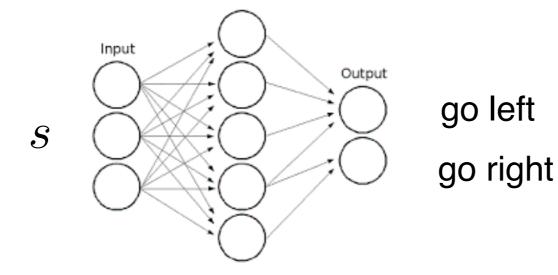
Advantages of Policy-Based RL

- Advantages
 - Effective in high-dimensional or continuous action spaces
 - Can learn stochastic policies

- We will look into the benefits of stochastic policies in a future lecture

Policy function approximators





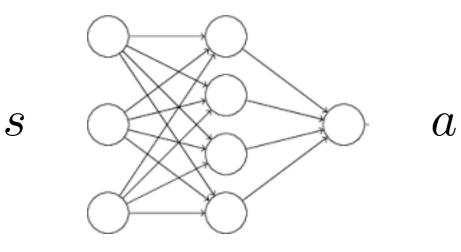
Output is a distribution over a discrete set of actions

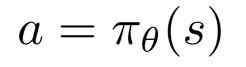
$$\pi(a|s,\theta) \doteq \frac{e^{h(s,a,\theta)}}{\sum_{b} e^{h(s,b,\theta)}}$$

With continuous policy parameterization the action probabilities change smoothly as a function of the learned parameter, whereas in epsilongreedy selection the action probabilities may change dramatically for an arbitrarily small change in the estimated action values, if that change results in a different action having the maximal value.

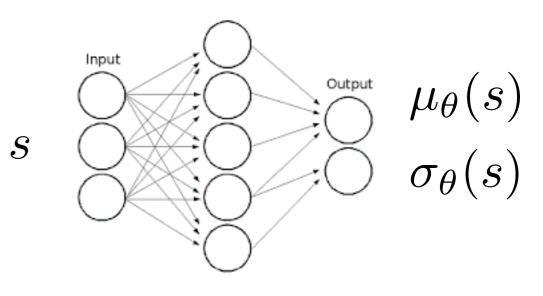
Policy function approximators

deterministic continuous policy

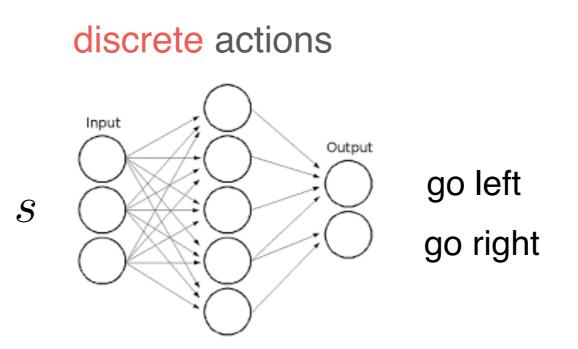




stochastic continuous policy



 $a \sim \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}^2(s))$



Output is a distribution over a discrete set of actions

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s,a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In episodic environments we can use the start value

$$J_1(heta) = V^{\pi_ heta}(s_1) = \mathbb{E}_{\pi_ heta}\left[v_1
ight]$$

In continuing environments we can use the average value

$$J_{avV}(heta) = \sum d^{\pi_{ heta}}(s) V^{\pi_{ heta}}(s)$$

Or the average reward per time-step

$$J_{avR}(heta) = \sum_{s} d^{\pi_{ heta}}(s) \sum_{a} \pi_{ heta}(s,a) \mathcal{R}^{a}_{s}$$

where $d^{\pi_{\theta}}(s)$ is stationary distribution of Markov chain for π_{θ}

Policy Objective Functions

- Goal: given policy $\pi_{\theta}(s,a)$ with parameters θ , find best θ
- But how do we measure the quality of a policy π_{θ} ?
- In continuing environments we can use the average value

$$J_{avV}(heta) = \sum_{s} d^{\pi_{ heta}}(s) V^{\pi_{ heta}}(s)$$

- In the episodic case, $d^{\pi_{\theta}}(s)$ is defined to be
 - the expected number of time steps t on which $S_t = s$
 - in a randomly generated episode starting in s₀ and
 - following π and the dynamics of the MDP.

