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Used Materials
• Disclaimer: Much of the material and slides for this lecture were 
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David 
Silver’s class on Reinforcement Learning.



Revision



Deep Q-Networks (DQNs)
‣ Represent action-state value function by Q-network with weights w 



Cost function

‣ We do not know the groundtruth value  

‣ Minimize MSE loss by stochastic gradient descent 

‣ Minimize mean-squared error between the true action-value function 
qπ(S,A)  and the approximate Q function: 

J(w) = 𝔼π [(qπ(S, A) − Q(S, A, w))2]

ℒ = (r + γ max
a′ �

Q(s, a′�, w)−Q(s, a, w))
2

wrong!
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Q-Learning: Off-Policy TD Control
‣ One-step Q-learning:



‣ Minimize MSE loss by stochastic gradient descent 

‣ Converges to Q∗ using table lookup representation 

‣ But diverges using neural networks due to:  
1. Correlations between samples  
2. Non-stationary targets 

Stability of training problems for DQN

‣ Solutions: 
1. Experience buffer 

2. Targets stay fixed for many iterations

ℒ = (r + γ max
a′ �

Q(s′�, a′ �, w)−Q(s, a, w))
2



‣ Minimize MSE loss by stochastic gradient descent 

‣ Boils down to a supervised learning problem 

‣ I use MCTS to play 800 games, I gather the Q estimates of states and 
actions in the MCTS trees and train a regressor. 

‣ Any problems? 

‣ Any solutions? 

‣ DAGGER!

Learning a DQN supervised from a 
planner

ℒ = (QMCTS(s, a)−Q(s, a, w))2



‣ Minimize MSE loss by stochastic gradient descent 

‣ Boils down to a supervised learning problem 

‣ I use MCTS to play 800 games, I gather the Q estimates of states and 
actions in the MCTS trees and train a regressor. Then use it to find a 
policy 

‣ Any problems? 

‣ Any solutions? 

‣ DAGGER! 

‣ Also: training a classifier directly worked best!

Learning a DQN supervised from a 
planner

ℒ = (QMCTS(s, a)−Q(s, a, w))2



Policy-Based Reinforcement Learning 
‣ So far we approximated the value or action-value function using 

parameters θ (e.g. neural networks) 

‣ A policy was generated directly from the value function e.g. using ε-
greedy 

‣ We will not use any models, and we will learn from experience, not 
imitation

‣ In this lecture we will directly parameterize the policy 



Policy-Based Reinforcement Learning 
‣ So far we approximated the value or action-value function using 

parameters θ (e.g. neural networks) 

‣ A policy was generated directly from the value function e.g. using ε-
greedy 

‣ In this lecture we will directly parameterize the policy 

‣ We will focus again on model-free reinforcement learning 

Sometimes I will also use the notation:



Value-Based and Policy-Based RL 
‣ Value Based 

- Learned Value Function  
- Implicit policy (e.g. ε-greedy) 

‣ Policy Based 
- No Value Function  
- Learned Policy 

‣ Actor-Critic  
- Learned Value Function 
- Learned Policy 



Advantages of Policy-Based RL 
‣ Advantages 

- Effective in high-dimensional or continuous action spaces  
- Can learn stochastic policies  

- We will look into the benefits of stochastic policies in a future lecture 



Policy function approximators

discrete actions

go left
go right

s

Output is a distribution over a discrete set of actions

 With continuous policy 
parameterization the action 
probabilities change smoothly as 
a function of the learned
parameter, whereas in epsilon-
greedy selection the action 
probabilities may change 
dramatically
for an arbitrarily small change in 
the estimated action values, if 
that change results in a
different action having the 
maximal value.



Policy function approximators
deterministic continuous policy

a = ⇡✓(s)

s a

discrete actions

go left
go right

s

s

stochastic continuous policy

µ✓(s)

�✓(s)

a ⇠ N (µ✓(s),�
2
✓(s))

Output is a distribution over a discrete set of actions



Policy Objective Functions 
‣ Goal: given policy πθ(s,a) with parameters θ, find best θ 

‣ But how do we measure the quality of a policy πθ? 

‣ In episodic environments we can use the start value 

‣ In continuing environments we can use the average value 

‣ Or the average reward per time-step

where               is stationary distribution of Markov chain for πθ 



Policy Objective Functions 
‣ Goal: given policy πθ(s,a) with parameters θ, find best θ 

‣ But how do we measure the quality of a policy πθ? 

‣ In continuing environments we can use the average value 

‣ In the episodic case,               is defined to be  
- the expected number of time steps t on which St = s  
- in a randomly generated episode starting in s0 and  
- following π and the dynamics of the MDP. 

Remember: Episode of experience under 
policy π:  



Policy Optimization
‣ Policy based reinforcement learning is an optimization problem  

- Find θ that maximizes J(θ) 

‣ Some approaches do not use gradient  
- Hill climbing 
- Genetic algorithms 

‣ We focus on gradient descent, many extensions possible 

‣ And on methods that exploit sequential structure 

‣ Greater efficiency often possible using gradient 



Policy Gradient 
‣ Let J(θ) be any policy objective function 

‣ Policy gradient algorithms search for a local 
maximum in J(θ) by ascending the gradient of 
the policy, w.r.t. parameters θ 

α is a step-size 
parameter (learning 
rate) 

is the policy gradient 



Computing Gradients By Finite Differences 
‣ To evaluate policy gradient of πθ(s, a) 

‣ Uses n evaluations to compute policy gradient in n dimensions 

‣ Simple, noisy, inefficient - but sometimes effective

‣ Works for arbitrary policies, even if policy is not differentiable 

‣ For each dimension k in [1, n]  
- Estimate kth partial derivative of objective function w.r.t. θ  
- By perturbing θ by small amount ε in kth dimension  

     where uk is a unit vector with 1 in kth component, 0 elsewhere  



Learning an AIBO running policy



Learning an AIBO running policy

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and 
Stone, 2004



Learning an AIBO running policy

Initial Training Final



Policy Gradient: Score Function 
‣ We now compute the policy gradient analytically 

‣ Assume 
- policy πθ is differentiable whenever it is non-zero  
- we know the gradient

‣ Likelihood ratios exploit the following identity 

‣ The score function is



Softmax Policy: Discrete Actions 
‣ We will use a softmax policy as a running example

‣ Weight actions using linear combination of features

            Think a neural network with a softmax output probabilities

‣ Probability of action is proportional to exponentiated weight 

Nonlinear extension: replace            with a deep 
neural network with trainable weights w  
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Gaussian Policy: Continuous Actions 

‣ Variance may be fixed σ2, or can also parameterized

‣ In continuous action spaces, a Gaussian policy is natural 

‣ The score function is 

‣ Mean is a linear combination of state features 

Nonlinear extension: replace           with a deep 
neural network with trainable weights w  

‣ Policy is Gaussian



One-step MDP
‣ Consider a simple class of one-step MDPs 

- Starting in state 
- Terminating after one time-step with reward

‣ First, let’s look at the objective:

Intuition: Under MDP:



One-step MDP
‣ Consider a simple class of one-step MDPs 

- Starting in state 
- Terminating after one time-step with reward

‣ Use likelihood ratios to compute the policy gradient 


