Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Policy gradients

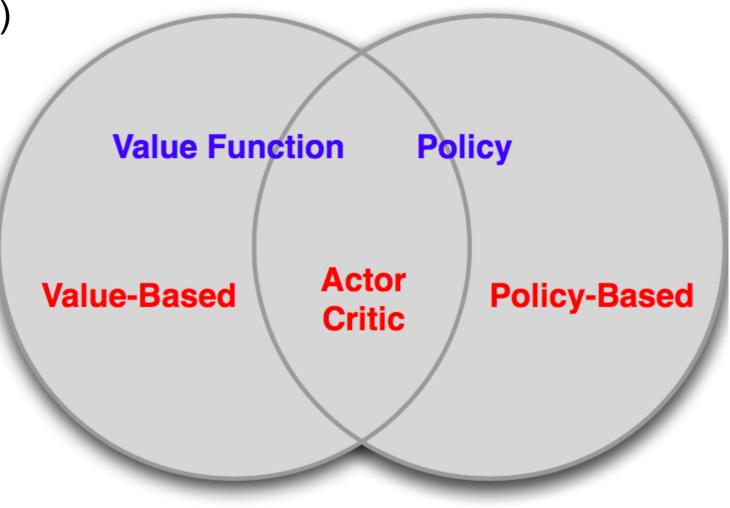
CMU 10-403

Katerina Fragkiadaki

Revision

Value-Based and Policy-Based RL

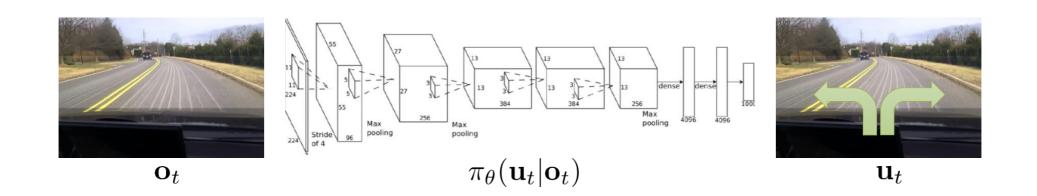
- Value Based
 - Learned Value Function
 - Implicit policy (e.g. ε-greedy)
- Policy Based
 - No Value Function
 - Learned Policy
- Actor-Critic
 - Learned Value Function
 - Learned Policy



Advantages of Policy-Based RL

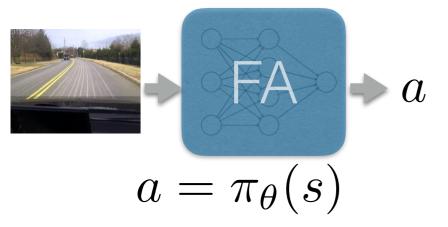
- Advantages
 - Effective in high-dimensional or continuous action spaces
 - Can learn stochastic policies

Policy function approximators



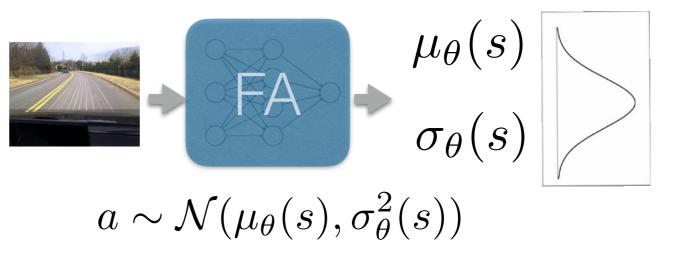
Policy function approximators

deterministic continuous policy



e.g. outputs a steering angle directly

stochastic continuous policy

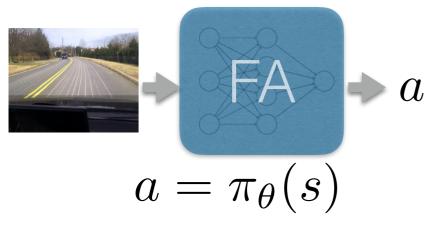




Outputs a distribution over a discrete set of actions

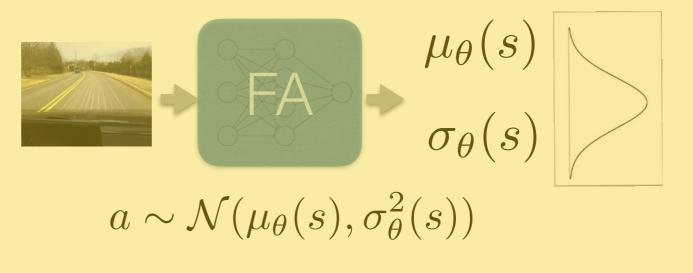
Policy function approximators - this lecture

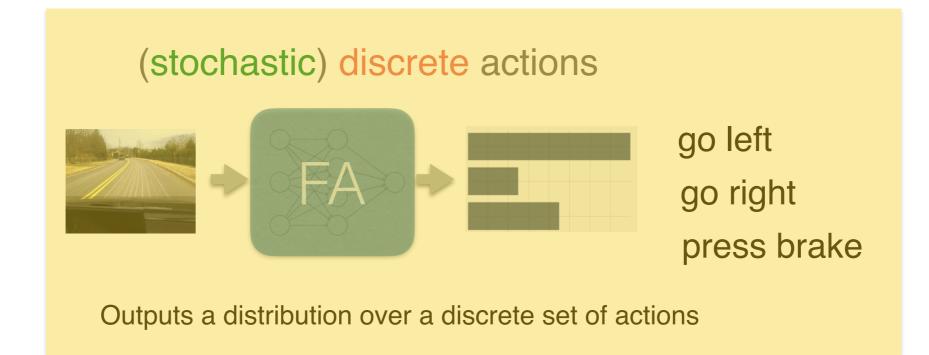
deterministic continuous policy



e.g. outputs a steering angle directly

stochastic continuous policy





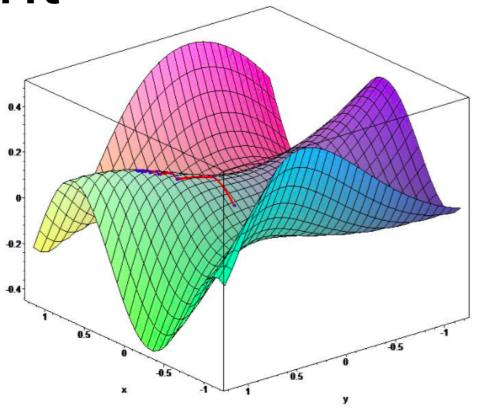
Policy Optimization

- Let $U(\theta)$ be any policy **objective function**
- Policy based reinforcement learning is an optimization problem
 - Find θ that maximizes U(θ)
- Some approaches do not use gradient
 - Hill climbing
 - Genetic algorithms
- Greater efficiency often possible using gradient

Policy Gradient

- Let U(θ) be any policy objective function
- Policy gradient algorithms search for a local maximum in U(θ) by ascending the gradient of the policy, w.r.t. parameters θ

$$\theta_{new} = \theta_{old} + \Delta \theta$$
$$\Delta \theta = \alpha \nabla_{\theta} U(\theta)$$



 $\partial \theta_1$

α is a step-size parameter (learning rate) is the policy gradient

$$\nabla_{\theta} U(\theta) =$$

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

Computing Gradients By Finite Differences

- Numerically approximating the policy gradient of $\pi_{\theta}(s, a)$
- For each dimension k in [1, n]
 - Estimate k^{th} partial derivative of objective function w.r.t. θ
 - By perturbing θ by small amount ϵ in kth dimension

$$rac{\partial U(heta)}{\partial heta_k} pprox rac{U(heta + \epsilon u_k) - U(heta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere

- Uses n evaluations to compute policy gradient in n dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Learning an AIBO running policy

 $\pi \leftarrow InitialPolicy$ while !done do $\{R_1, R_2, \ldots, R_t\} = t$ random perturbations of π evaluate($\{R_1, R_2, ..., R_t\}$) for $\mathbf{k} = 1$ to N do $Avg_{+\epsilon, k} \leftarrow$ average score for all R_i that have a positive perturbation in dimension k $Avg_{+0, k} \leftarrow$ average score for all R_i that have a zero perturbation in dimension k $Avg_{-\epsilon, k} \leftarrow$ average score for all R_i that have a negative perturbation in dimension k if $Avg_{+0, k} > Avg_{+\epsilon, k}$ and $Avg_{+0, k} > Avg_{-\epsilon, k}$ then $A_{\mathbf{k}} \leftarrow 0$ else $A_{\mathbf{k}} \leftarrow Avg_{+\epsilon,\mathbf{k}} - Avg_{-\epsilon,\mathbf{k}}$ end if end for $A \leftarrow \frac{A}{|A|} * \eta$ $\pi \leftarrow \pi + A$ end while

