Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Policy gradients

CMU 10-403

Katerina Fragkiadaki

Revision

Value-Based and Policy-Based RL

» Value Based

- Learned Value Function
- Implicit policy (e.g. e-greedy)
» Policy Based

Value Function Policy
- No Value Function

- Learned Policy

Actor
Critic

Value-Based Policy-Based |
» Actor-Critic

- Learned Value Function

- Learned Policy

Advantages of Policy-Based RL

» Advantages

- Effective in high-dimensional or continuous action spaces

- Can learn stochastic policies

Policy function approximators

/
= :
e
~
> ”
//
. -
| P
ot -
A |
e
© x A |
3
T
P 7N
™~ ~
S
v}
3 - -
) //
= |
o \
* i ~
il s
&
8w,
® &
\ ll
. -~
1L~
? P
P
s
//
A
// e

Policy function approximators

deterministic continuous policy stochastic continuous policy
po(s)
- Q
oo(s)
a = 7(s) o~ Nuo(s).03(s)

e.g. outputs a steering angle directly

(stochastic) discrete actions

press brake

Outputs a distribution over a discrete set of actions

Policy function approximators - this lecture

deterministic continuous policy stochastic policy
=7 LR y 0 a N , Aoy -
@ =7 (3) 0~ N(po(s), 53(5))

e.g. outputs a steering angle directly

(stochastic) actions

press brake

Outputs a distribution over a discrete set of actions

Policy Optimization
Let U(B) be any policy objective function

Policy based reinforcement learning is an optimization problem

- Find 6 that maximizes U(8)

Some approaches do not use gradient
- Hill climbing

- Genetic algorithms

Greater efficiency often possible using gradient

Policy Gradient

» Let U(B) be any policy objective function

» Policy gradient algorithms search for a local |
maximum in U(8) by ascending the gradient of _ ',,'"O')
the policy, w.r.t. parameters 0

9 =(91d+A6’

new o

AO = aV ,U()
e N

IS the policy gradient

4

a is a step-size

parameter (learning oU(0)
rate) 00,
VoU@)= |
oU(0)
20,

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

Computing Gradients By Finite Differences

Numerically approximating the policy gradient of TT4(s, a)

For each dimension k in [1, n]

- Estimate kth partial derivative of objective function w.r.t. 0

- By perturbing 6 by small amount € in kth dimension

9U(B) _ (O + cur) - U(6)
00, -~ €

where u, Is a unit vector with 1 in kth component, O elsewhere

Uses n evaluations to compute policy gradient in n dimensions
Simple, noisy, inefficient - but sometimes effective

Works for arbitrary policies, even if policy is not differentiable

L earning an AIBO running policy

7w« Initial Policy
while !done do
{R:,R»,..., R} =t random perturbations of 7
evaluate({R,.Rs...., R})
for Kk =1to N do
Avg.,. g + average score for all R; that have a positive
perturbation in dimension K
Avg.g < average score for all R; that have a zero
perturbation in dimension k
Avg_, + average score for all R; that have a
negative perturbation in dimension k
if Avg-o, k> Avg+. and Avgio, k > Avg—. i then
A k < 0
else
Ak — Avge, — Avg_, |
end if
end for
A — I_::I * 17
Te—w+ A
end while

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and
Stone, 2004

Policy objective

Trajectory 7 is a state action sequence s, ay, s;,ay, ... Sy, ay

H
Trajectory reward: R(7) = Z R(s,, a,)
=0
A reasonable policy objective then is U(0) = E,_p,.o,R(7)

max . U(0) = E.prp R(D)] = D P(r;0)R(7)

H
Probability of a trajectory: P(z:0) = [[P(s,, 15, a) - my(a,] 5,)
=0~

dynamics policy

Our problem is to compute V,U(0) = V E,_p.0[R(7)]

This lecture

Computing derivatives of expectations w.r.t. variables that parameterize the
distribution, not the quantity inside the expectation

mglx ' _xNP(x;H)f (X)

Assumptions:
* P is a probability density function that is continuous and differentiable

* P is easy to sample from

AR+ Senpyo) R(®)

Derivatives of expectations

VoE, f(x) = V4E, p o)]

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy) Py)fx)

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy) Py)fx)

= Z V g Po(x)f (x) Why?