Remember: Episode of experience under policy π : $S_1, A_1, R_2, ..., S_k \sim \pi$

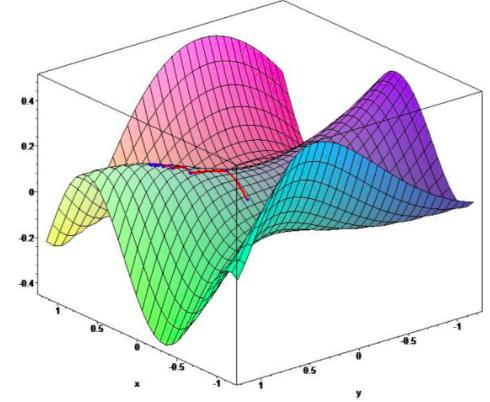
Policy Optimization

- Policy based reinforcement learning is an optimization problem
 - Find θ that maximizes J(θ)
- Some approaches do not use gradient
 - Hill climbing
 - Genetic algorithms
- Greater efficiency often possible using gradient
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

Policy Gradient

- Let $J(\theta)$ be any policy objective function
- Policy gradient algorithms search for a local maximum in J(θ) by ascending the gradient of the policy, w.r.t. parameters θ

 $\Delta \theta = \alpha \nabla_{\theta} J(\theta)$



α is a step-size parameter (learning rate) is the policy gradient

 ∇

$$_{\theta}J(\theta) = \begin{pmatrix} \frac{\partial J(}{\partial \theta} \\ \vdots \\ \frac{\partial J(}{\partial J}) \end{pmatrix}$$

Computing Gradients By Finite Differences

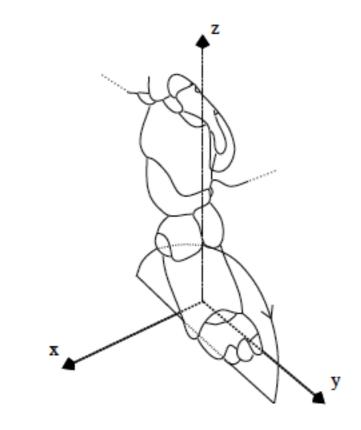
- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension k in [1, n]
 - Estimate kth partial derivative of objective function w.r.t. θ
 - By perturbing θ by small amount ϵ in kth dimension

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere

- Uses n evaluations to compute policy gradient in n dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Learning an AIBO running policy



- Goal: learn a fast AIBO walk (useful for Robocup)
- AIBO walk policy is controlled by 12 numbers (elliptical loci)
- Adapt these parameters by finite difference policy gradient
- Evaluate performance of policy by field traversal time

Learning an AIBO running policy

 $\pi \leftarrow InitialPolicy$ while !done do $\{R_1, R_2, \ldots, R_t\} = t$ random perturbations of π evaluate($\{R_1, R_2, ..., R_t\}$) for n = 1 to N do $Avg_{+\epsilon,n} \leftarrow$ average score for all R_i that have a positive perturbation in dimension n $Avg_{+0,n} \leftarrow$ average score for all R_i that have a zero perturbation in dimension n $Avg_{-\epsilon,n} \leftarrow$ average score for all R_i that have a negative perturbation in dimension n if $Avg_{+0,n} > Avg_{+\epsilon,n}$ and $Avg_{+0,n} > Avg_{-\epsilon,n}$ then $A_n \leftarrow 0$ else $A_n \leftarrow Avg_{+\epsilon,n} - Avg_{-\epsilon,n}$ end if end for $A \leftarrow \frac{A}{|A|} * \eta$ $\pi \leftarrow \pi + A$ end while