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and Stone, 2004

Policy objective

Trajectory τ is a state action sequence $s_0, a_0, s_1, a_1, \ldots, s_H, a_H$

Trajectory reward: $R(\tau) = \sum_{t=0}^{H} R(s_t, a_t)$ A reasonable policy objective then is $U(\theta) = \mathbb{E}_{\tau \sim P(\tau; \theta)} R(\tau)$

$$\max_{\theta} \quad U(\theta) = \mathbb{E}_{\tau \sim P(\tau;\theta)}[R(\tau)] = \sum_{\tau} P(\tau;\theta)R(\tau)$$
Probability of a trajectory: $P(\tau;\theta) = \prod_{t=0}^{H} \frac{P(s_{t+1}|s_t, a_t) \cdot \pi_{\theta}(a_t|s_t)}{\text{dynamics}} \cdot \frac{\pi_{\theta}(a_t|s_t)}{\text{policy}}$

Our problem is to compute $\nabla_{\theta} U(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P(\tau;\theta)}[R(\tau)]$

This lecture

Computing derivatives of expectations w.r.t. variables that parameterize the distribution, not the quantity inside the expectation

$$\max_{\theta} \quad \mathbb{E}_{x \sim P(x;\theta)} f(x)$$

Assumptions:

- P is a probability density function that is continuous and differentiable
- P is easy to sample from

$$\max_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} \left[f(x) \right]$$

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} \left[f(x) \right]$$
$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$

Why?

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$
$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$
$$= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$
$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$
$$= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

What is the problem here?

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$

= $\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$
= $\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$
= $\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$

$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$

$$= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

$$= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$

$$\begin{split} {}_{\theta}\mathbb{E}_{x}f(x) &= \nabla_{\theta}\mathbb{E}_{x\sim P_{\theta}(x)}\left[f(x)\right] \\ &= \nabla_{\theta}\sum_{x}P_{\theta}(x)f(x) \\ &= \sum_{x}\nabla_{\theta}P_{\theta}(x)f(x) \\ &= \sum_{x}P_{\theta}(x)\frac{\nabla_{\theta}P_{\theta}(x)}{P_{\theta}(x)}f(x) \\ &= \sum_{x}P_{\theta}(x)\nabla_{\theta}\log P_{\theta}(x)f(x) \\ &= \mathbb{E}_{x\sim P_{\theta}(x)}\left[\nabla_{\theta}\log P_{\theta}(x)f(x)\right] \end{split}$$

 ∇

What have we achieved?

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$

$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$

$$= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

$$= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$

$$= \mathbb{E}_{x \sim P_{\theta}(x)} [\nabla_{\theta} \log P_{\theta}(x) f(x)]$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

$$\nabla_{\theta} \mathbb{E}_{x} f(x) = \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} [f(x)]$$

$$= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)$$

$$= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)$$

$$= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)$$

$$= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)$$

$$= \mathbb{E}_{x \sim P_{\theta}(x)} [\nabla_{\theta} \log P_{\theta}(x) f(x)]$$

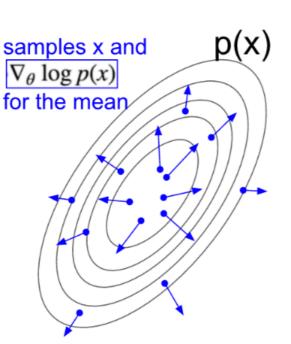
$$\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x^{(i)}) R(x^{(i)})$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

$$\begin{aligned} \nabla_{\theta} \mathbb{E}_{x} f(x) &= \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} \left[f(x) \right] \\ &= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\ &= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\ &= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\ &= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\ &= \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x^{(i)}) f(x^{(i)}) \end{aligned}$$

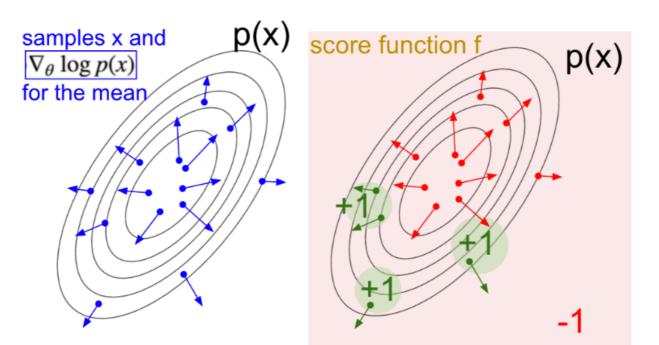
From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

For Gaussian p(x)



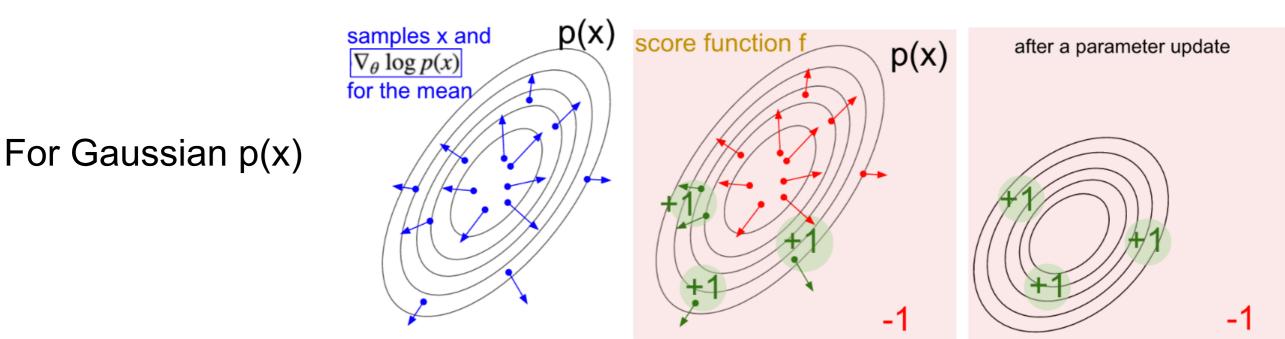
$$\begin{aligned} \nabla_{\theta} \mathbb{E}_{x} f(x) &= \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} \left[f(x) \right] \\ &= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\ &= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\ &= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\ &= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\ &= \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x^{(i)}) f(x^{(i)}) \end{aligned}$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!



$$\begin{aligned} \nabla_{\theta} \mathbb{E}_{x} f(x) &= \nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)} \left[f(x) \right] \\ &= \nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\ &= \sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\ &= \sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\ &= \sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\ &= \mathbb{E}_{x \sim P_{\theta}(x)} \left[\nabla_{\theta} \log P_{\theta}(x) f(x) \right] \\ &\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(x^{(i)}) f(x^{(i)}) \end{aligned}$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!



$$\max_{\theta} U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\max_{\theta} U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\nabla_{\theta} U(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$
$$= \nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau)$$
$$= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau)$$

$$\max_{\theta} U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\begin{split} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right] \\ &= \nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \\ &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right] \end{split}$$

$$\max_{\theta} U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\begin{split} \nabla_{\theta} U(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right] \\ &= \nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\mu} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau) \\ &= \sum_{\tau} P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \\ &= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right] \end{split}$$

Approximate the gradient with empirical estimate from N sampled trajectories:

$$\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)})$$

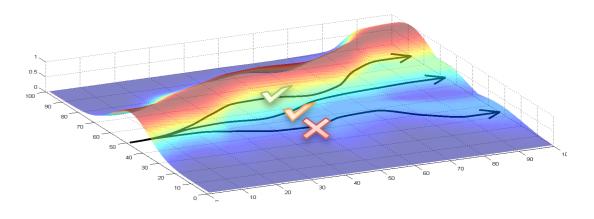
From trajectories to actions

$$\begin{split} \nabla_{\theta} \log P(\tau^{(i)}; \theta) &= \nabla_{\theta} \log \left[\prod_{t=0}^{T} \underbrace{P(s_{t+1}^{(i)} \mid s_{t}^{(i)}, a_{t}^{(i)}) \cdot \underbrace{\pi_{\theta}(a_{t}^{(i)} \mid s_{t}^{(i)})}_{\text{policy}} \right] \\ &= \nabla_{\theta} \left[\sum_{t=0}^{T} \underbrace{\log P(s_{t+1}^{(i)} \mid s_{t}^{(i)}, a_{t}^{(i)}) + \underbrace{\log \pi_{\theta}(a_{t}^{(i)} \mid s_{t}^{(i)})}_{\text{policy}} \right] \\ &= \nabla_{\theta} \left[\sum_{t=0}^{T} \underbrace{\log \pi_{\theta}(a_{t}^{(i)} \mid s_{t}^{(i)})}_{\text{policy}} \right] \\ &= \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} \mid s_{t}^{(i)}) \end{split}$$