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy) Py)fx)

X
= Z Vo Py(x)f(x) What is the problem here?
X

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy) Py)fx)

= Z V Pyx)f(x)

- Vg Py(x)
ZPQ() Pe(x) f)

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy) Py)fx)

= Z V Pyx)f(x)

- Vg Py(x)
ZPQ() Pe(x) f)

— Z Py(x) Vlog Py(x)f(x)

Derivatives of expectations

VoE, f(x) = V4E, p o)]
= Vy), Pox)fx)

= Z VPy(x)f(x)

_ Vo P(x)
2P9<> P@(x) f(x)

— Z Py(x) Vlog Py(x)f(x)

=E,. P,(x) [Vglog Pg(x)f(x)] What have we achieved?

Derivatives of expectations

VoE, f(x) = V4E, p o)]

= ng Pg(x)f (x)
= Z Vg Py(x)f(x)
Py(x)
. p 9 o\X
Z o) Pg(x) J2)
— Z Py(x) Vlog Py(x)f(x)

= E..p v | Volog Pyx)f(x)]

From the law of
large numbers, |
can obtain an
unbiased
estimator for the
gradient by
sampling!

Derivatives of expectations

VHExf (X) — VH[ExNPQ(x) [f (X)]

= Vy), Px)f(x)
= Z Vo Pyx)f(x)
Py(x)
—Zm>;& fx)
0

From the law of

= 2 Py(x) Vlog Py(x)f(x) large lgtur.nbers, |
can obtain an
unbiased

= E,p (%) [Vglog Py(x)f (x)] estimator for the
gradient by

. Z VelOgP (x(l))R(x(l)) sampling!
=1

Derivatives of expectations

VoE, f(x) = VyE, p (%) [f (x)]
= Vy), Pyf)

= D VoPyf)

V,P
= Y Py~ i

Py(x)
= 3" Pyx) Vlog Py0)f ()

=E,.p,00 | Vglog Py(x)f (x)]

1 < o
ok~ D Vylog Pyx™)f(x?)
i=1

samples x and 0 (X)
Vg log p(x)
for the mea

For Gaussian p(x) /ﬂ

From the law of
large numbers, |
can obtain an
unbiased
estimator for the
gradient by
sampling!

Derivatives of expectations

VoE, f(x) = VyE, p (%) [f (x)]
= Vy), Pyf)

= D VoPyf)

V,P
= Y Py~ i

Py(x)
= 3" Pyx) Vlog Py0)f ()

=E,.p,00 | Vglog Py(x)f (x)]

1 < o
ok~ D Vylog Pyx™)f(x?)
i=1

samples x and
Vg log p(x)
for the mea

For Gaussian p(x) /ﬂ

From the law of
large numbers, |
can obtain an
unbiased
estimator for the
gradient by
sampling!

Derivatives of expectations

VoE, f(x) = VyE, p (X) [f (X)]

= Vy), Po0f@) From the law of
) large numbers, |

= D, VoPy@)f) .

- can obtain an

V,P '

~ Y Py o(%) 09 unt?lased

- Py(x) estimator for the
=) Py(x) Vylog Pyx)f(x) gradient by

sampling!

= E,.p,00 | Vl0g Py(x)f ()]

1 & o
ok~ ; V log Py(x@)f(x®)

samples x and D(X) EEEEEEEEEEE

p (X) after a parameter update

Vg log p(x)

for the mea

For Gaussian p(x) /ﬂ

-1 -1

Derivatives of the policy objective

meax. UO) =E,.p,m [R(T)]

Derivatives of the policy objective

meax. UO) =E,.p,m [R(T)]

VoU®) = V4E, o |RO)]
= Vy) P0R()

=) VyPy0R()

Derivatives of the policy objective

m@ax. UO) =E,.p,m [R(T)]

VoU®) = VoE, p o [R@D)]
= ng Py(r)R(7)

=) VyPy0R()

V,P
= Y Py2) ;e(i(;) R(7)

— Z PQ(T) V@l()g PQ(T)R(T)

=E,.p s | Volog PA(D)R(D)]

Derivatives of the policy objective

max U®) = E, p o |R(7)
VoU®) = V4E, o |RO)]
= Vy) P0R()

= 2 V,P,(1)R(7)

VPQT)

= ZPg(fc) g KO
9

= Z Py(7) Vylog P((7)R(7)

= E,.p, | Volog Py(0)R(7))|

Approximate the gradient with emplrlcal estimate from N sampled trajectories:

V,U(0) ~ Z V, log Py(t)R(D)
i=1

From trajectories to actions

T
Vylog P(z;0) = Vylog HP(St(J?l |St(i), at(i)) : ng(at(i) | St(i))
=0

dynamics policy

I
<
S

T
Z log P(St(j_)l |59, a”) + log my(a® | s™)
t=0 ,

dynamics | policy

T
- Vg Z log ﬂg(at(l) | St(l))

=0 _
policy

T
—_ 2 Velog ﬂe(at(l) | St(l))
=0

| & | | 1 & & L .
VoU®) ~ — Y Vylog Py(z)R(z) > VoUO) ~ — Y Y Vylog za® | sOR(ED)

i=1 i=1 =1

INtultion

N T

1 N
VoU(O) ~ — >) Vglogzya” | sDRD)

=1 =1

m Gradient tries to:

= |ncrease probability of paths with
positive R

= Decrease probability of paths with
negative R

| Likelihood ratio changes probabilities of experienced paths,
does not try to change the paths (<-> Path Derivative)

Likelihood ratio gradient estimator

m@ax. UO) =E,.p,m [R(T)]

VoU(O) = VyE, p o |R(D)]
=Lk, p, | Vglog Py(D)R(2))

An unbiased estimator of this gradient:

O . 1 L .
g=—) Vylog Py(z MRz = v Y Y Vylog mya®| sOR(ED)
=1

i=1 =1

E[g] = V,U(0)

Pong from Pixels

Slides from Andrei Karpathy

Policy network

raw pixels hidden layer

M C probability of
\“"}“."’7 ‘ moving UP

&)/
b/}.f‘?«AV‘A

Vavs

e.g.,

height width

[80 x 80]
array of

Policy network

raw pixels hidden layer

» {{ . probability of
\ - o

2:2‘?‘ ovmg UP
NERAET

}io K
NG

Policy network

raw pixels hidden layer

height width probability of
180 x 80] moving UP
array

h = np.dot(Wl, x) # compute hidden layer neuron activations
h[h<0]
logp = np.dot (W2, h) # compute log probability of going up

p=1.0/ (1.0 + np.exp(-logp)) # sigmoid function (gives probability of going up)

0 # ReLU nonlinearity: threshold at zero

Policy network

raw pixels hidden layer

height width robability of
20 - moving UP
0 x 801 XL ;
array

KREES
INE

E.g. 200 nodes in the hidden network, so:

[(80*80)*200 + 200] + [200*1 + 1] = ~1.3M parameters
Layer 1 Layer 2

Network does not see this. Network sees 80*80 = 6,400 numbers.
It gets a reward of +1 or -1, some of the time.
Q: How do we efficiently find a good setting of the 1.3M parameters?

Random search
Evolutionary methods
Approximation to the gradient via finite differences

Likelihood ratio policy gradients

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

raw pixels hidden layer

—@ ..
‘}}fll{- . probabil |Ltjypof
vz‘v’xy/ Mmovi ng
»)v’f‘?n‘é

= N A /N
AN

Suppose we had the training labels...
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)

maximize:

Z,- log p(yi|xi)

raw pixels hidden layer

W probability of
bg;}:?;éj moving UP
KAL)

Avf‘YAVA

BN
’/o A
7’0’\‘\\7

N

supervised learning

Except, we don’'t have labels...

raw pixels hidden layer

—C ..
XA oty
F""‘”‘/

S
RIS
"ol ¢ “Ak\
HERX
Zal's

Should we go UP or DOWN?

Except, we don’'t have labels...

“I'ry a bunch of stuff and see
what happens. Do more of the

stuff that worked in the future.”
-RL

trial-and-error learning

Let’s just act according to our current policy...

raw pixels hidden layer

probability of Rollout the policy
and collect an
episode

DOWN o UP UP DOWN UP UP
WIN

Collect many rollouts...

4 rollouts:
UP DOWN UP UP DOWN DOWN DOWN UP
o »® —0—0 \VIN
DOWN UP UP DOWN UP UP
LOSE
UP UP DOWN DOWN DOWN DOWN UP
LOSE
DOWN UP UP DOWN UP UP
WIN

T T

Not sure whatever we did here, but
apparently it was good.

UP DOWN UP UP DOWN »® DOWN £ DOWN 2 UP 3
DOWN UP UP DOWN UP UP

UP UP DOWN DOWN DOWN DOWN UP

DOWN UP UP DOWN UP UP

!