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and Stone, 2004

Learning an AIBO running policy

Initial

Training

Final

Policy Gradient: Score Function

- We now compute the policy gradient analytically
- Assume
 - policy π_{θ} is differentiable whenever it is non-zero
 - we know the gradient $abla_ heta\pi_ heta(s,a)$
- Likelihood ratios exploit the following identity

$$egin{aligned}
abla_{ heta} \pi_{ heta}(s,a) &= \pi_{ heta}(s,a) rac{
abla_{ heta} \pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ &= \pi_{ heta}(s,a)
abla_{ heta} \log \pi_{ heta}(s,a) \end{aligned}$$

• The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Softmax Policy: Discrete Actions

- We will use a softmax policy as a running example
- Weight actions using linear combination of features $\phi(s,a)^+ heta$
- Probability of action is proportional to exponentiated weight

$$\pi_{ heta}(s,a) \propto e^{\phi(s,a)^{ op} heta}$$

Nonlinear extension: replace $\phi(s, a)$ with a deep neural network with trainable weights w

Think a neural network with a softmax output probabilities

Softmax Policy: Discrete Actions

- We will use a softmax policy as a running example
- Weight actions using linear combination of features $\phi(s,a)^+ heta$
- Probability of action is proportional to exponentiated weight

$$\pi_{ heta}(s,a) \propto e^{\phi(s,a)^ op heta}$$

Nonlinear extension: replace $\phi(s, a)$ with a deep neural network with trainable weights w

Think a neural network with a softmax output probabilities

The score function is

$$abla_ heta \log \pi_ heta(s,a) = \phi(s,a) - \mathbb{E}_{\pi_ heta} \left[\phi(s,\cdot)
ight]$$

Gaussian Policy: Continuous Actions

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features

$$\mu(s) = \phi(s)^{\top} \theta$$
Nonlinear extension: replace $\phi(s)$ with a deep neural network with trainable weights w

- Variance may be fixed σ_2 , or can also parameterized
- $rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$

- Policy is Gaussian $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- The score function is

$$abla_{ heta} \log \pi_{ heta}(s, a) = rac{(a - \mu(s))\phi(s)}{\sigma^2}$$

One-step MDP

- Consider a simple class of one-step MDPs
 - Starting in state $s \sim d(s)$
 - Terminating after one time-step with reward $r = \mathcal{R}_{s,a}$
- First, let's look at the objective:

$$egin{split} \mathcal{I}(heta) &= \mathbb{E}_{\pi_{ heta}}\left[r
ight] \ &= \sum_{oldsymbol{s}\in\mathcal{S}} d(oldsymbol{s}) \sum_{oldsymbol{a}\in\mathcal{A}} \pi_{ heta}(oldsymbol{s},oldsymbol{a}) \mathcal{R}_{oldsymbol{s},oldsymbol{a}} \end{split}$$

Intuition: Under MDP:

$$\mathbb{E}_{\pi_{\theta}}[r] = \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} P_{\theta}(s, a) \mathcal{R}_{s, a} = \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} P(s) \pi_{\theta}(a|s) \mathcal{R}_{s, a}$$
$$= \sum_{s \in \mathcal{S}} P(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) \mathcal{R}_{s, a}$$

One-step MDP

- Consider a simple class of one-step MDPs
 - Starting in state $s \sim d(s)$
 - Terminating after one time-step with reward $r = \mathcal{R}_{s,a}$
- Use likelihood ratios to compute the policy gradient

$$egin{split} \mathcal{U}(heta) &= \mathbb{E}_{\pi_{ heta}}\left[r
ight] \ &= \sum_{s\in\mathcal{S}} d(s) \sum_{a\in\mathcal{A}} \pi_{ heta}(s,a) \mathcal{R}_{s,a} \end{split}$$

$$egin{aligned}
abla_ heta J(heta) &= \sum_{s\in\mathcal{S}} d(s) \sum_{a\in\mathcal{A}} \pi_ heta(s,a)
abla_ heta \log \pi_ heta(s,a)
abla &= \mathbb{E}_{\pi_ heta} \left[
abla_ heta \log \pi_ heta(s,a) r
ight] \end{aligned}$$