Intuition

$$\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)})$$

- Gradient tries to:
 - Increase probability of paths with positive R
 - Decrease probability of paths with negative R



I Likelihood ratio changes probabilities of experienced paths, does not try to change the paths (<-> Path Derivative)

Likelihood ratio gradient estimator

$$\max_{\theta} U(\theta) = \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$

$$\nabla_{\theta} U(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[R(\tau) \right]$$
$$= \mathbb{E}_{\tau \sim P_{\theta}(\tau)} \left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \right]$$

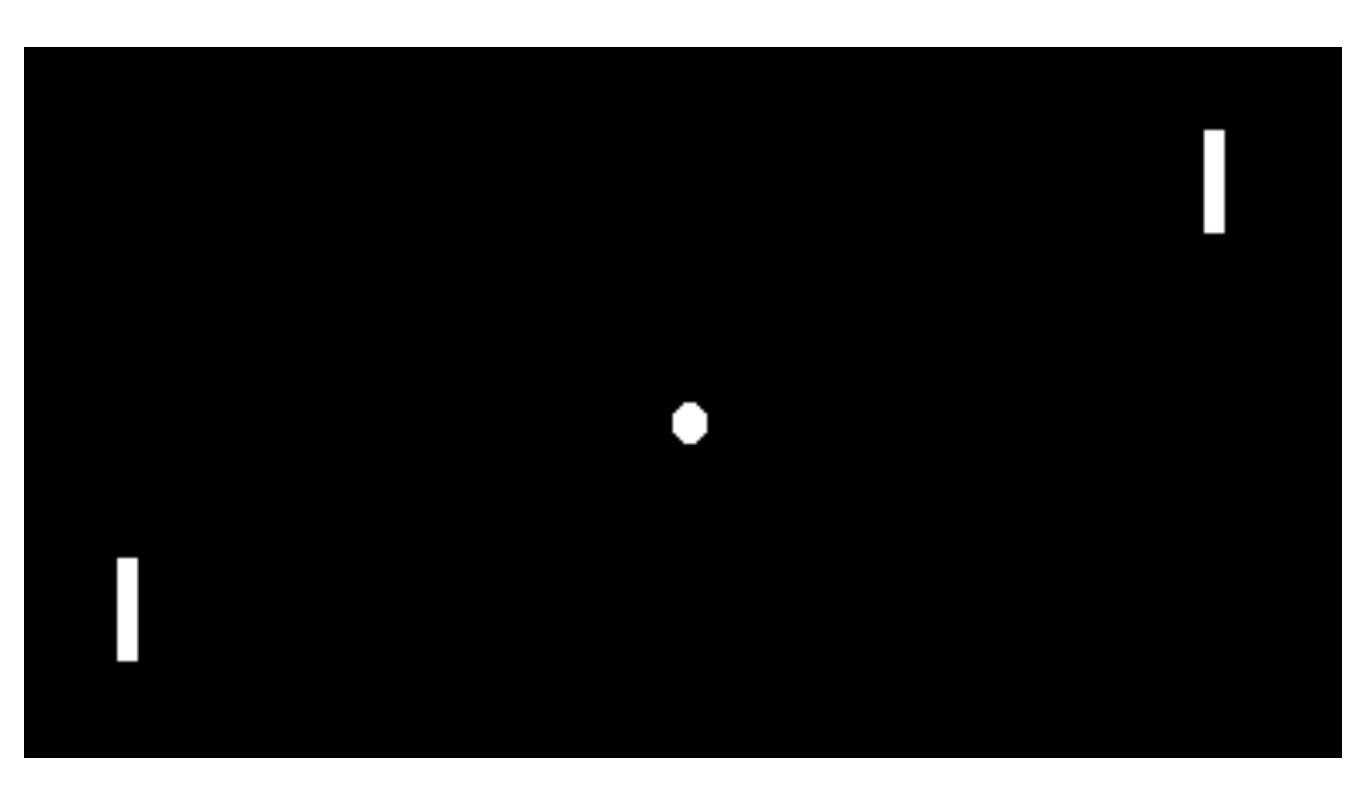
An unbiased estimator of this gradient:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)})$$

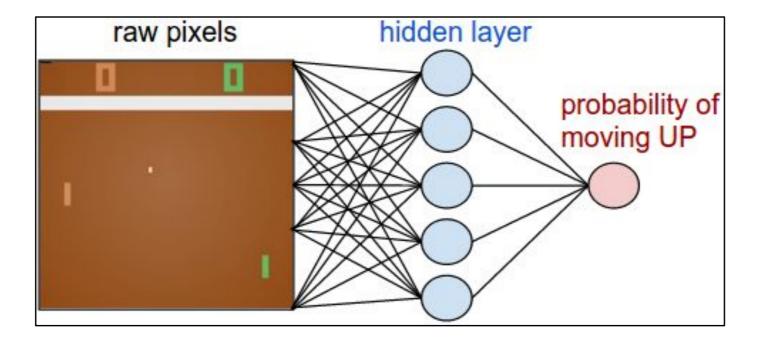
 $\mathbb{E}[\hat{g}] = \nabla_{\theta} U(\theta)$

Pong from Pixels

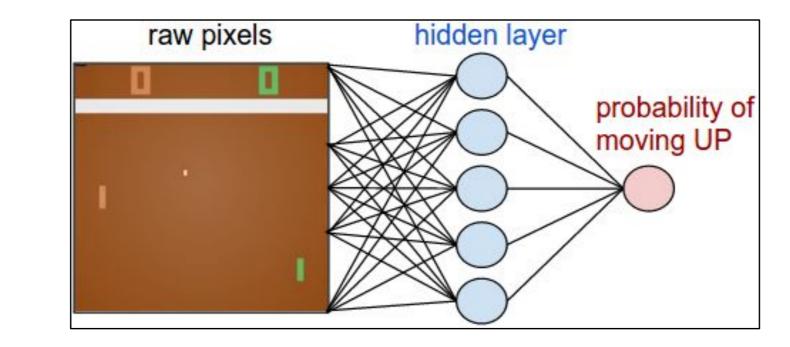
Slides from Andrei Karpathy

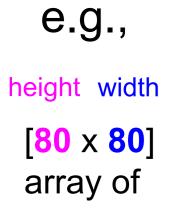


Policy network

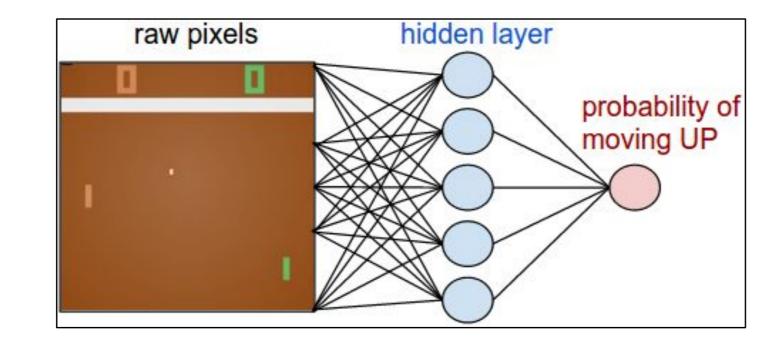


Policy network





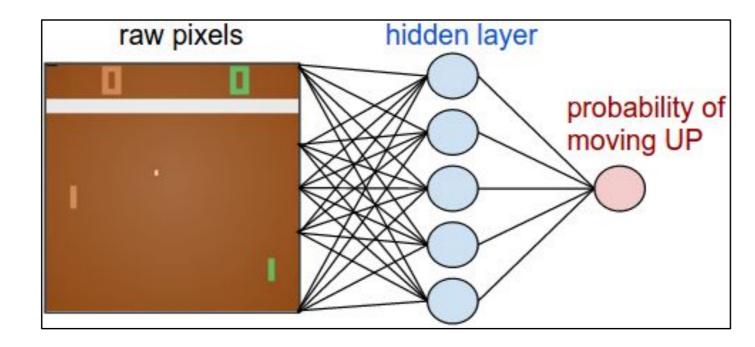
Policy network



height width [80 x 80] array

h = np.dot(W1, x) # compute hidden layer neuron activations h[h<0] = 0 # ReLU nonlinearity: threshold at zero logp = np.dot(W2, h) # compute log probability of going up p = 1.0 / (1.0 + np.exp(-logp)) # sigmoid function (gives probability of going up)