T

WIN
LOSE

LOSE
WIN

Not sure whatever we did here, but it was bad.

UP DOWN o UP UP DOWN_ g DOWN_gDOWN_ o UP o \WIN
DOWN o UP UP DOWN UP UP LOSE
UP UP DOWN o DOWN o DOWN o DOWN UP LOSE
DOWN o UP UP DOWN UP UP WIN

T

T

Pretend every action we took here
was the correct label.

Pretend every action we took
here was the wrong label.

maximize: 10g p(y; | X;) maximize: (—1) * log p(y; | x;)
UP DOWN UP UP DOWN DOWN DOWN UP
@ > —0 ——0 \VIN
DOWN UP UP DOWN UP UP
LOSE
UP UP DOWN DOWN DOWN DOWN UP
LOSE
DOWN UP UP DOWN UP UP
WIN

!

T

Supervised Learning

Zi log p(yi |x;)

For images x_I and their
labels y .

Supervised Learning

2. log p(yi|x;)

For images x_I and their
labels y .

Reinforcement Learning

Supervised Learning

2. log p(yi|x;)

For images x_I and their
labels y .

Reinforcement Learning

1) we have no labels so we sample:

yi ~ p(-|xi)

Supervised Learning

Zi log p(yi |x;)

For images x_I and their
labels y .

Reinforcement Learning

1) we have no labels so we sample:

yi ~ p(-|xi)

2) once we collect a batch of rollouts:
maximize:

Zi Ai K l()gp(yi ‘X,‘)

Supervised Learning Reinforcement Learning

maximize:
1) we have no labels so we sample:

Z,- log p(yi|xi) vi ~ p(-|xi)

For images x_I and their
labels y .

2) once we collect a batch of rollouts:
maximize:

2. Ai * log p(yi|x:)
]

We call this the advantage, it's a
number, like +1.0 or -1.0 based on how
this action eventually turned out.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory
return (episode return)

Supervised Learning

2. log p(yi|x;)

For images x_I and their
labels y .

Reinforcement Learning

1) we have no labels so we sample:

yi ~ p(-|xi)

2) once we collect a batch of rollouts:
maximize:

Zi Aj * log p(yi|x:)

/

+ve advantage will make that action more
likely in the future, for that state.

-ve advantage will make that action less
likely in the future, for that state.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory

return R(7)

Temporal structure

Volog my(a” | sR(z")
1 Each action takes the

H . '
v log my(a®| St(i))< Y Res? algl?)) blame for the full trajectory!

k=0

Q>

[
= | —
M=
M~

~
Il
U
~
Il

2|||,_
-
M-

o~
Il
[
~
Il

1

Temporal structure

N s o .
g=- Y Y Vylog mya®| sO)R()

i=1 =1 Each action takes the
A NN o blame for the full trajectory!
= Zl Zl Volog my(a® | St(l))< ,§) R(slg’), aé”)) J y

1 & & R . L
= Z Z V,log ﬂg(at(l) | st(’))< Z R(SIE’), algl)) + Z R(SIE’), algl))

Temporal structure

N T
= %Z Y Vylog my(a | sOR(D)

i=1 1= Each action takes the

_ %i ZT: 9 log 14| St(i)>< i RGO, a,ﬁi))> blame for the full trajectory!
i=1 =1 k=0

1 & N A = - S

= ~ Z Z V,log ﬂg(at(l) | st(’))< Z R(Slgl), algl)) + Z R(SIE’), algl))>

i=1 =1 k=0 k=t

Consider instead:

| NI - H Each action takes the
8= 2, 2. Vologmy(a”] S,(’))(» RGP, a,ﬁ”)) blame for the trajectory
=1 1=l k=t that comes after it

We can call this the return from t onwards G _t

» Let’'s analyze the update:
Al = aG Vg logmg(st, at)

» Let’s us rewrite is as follows:
Vg’]T(At‘St, 0)
7T(At|St, 0)

0;11 = 0; + ay' Gy

» Update is proportional to:
- the product of a return G; and

- the gradient of the probability of taking the action actually taken,
- divided by the probability of taking that action.

» Let’'s analyze the update:
Al = aG Vg logmg(st, at)

» Let’s us rewrite is as follows:

move most in the directions that favor
actions that yield the highest return

/
Vgﬂ'(At‘St,H)
W(At\St,H)

/r

Update is inversely proportional to the action probability -- actions
that are selected frequently are at an advantage (the updates will
be more often in their direction)

0;11 = 0, + av' Gy

Likelihood ratio gradient estimator

N
For constant b, consider this: 5= %Z V, log Py(tV)(R(z®) — b)
i=1

1 & | | 1 & |
A=—Z:V10P R (’)——Z:VIOP)b
4 Ni=1 9lOg 9(7)R(7) Ni=1 9lOg e(T)

Likelihood ratio gradient estimator

N
For constant b, consider this: 5= %Z V, log Py(tV)(R(z®) — b)
i=1

1 & | | 1 & |
A=—Z:V10P R (’)——Z:VIOP)b
4 Ni=1 9lOg 9(7)R(7) Ni=1 9lOg e(T)

=) P(z;0) Vylog P,(1)b

Likelihood ratio gradient estimator

N
For constant b, consider this: 5= %Z V, log Py(tV)(R(z®) — b)
i=1

1 & | | 1 & |
A=—Z:V10P R (’)——Z:VIOP)b
4 Ni=1 9lOg 9(7)R(7) Ni=1 9lOg e(T)

=) P(z;0) Vylog P,(1)b

— Z P(t;0) VGP_Q(T) b

Likelihood ratio gradient estimator

For constant b, consider this: - Z Vylog Py(z)(R(z?) — b)
= 1

Z V,log Py(tMR(zV) — — Z V, log Py(t)b
i=1 i=1

= Z P(;0) V log P(t)b

— Z P(t; 0 Ve Q(T)
P(T 6)

= Z V,Py(7)b

Likelihood ratio gradient estimator

For constant b, consider this: - Z Vylog Py(z)(R(z?) — b)
= 1

Z V,log Py(tMR(zV) — — Z V, log Py(t)b
i=1 i=1

= Z P(;0) V log P(t)b

— Z P(t; 0 Ve Q(T)
P(T 6)

= Z V,Py(7)b

=b (> VQPQ(T)>

Likelihood ratio gradient estimator

For constant b, consider this: - Z Vylog Py(z)(R(z?) — b)
= 1

Z V,log Py(tMR(zV) — — Z V, log Py(t)b
i=1 i=1

E Volog Py(7)b

= ZP(T 6) V ylog P,(1)b
Ve 9(7)

= Z P(t; 0
P(T 6)

= Z V,Py(7)b

=b (> VQPQ(T)>
b (Vo) Pg(f)>

Likelihood ratio gradient estimator

For constant b, consider this: - Z Vylog Py(z)(R(z?) — b)
i=1

1
0 = — VIOPT(’)RT(’)—— V. log P.(z))b
8Ni=21 g Py(t")R(t") lzlege()

= Z P(;0) V log P(t)b

_Z P(t; 0)Ve Q(T)

P(z; e)
= Z V,P,(7)b
=b (> VQPQ(T)>
' We still have an unbiased
=b (vgz PQ(T)> estimator of the gradient!

=0

Baseline choices

1 L I C
g=- > Y Vylog zya® St(’))< Y R(s?,a?) - b)

i=1 =1 k=t
N .
= Constant baseline: b=E[R®)]~) RG?)
i=1
. ° H . .
= Time-dependent baseline: b, = Z R(s?, a)

i=1 k=t
= State-dependent expected return:

b(St) :E[Tt_l_'rt—kl+Tt+2_|—---_|_rH—1] ZVE(St)

Estimate V (s)

R et N A o .
g=- Y Y Vylog mya®| s;”)(Y R, a) - v”(s,gl>)>

=1 =1 k=t

MC estimation
Initialize ¢
= Collect trajectories 7p,...7y

= Regress against empirical return:

N H-1
¢z+1%argmmﬁ> > (V7T

¢ i—=1 t=0

H

k:

1

t

R(

(2) (7)

Sk 7uk

)

REINFORCE

Algorithm 1 “Vanilla" policy gradient algorithm
Initialize policy parameter @, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = 3] —1 v~ *ry, and
the advantage estimate A =R, — b(s;).
Re-fit the baseline, by minimizing ||b(s:) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms Vg log 7(a; | st, 9)/'\\,
end for

~ [Williams, 1992]

Estimate V. _(s)

R Y A S .
TN D, 2. Vologmy(a?] sf’))< Y R, a) - V”(s,ﬁ’))>

TD estimation

Initialize ¢
s Collectdata{s, u, s/, r}
= Fitted V iteration:

Pit1 < min > VI = V()3 + Al — il

(s,u,s’,r)

Actions inherit the blame of the future return

episode start

All the random actions we did have been
found bad, while they really didn’'t matter..