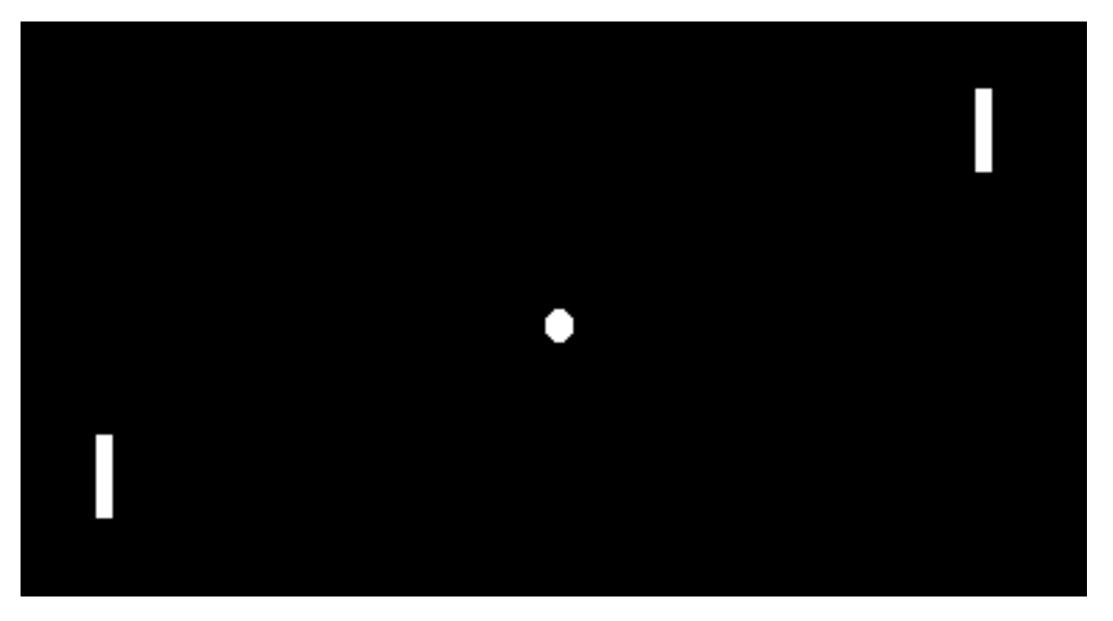
Policy network



E.g. 200 nodes in the hidden network, so:

[(80*80)*200 + 200] + [200*1 + 1] = ~1.3M parameters Layer 1 Layer 2

height width [80 x 80] array



Network does not see this. Network sees 80*80 = 6,400 numbers. It gets a reward of +1 or -1, some of the time.

Q: How do we efficiently find a good setting of the 1.3M parameters?

Random search

Evolutionary methods

Approximation to the gradient via finite differences

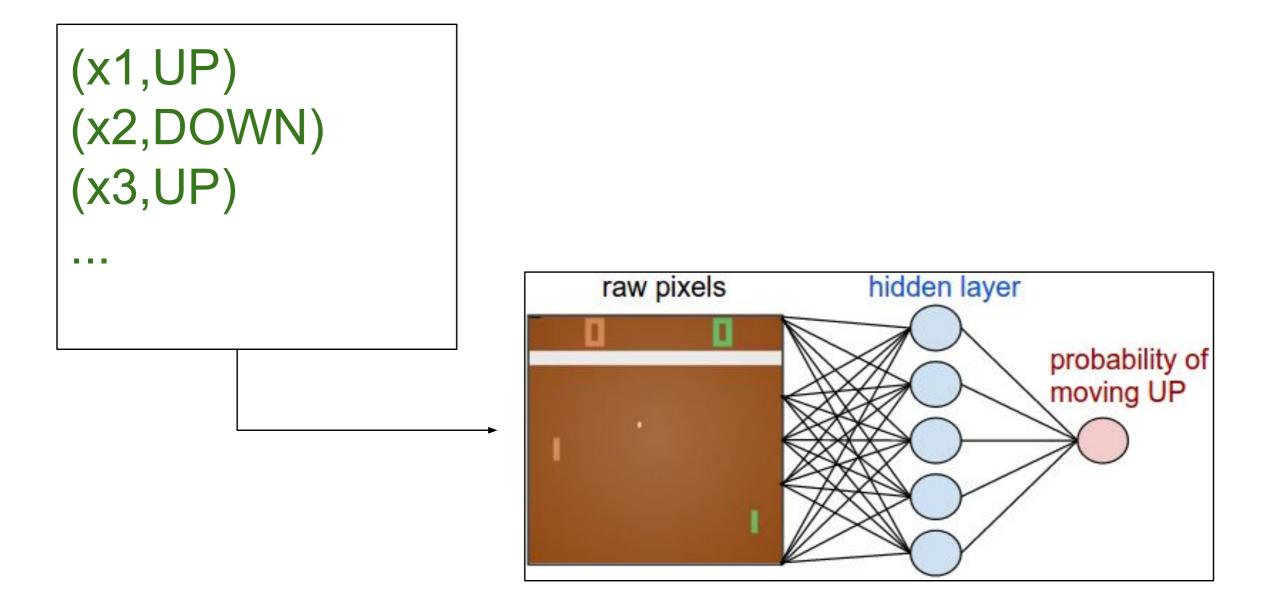
Likelihood ratio policy gradients

Suppose we had the training labels... (we know what to do in any state)

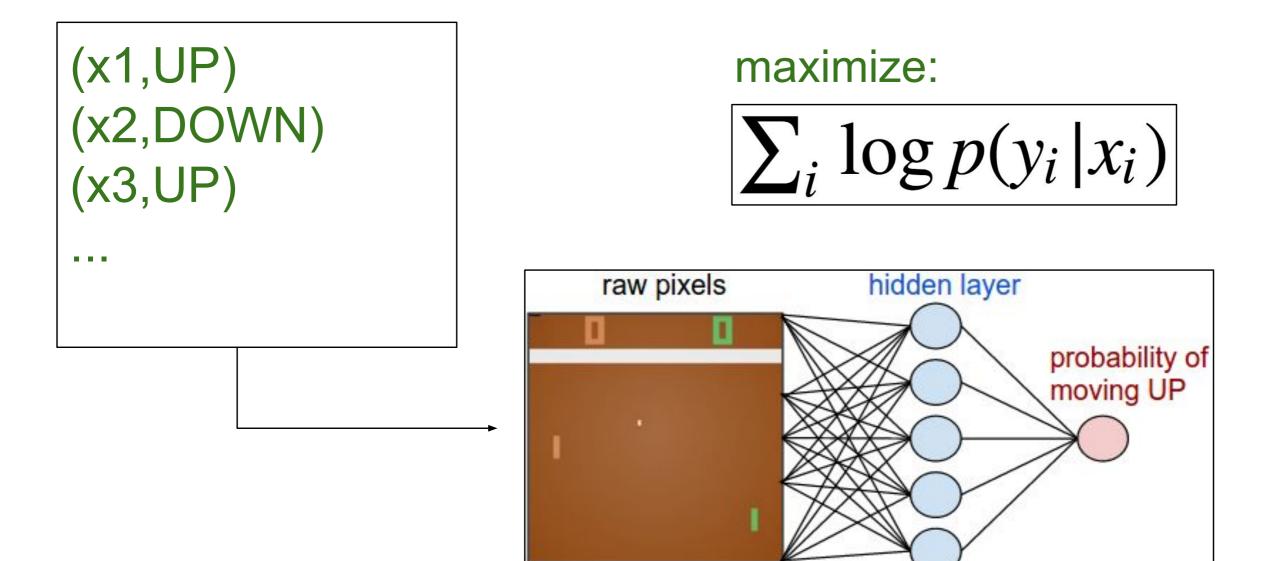
(x1,UP) (x2,DOWN) (x3,UP)

. . .