Can | find a better estimator for the
cumulative future reward, instead of the
return of a single rollout?

discounted reward

ball gets past our paddle -1 reward

»
>

we screwed up this was all hopeless and only
somewhere here contributes noise to the gradient

Better estimates for cumulative future reward

i=1 t=1 k=t

/

s Estimation of Q from single roll-out

QW(SJM) — 43[7“0+7°1+7°2—|-°“\80:S,aoza]

L o o .
§== Z Z Volog my(a” | st(l))(2 R(SIE’), algl)) — V”(sé”))

= = high variance per sample based / no generalization
= Reduce variance by discounting

= Reduce variance by function approximation (=critic)

Actor-Critic

Monte-Carlo policy gradient still has high variance

v

\We can use a critic to estimate the action-value function:
~ Uy,
Qu(s,a) =~ Q™(s, a)

Actor-critic algorithms maintain two sets of parameters

v

v

- Critic Updates action-value function parameters w

- Actor Updates policy parameters 6, in direction suggested by critic

Actor-critic algorithms follow an approximate policy gradient

v

Actor-Critic

Q™7 (s,u) = E[ro +yr +7*r2 + -+ | s0 = s,u0 =]

Actor-Critic

Q™ (s,u) =E[ro +yr1 +7°ra + -+ | 5o = s,u0 = 1

=Elro + 7YV (s1) | s = s, u9 = u|

Actor-Critic

- YT +727“2—|—---\So:s,u0:u]

O
f]
D)

N

\.(‘Ja

<

N—"
|

- -
=

-
|

L ro + YV (s1) | so = s, ug = ul

= Elrg +vyr1 +v*V™(s2) | 59 = s,up = u]

Actor-Critic

Q™ (s,u) = Elrg +yr1 + ¥’ ra+ -+ | so = s,u9 = u]

=Elro + 7YV (s1) | s = s, u9 = u|

= Elrg +vyr1 +v*V™(s2) | 59 = s,up = u]

= Elro + yr1 + +v°rg + WSVW(S:%) | S0 = 8, up = ul

s Async Advantage Actor Critic (A3C) [Mnih et al, 2016]

o Q one of the above choices (e.g. k=5 step lookahead)

Asynchronous Deep RL

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih'! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia'! ADRIAP @ GOOGLE.COM
Mehdi Mirza' 2 MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

1 Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T’ = 0
// Assume thread-specific parameter vectors 0’ and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df <— 0 and df, < 0.
Synchronize thread-specific parameters ' = 0 and 0, = 0,

tstart =1
Get state s;
repeat

Perform a; according to policy 7(a¢|s:; 60")
Receive reward r; and new state s;1

t+—t+1
T+ T+1
until terminal s; or ¢t — tstart == tmax
R = 0 for terminal s;
o V (st, H,f,) for non-terminal s:// Bootstrap from last state
for 1 - {t — 1, “ e ,tstart} do
R+—r;+vR

Accumulate gradients wrt 0": df < df + Vg: log w(ai|si; 0') (R — V (s;;6y,))
Accumulate gradients wrt 0',: df, < db, + 8 (R — V (s;;0.,))* /80,
end for
Perform asynchronous update of 6 using df and of 6,, using df,,.
until 7' > T’

A3C

515925 53594

Fis¥r, I3

What is the approximation used for the advantage?
Ry =ry+yV(sy, 0) Ay =Ry — V(s3;0))
Ry =ry+yrs +7°V(s;, 0) Ay =R, — V(sy;6)

2

Worker 1

!

ﬁ‘

Distributed RL

Global Network

Policy i(s) | Vis)

Network

I

L Input (s) u

.

Worker 2 Worker 3

! !

S

Worker n

!