Suppose we had the training labels... (we know what to do in any state)

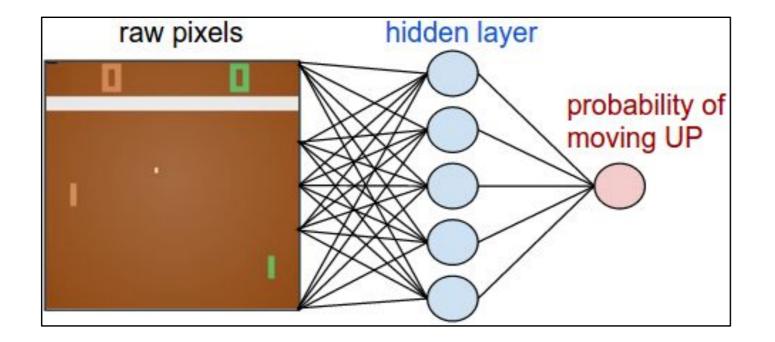


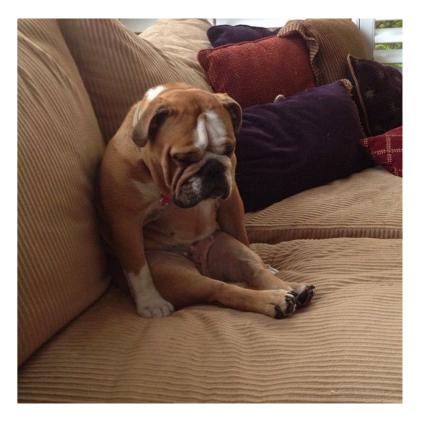
Suppose we had the training labels... (we know what to do in any state)



supervised learning

Except, we don't have labels...





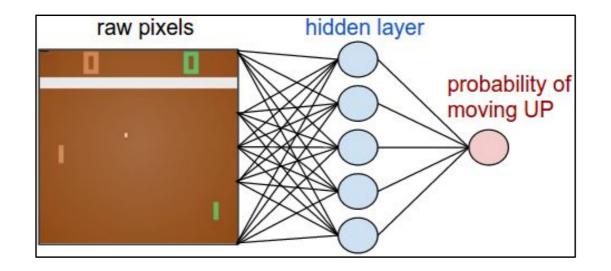
Should we go UP or DOWN?

Except, we don't have labels...

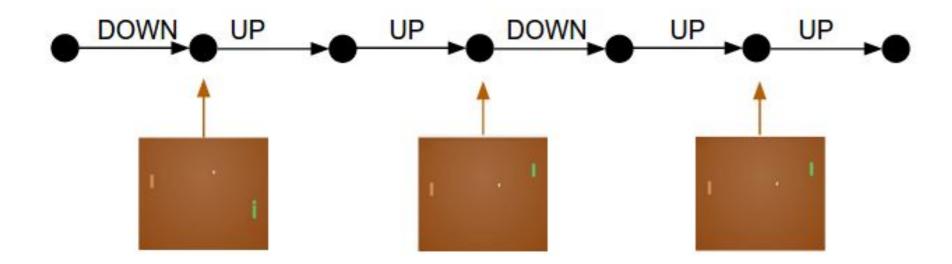
"Try a bunch of stuff and see what happens. Do more of the stuff that worked in the future." -RI

trial-and-error learning

Let's just act according to our current policy...



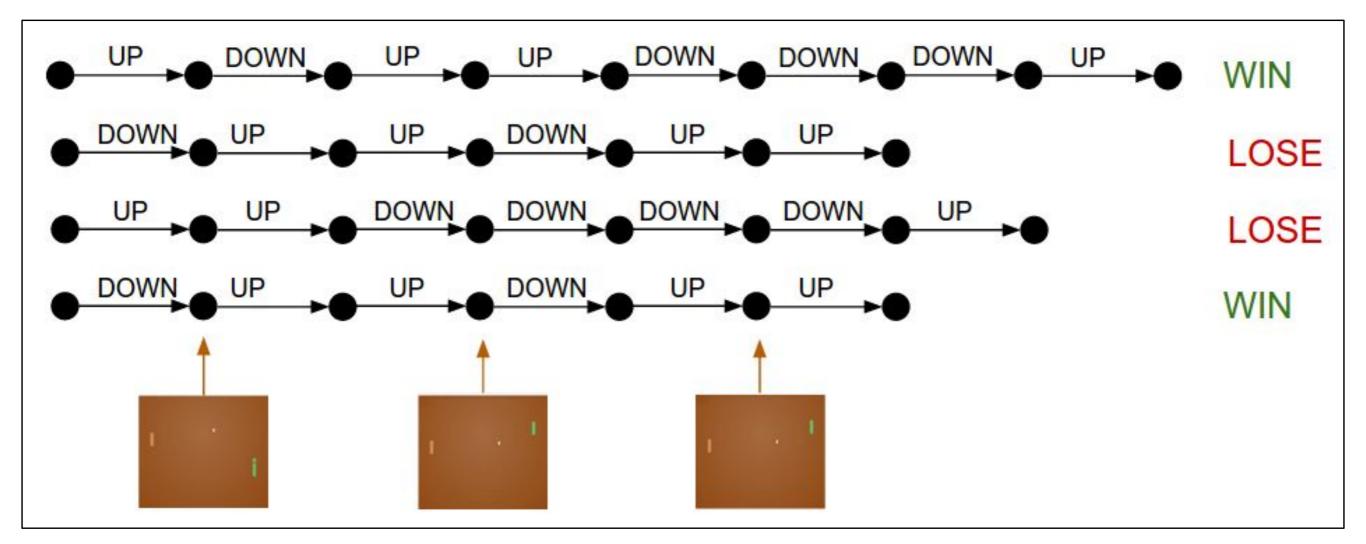
Rollout the policy and collect an episode



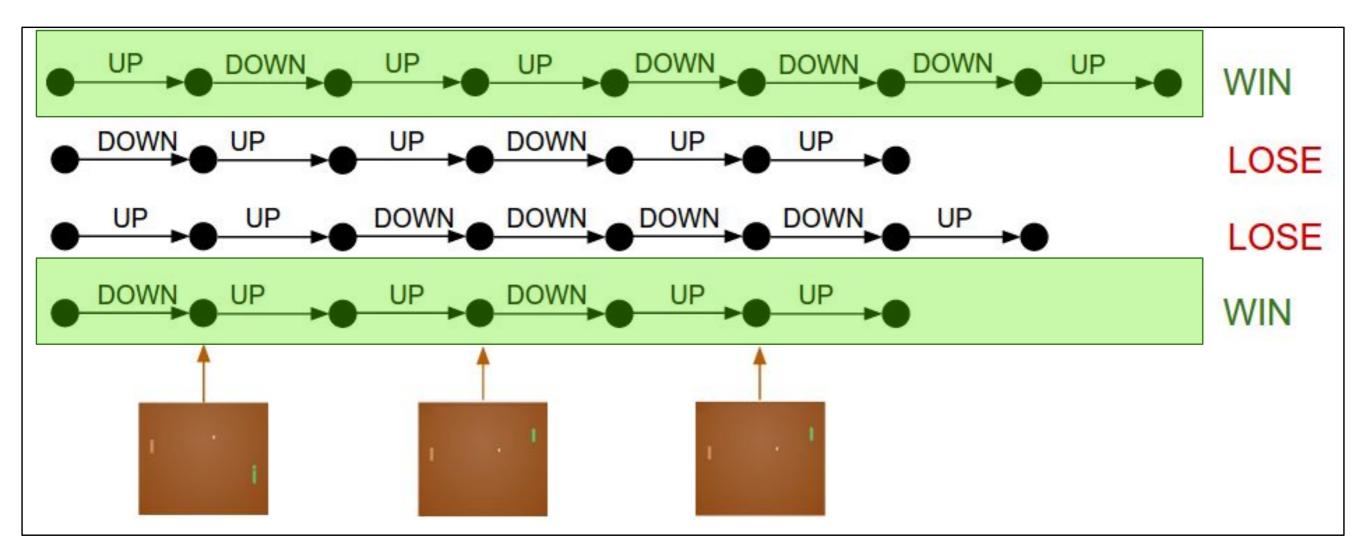
WIN

Collect many rollouts...