Environment 1 ‘ Environment 2 ‘ Environment3 ... @ Environmentn

Distributed Asynchronous RL

5. Worker q
updates global 1. Worker reset
network with to global
gradients network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
' calculates
value and
policy loss

The actor critic trained in such asynchronous way is knows as A3C

Distributed Synchronous RL

5. Gradients of all
workers are averaged and
the central neural net
weights are updated

1. Worker reset
to global
network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
_ 3. Worker
’ calculates
value and
policy loss

The actor critic trained in such synchronous way is knows as A2C

Score

Score

Score

Advantages of Asynchronous (multi-threaded

9000 Beamrider
— 1-step Q, 1 threads
8000 — 1-step Q, 2 threads
—— 1-step Q, 4 threads
—— 1-step Q, 8 threads
7000 1-step Q, 16 threads
6000
5000
4000
3000
2000
1000
0
0 2 4 6 8 10
Training time (hours)
12000 Beamrider
— n-step Q, 1 threads
— n-step Q, 2 threads
—— n-step Q, 4 threads
10000 —— n-step Q, 8 threads
n-step Q, 16 threads
8000
6000
4000
2000
0
0 2 4 6 8 10
Training time (hours)
16000 Beamrider
— A3C, 1 threads
—— A3C, 2 threads
14000 __ A3C, 4 threads
A3C, 8 threads
12000 A3C, 16 threads
10000
8000
6000
4000
2000
0=
0 2 4 6 8 10

TraininA tima (hAnre)

12

12

12

14

14

14

Score

Score

Score

300

250

200

100

50

350

300

250

200

100

50

600

500

400

300

200

100

Breakout 20 Pong
— 1-step Q, 1 threads — 1-step Q, 1 threads
—— 1-step Q, 2 threads 15 — 1-step Q, 2 threads
—— 1-step Q, 4 threads —— 1-step Q, 4 threads
—— 1-step Q, 8 threads 10 —— 1-step Q, 8 threads
1-step Q, 16 threads 1-step Q, 16 threads
5
[0} 0
o
o
O
v -5
-10
-15
-20
=25
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours)
Breakout 20 Pong
—— n-step Q, 1 threads =
—— n-step Q, 2 threads 15
—— n-step Q, 4 threads
—— n-step Q, 8 threads
n-step Q, 16 threads 10
5
8 0
o
O
v -5
-10
—15 — n-gtep Q, 1 threads
-step Q, 2 threads
—— n-step Q, 4 threads
-20 —— n-step Q, 8 threads
n-step Q, 16 threads
=25
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (hours) Training time (hours)
Breakout 30 Pong
— A3C, 1 threads — A3C, 1 threads
—— A3C, 2 threads —— A3C, 2 threads
—— A3C, 4 threads 20 A3C, 4 threads e L
A3C, 8 threads A3C, 8 threads .
A3C, 16 threads A3C, 16 threads
10
o
e 0
0
-10
-20
- -30
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Trainina tima (hanre) Trainina tima (hanire)

Score

Score

Score

Q*bert

4000 800
— 1-step Q, 1 threads
— 1-step Q, 2 threads
3500 __ 1-step Q, 4 threads 700
—— 1-step Q, 8 threads
3000 1-step Q, 16 threads
600
2500
o 500
2000 §
400
1500 -
300
1000
500 200

L

0 100

0 2 4 6 8 10 12 14
Training time (hours)
k|
4500 Q*bert 800
— n-step Q, 1 threads
4 —— n-step Q, 2 threads
000 — n-step Q, 4 threads 700
—— n-step Q, 8 threads
3500 n-step Q, 16 threads
600
3000
2500 o 200
o
1%
2000 0 400
1500
300
1000
200
500
0 100
0 2 4 6 8 10 12 14
Training time (hours)
k|
12000 Q*bert 1600
— A3C, 1 threads
— A3C, 2 threads 1400
— A3C, 4 threads
10000 A3C, 8 threads
A3C, 16 threads 1200
8000
1000
<
6000 S 800
n
600
4000
400
2000
200
0 0
0 2 4 6 8 10 12 14

TraininAa tima (hAanre)

Space Invaders

1-step Q, 1 threads
1-step Q, 2 threads
1-step Q, 4 threads
1-step Q, 8 threads
1-step Q, 16 threads

0 2 4 6 8 10
Training time (hours)
Space Invaders
—— n-step Q, 1 threads
— n-step Q, 2 threads
—— n-step Q, 4 threads
—— n-step Q, 8 threads
n-step Q, 16 threads
0 2 4 6 8 10
Training time (hours)
Space Invaders
— A3C, 1 threads
— A3C, 2 threads
—— A3C, 4 threads
A3C, 8 threads
A3C, 16 threads
=
0 2 4 6 8 10

Trainina tima (hanre)

12

12

12

14

14

14