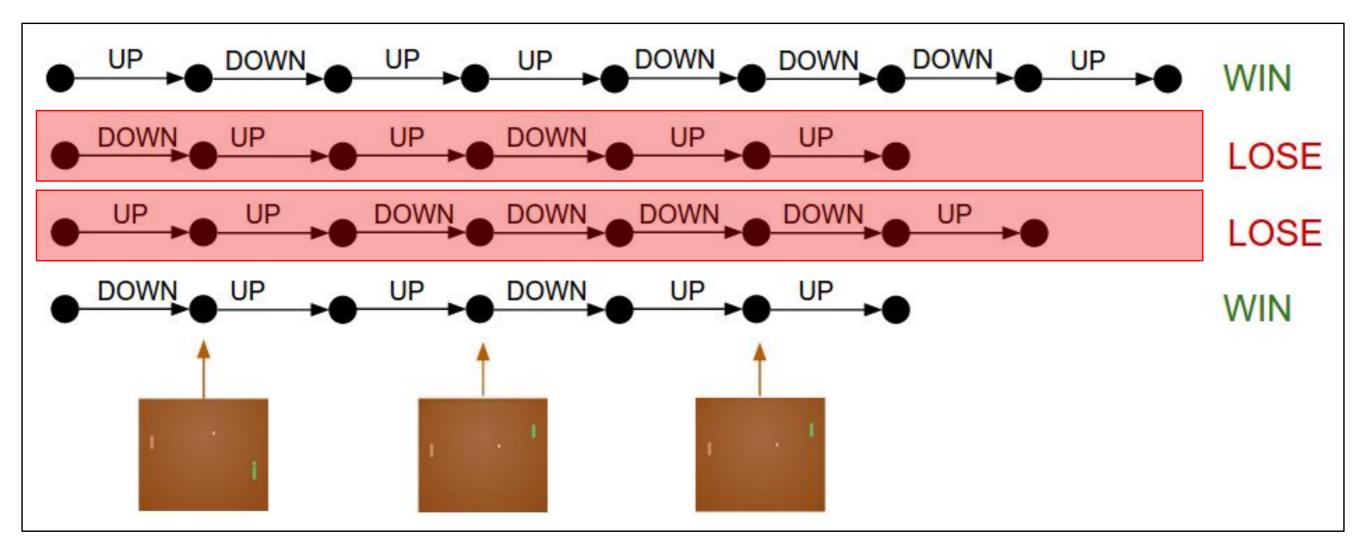
4 rollouts:



Not sure whatever we did here, but apparently it was good.



Not sure whatever we did here, but it was bad.

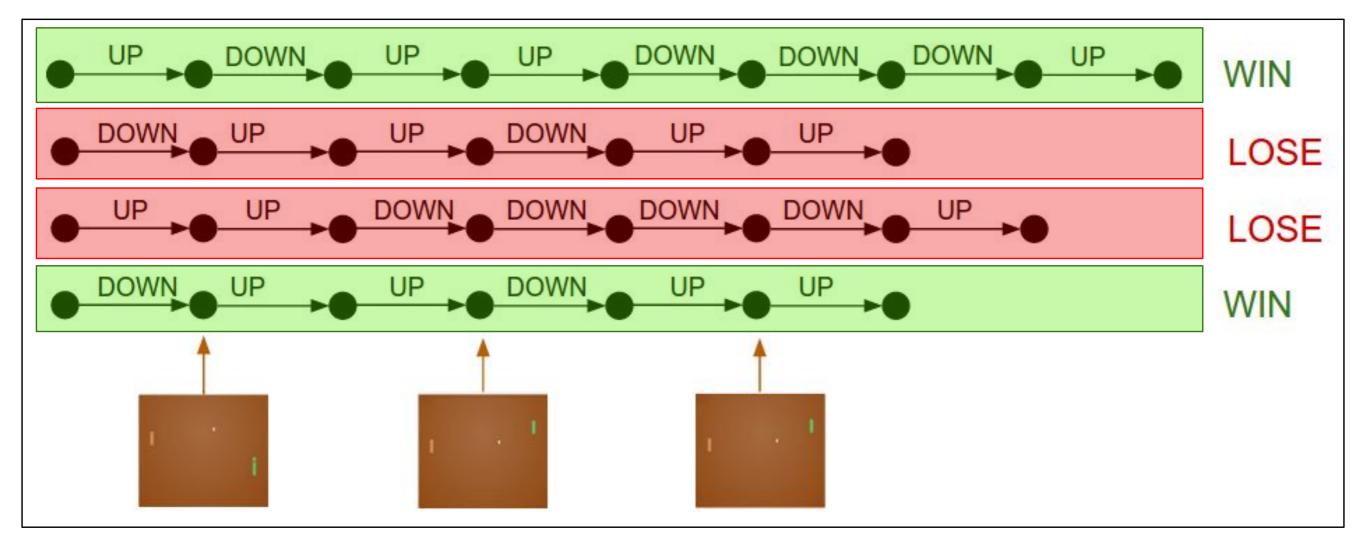


Pretend every action we took here was the correct label.

maximize: $\log p(y_i | x_i)$

Pretend every action we took here was the wrong label.

maximize: $(-1) * \log p(y_i | x_i)$



maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot | x_i)$$

maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot | x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_i A_i * \log p(y_i | x_i)$$

maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot | x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_i * \log p(y_i | x_i)$$

We call this the **advantage**, it's a number, like +1.0 or -1.0 based on how this action eventually turned out.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory return (episode return)

maximize:

$$\sum_i \log p(y_i | x_i)$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

$$y_i \sim p(\cdot | x_i)$$

2) once we collect a batch of rollouts: maximize:

$$\sum_{i} A_i * \log p(y_i | x_i)$$

+ve advantage will make that action more likely in the future, for that state.
-ve advantage will make that action less likely in the future, for that state.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory return $R(\tau)$

Temporal structure

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)})$$
$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=0}^{H} R(s_{k}^{(i)}, a_{k}^{(i)})\right)$$

Each action takes the blame for the full trajectory!

Temporal structure

$$\begin{split} \hat{g} &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)}) \\ &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=0}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) \right) \\ &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=0}^{t-1} R(s_{k}^{(i)}, a_{k}^{(i)}) + \sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) \right) \end{split}$$

Each action takes the blame for the full trajectory!

These rewards are not caused by actions that come after t

Temporal structure

$$\begin{split} \hat{g} &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)}) \\ &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=0}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) \right) \\ &= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=0}^{t-1} R(s_{k}^{(i)}, a_{k}^{(i)}) + \sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) \right) \end{split}$$

Each action takes the blame for the full trajectory!

Consider instead:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) \right)$$

Each action takes the blame for the trajectory that comes after it

We can call this the return from t onwards G_t

Let's analyze the update:

$$\Delta \theta_t = \alpha G_t \nabla_\theta \log \pi_\theta(s_t, a_t)$$

Let's us rewrite is as follows:

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \gamma^t G_t \frac{\nabla_{\boldsymbol{\theta}} \pi(A_t | S_t, \boldsymbol{\theta})}{\pi(A_t | S_t, \boldsymbol{\theta})}$$

- Update is proportional to:
 - the product of a return G_t and
 - the gradient of the probability of taking the action actually taken,
 - divided by the probability of taking that action.

Let's analyze the update:

$$\Delta \theta_t = \alpha G_t \nabla_\theta \log \pi_\theta(s_t, a_t)$$

Let's us rewrite is as follows:

move most in the directions that favor actions that yield the highest return

$$\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_t + \alpha \gamma^t G_t \frac{\nabla_{\boldsymbol{\theta}} \pi(A_t | S_t, \boldsymbol{\theta})}{\pi(A_t | S_t, \boldsymbol{\theta})}$$

Update is inversely proportional to the action probability -- actions that are selected frequently are at an advantage (the updates will be more often in their direction)

For constant b, co

ĝ

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) (R(\tau^{(i)}) - b)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

N

 $\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$

For constant b, consider this:

consider this:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) (R(\tau^{(i)}) - b)$$

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

= $\sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$

For constant b, consider this:

ponsider this:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) (R(\tau^{(i)}) - b)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

= $\sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$
= $\sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau; \theta)} b$

For constant b, consider this:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau; \theta)} b$$

$$= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b$$

For constant b, consider this:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau; \theta)} b$$

$$= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b$$

$$= b \left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) \right)$$

For constant b, consider this:

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau; \theta)} b$$

$$= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b$$

$$= b \left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) \right)$$

$$= b \left(\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) \right)$$

For constant b, consider this:

ĝ

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) (R(\tau^{(i)}) - b)$$
$$= \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) R(\tau^{(i)}) - \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}(\tau^{(i)}) b$$

$$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b$$

$$= \sum_{\tau} P(\tau; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau; \theta)} b$$

$$= \sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b$$

$$= b \left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) \right)$$

$$= b \left(\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) \right)$$

$$= 0$$

We still have an unbiased estimator of the gradient!

Baseline choices

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) - b\right)$$

- Constant baseline: $b = \mathbb{E}[R(\tau)] \approx \sum_{i=1}^{N} R(\tau^{(i)})$
- Time-dependent baseline:

$$b_t = \sum_{i=1}^{N} \sum_{k=t}^{H} R(s_k^{(i)}, a_k^{(i)})$$

State-dependent expected return:

$$b(s_t) = \mathbb{E}\left[r_t + r_{t+1} + r_{t+2} + \ldots + r_{H-1}\right] = V_{\pi}(s_t)$$

Estimate $V_{\pi}(s_t)$

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) - V^{\pi}(s_{k}^{(i)}) \right)$$

MC estimation

Initialize ϕ

- Collect trajectories $au_1, \ldots \tau_N$
- Regress against empirical return:

$$\phi_{i+1} \leftarrow \operatorname*{arg\,min}_{\phi} \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{H-1} \left(V_{\phi}^{\pi}(s_t^{(i)}) - \left(\sum_{k=t}^{H-1} R(s_k^{(i)}, u_k^{(i)})\right) \right)^2$$

REINFORCE

Algorithm 1 "Vanilla" policy gradient algorithm Initialize policy parameter θ , baseline b **for** iteration=1, 2, ... **do** Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $||b(s_t) - R_t||^2$, summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_t \mid s_t, \theta) \hat{A}_t$ end for

Estimate $V_{\pi}(s_t)$

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=t}^{H} R(s_{k}^{(i)}, a_{k}^{(i)}) - V^{\pi}(s_{k}^{(i)}) \right)$$

TD estimation

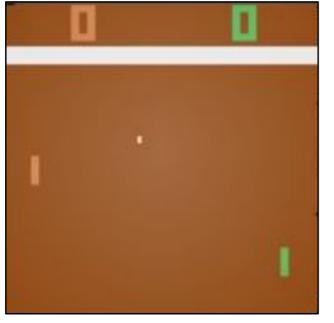
Initialize ϕ

- Collect data {s, u, s', r}
- Fitted V iteration:

$$\phi_{i+1} \leftarrow \min_{\phi} \sum_{(s,u,s',r)} \| r + V_{\phi_i}^{\pi}(s') - V_{\phi}(s) \|_2^2 + \lambda \| \phi - \phi_i \|_2^2$$

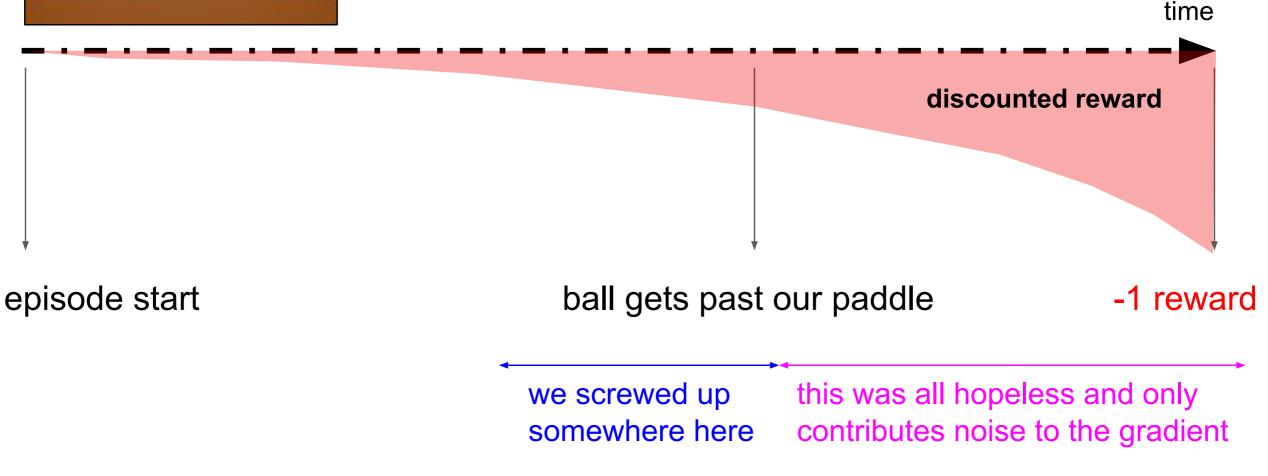
Bootstrapping!

Actions inherit the blame of the future return



All the random actions we did have been found bad, while they really didn't matter..

Can I find a better estimator for the cumulative future reward, instead of the return of a single rollout?



Better estimates for cumulative future reward

$$\hat{g} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\alpha_{t}^{(i)} | s_{t}^{(i)}) \left(\sum_{k=t}^{H} R(s_{k}^{(i)}, \alpha_{k}^{(i)}) - V^{\pi}(s_{k}^{(i)}) \right)$$

Estimation of Q from *single* roll-out

$$Q^{\pi}(s, u) = \mathbb{E}[r_0 + r_1 + r_2 + \dots | s_0 = s, a_0 = a]$$

- = high variance per sample based / no generalization
 - Reduce variance by discounting
 - Reduce variance by function approximation (=critic)

- Monte-Carlo policy gradient still has high variance
- We can use a critic to estimate the action-value function:

$$Q_w(s,a)pprox Q^{\pi_ heta}(s,a)$$

- Actor-critic algorithms maintain two sets of parameters
 - Critic Updates action-value function parameters w
 - Actor Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u]$

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots \mid s_0 = s, u_0 = u]$$

= $\mathbb{E}[r_0 + \gamma V^{\pi}(s_1) \mid s_0 = s, u_0 = u]$

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | s_0 = s, u_0 = u]$$

= $\mathbb{E}[r_0 + \gamma V^{\pi}(s_1) | s_0 = s, u_0 = u]$
= $\mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) | s_0 = s, u_0 = u]$

$$Q^{\pi,\gamma}(s,u) = \mathbb{E}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots | s_0 = s, u_0 = u]$$

= $\mathbb{E}[r_0 + \gamma V^{\pi}(s_1) | s_0 = s, u_0 = u]$
= $\mathbb{E}[r_0 + \gamma r_1 + \gamma^2 V^{\pi}(s_2) | s_0 = s, u_0 = u]$
= $\mathbb{E}[r_0 + \gamma r_1 + +\gamma^2 r_2 + \gamma^3 V^{\pi}(s_3) | s_0 = s, u_0 = u]$
= \dots

Asynchronous Deep RL

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih ¹	VMNIH@GOOGLE.COM
Adrià Puigdomènech Badia ¹	ADRIAP@GOOGLE.COM
Mehdi Mirza ^{1,2}	MIRZAMOM@IRO.UMONTREAL.CA
Alex Graves ¹	GRAVESA@GOOGLE.COM
Tim Harley 1	THARLEY@GOOGLE.COM
Timothy P. Lillicrap 1	COUNTZERO@GOOGLE.COM
David Silver ¹	DAVIDSILVER@GOOGLE.COM
Koray Kavukcuoglu ¹	KORAYK@GOOGLE.COM
¹ Google DeepMind	
² Montreal Institute for Learning Algorithms (MILA), University of Montreal	

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

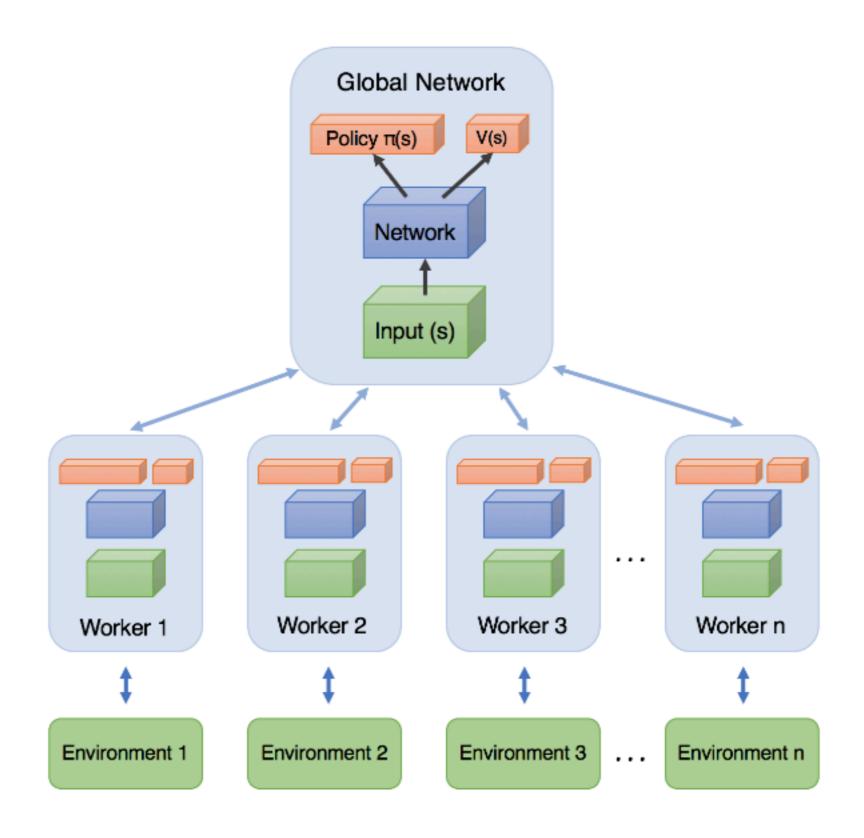
// Assume global shared parameter vectors θ and θ_v and global shared counter T = 0// Assume thread-specific parameter vectors θ' and θ'_{v} Initialize thread step counter $t \leftarrow 1$ repeat Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$. Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$ $t_{start} = t$ A₃C Get state s_t repeat Perform a_t according to policy $\pi(a_t|s_t;\theta')$ Receive reward r_t and new state s_{t+1} $t \leftarrow t + 1$ $T \leftarrow T + 1$ **until** terminal s_t or $t - t_{start} == t_{max}$ $R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state} \end{cases}$ for $i \in \{t - 1, ..., t_{start}\}$ do $R \leftarrow r_i + \gamma R$ Accumulate gradients wrt $\theta': d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i | s_i; \theta') (R - V(s_i; \theta'_u))$ Accumulate gradients wrt $\theta'_v: d\theta_v \leftarrow d\theta_v + \partial \left(R - V(s_i; \theta'_v)\right)^2 / \partial \theta'_v$ end for Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$. until $T > T_{max}$

What is the approximation used for the advantage?

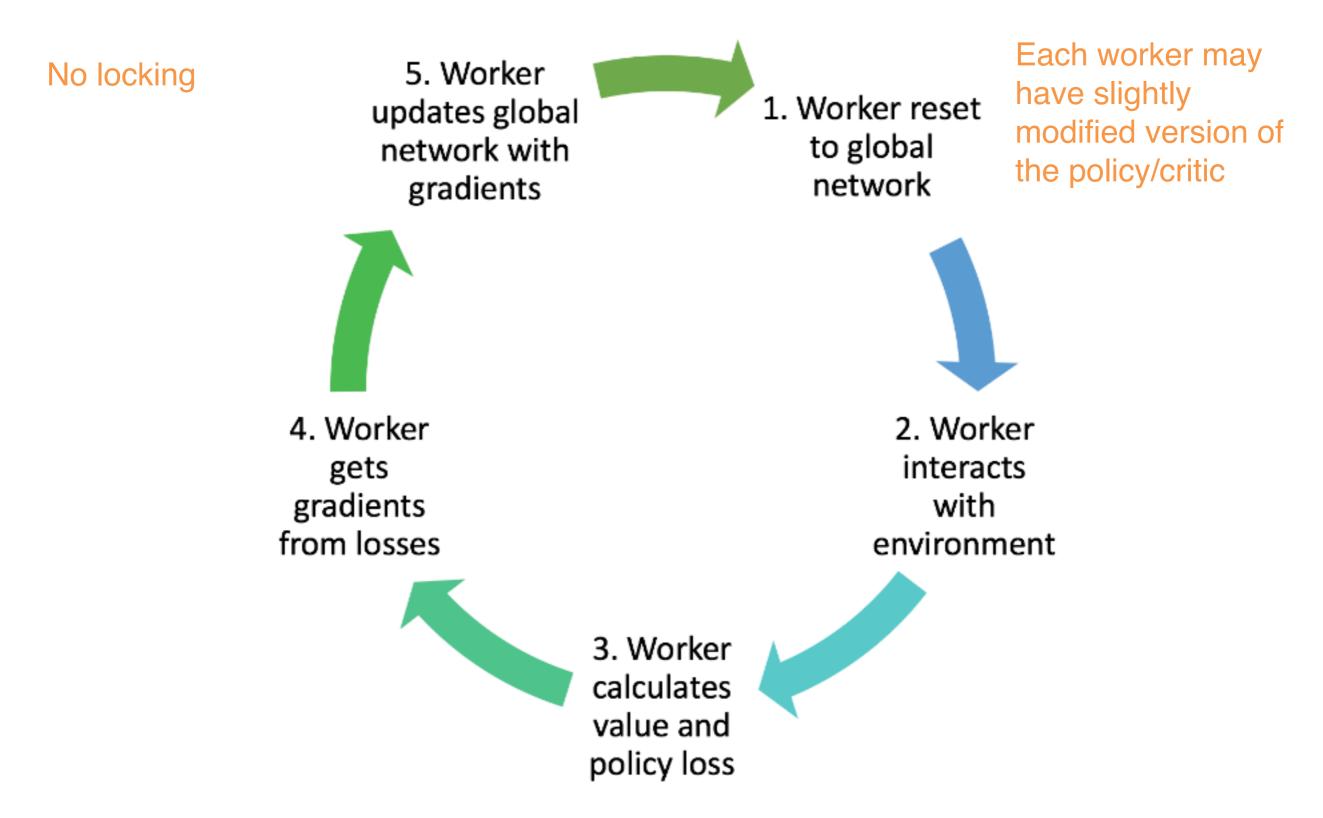
$$\begin{split} R_3 &= r_3 + \gamma V(s_4, \theta'_v) & A_3 &= R_3 - V(s_3; \theta'_v) \\ R_2 &= r_2 + \gamma r_3 + \gamma^2 V(s_4, \theta'_v) & A_2 &= R_2 - V(s_2; \theta'_v) \end{split}$$

 s_1, s_2, s_3, s_4 r_1, r_2, r_3

Distributed RL

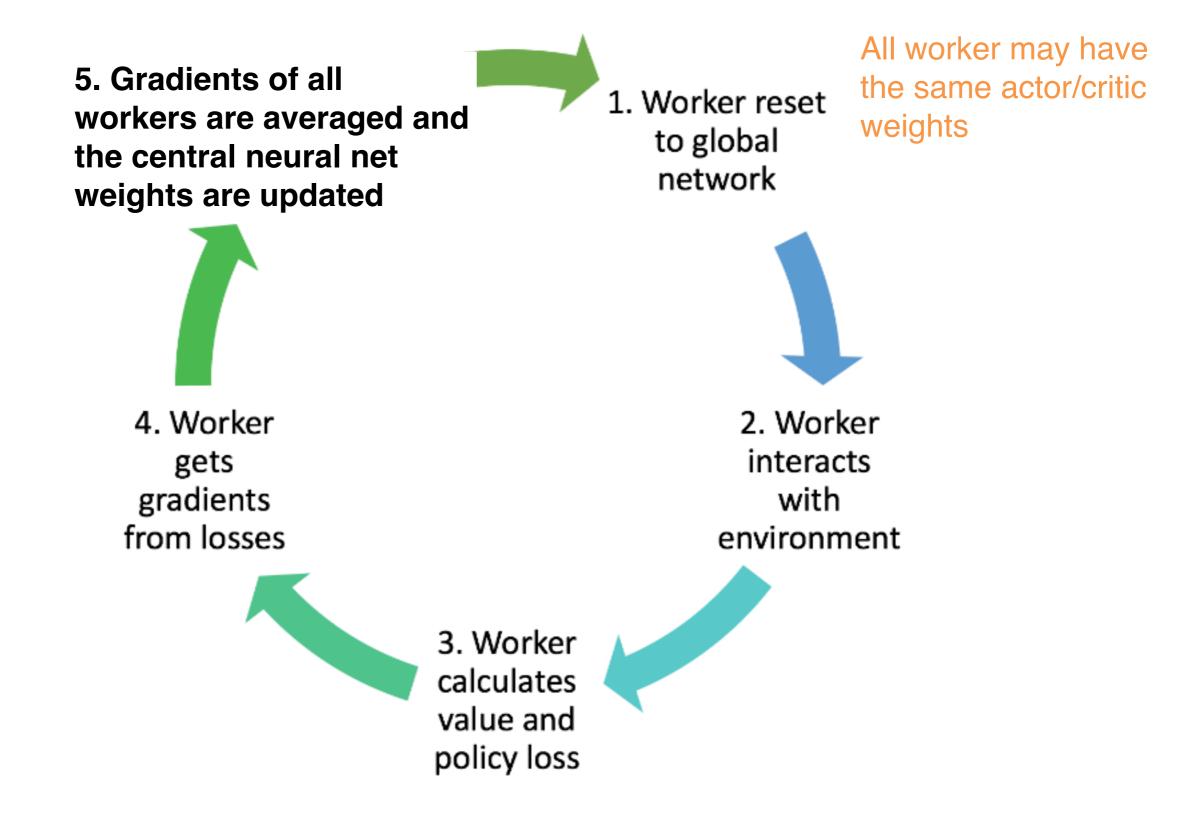


Distributed Asynchronous RL



The actor critic trained in such asynchronous way is knows as A3C

Distributed Synchronous RL



The actor critic trained in such synchronous way is knows as A2C

Advantages of Asynchronous (multi-threaded) RL

