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Value-Based and Policy-Based RL 
‣ Value Based 

- Learned Value Function  
- Implicit policy (e.g. ε-greedy) 

‣ Policy Based 
- No Value Function  
- Learned Policy 

‣ Actor-Critic  
- Learned Value Function 
- Learned Policy 



Advantages of Policy-Based RL 

‣ Advantages 
- Effective in high-dimensional or continuous action spaces  
- Can learn stochastic policies  



Policy function approximators
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Policy function approximators - this lecture
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Policy Optimization

‣ Policy based reinforcement learning is an optimization problem  
- Find θ that maximizes U(θ) 

‣ Some approaches do not use gradient  
- Hill climbing 
- Genetic algorithms 

‣ Greater efficiency often possible using gradient 

‣ Let U(θ) be any policy objective function 



Policy Gradient 
‣ Let U(θ) be any policy objective function 

‣ Policy gradient algorithms search for a local 
maximum in U(θ) by ascending the gradient of 
the policy, w.r.t. parameters θ 

Δθ = α∇θU(θ)
θnew = θold + Δθ

α is a step-size 
parameter (learning 
rate) 

is the policy gradient 

∇θU(θ)

∂U(θ)
∂θ1

∂U(θ)
∂θn

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy



Computing Gradients By Finite Differences 
‣ Numerically approximating the policy gradient of πθ(s, a) 

‣ Uses n evaluations to compute policy gradient in n dimensions 

‣ Simple, noisy, inefficient - but sometimes effective

‣ Works for arbitrary policies, even if policy is not differentiable 

‣ For each dimension k in [1, n]  
- Estimate kth partial derivative of objective function w.r.t. θ  
- By perturbing θ by small amount ε in kth dimension  

     where uk is a unit vector with 1 in kth component, 0 elsewhere  

U U U



Learning an AIBO running policy

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion, Kohl and 
Stone, 2004
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Trajectory τ is a state action sequence s0, a0, s1, a1, . . . sH, aH

Trajectory reward: R(τ) =
H

∑
t=0

R(st, at)

A reasonable policy objective then is U(θ) = 𝔼τ∼P(τ;θ)R(τ)

max
θ

. U(θ) = 𝔼τ∼P(τ;θ)[R(τ)] = ∑
τ

P(τ; θ)R(τ)

Probability of a trajectory: P(τ; θ) =
H

∏
t=0

P(st+1 |st, at)

dynamics

⋅ πθ(at |st)

policy

Our problem is to compute∇θU(θ) = ∇θ𝔼τ∼P(τ;θ)[R(τ)]

Policy objective



This lecture

max
θ

. 𝔼x∼P(x;θ) f(x)

Computing derivatives of expectations w.r.t. variables that parameterize the 
distribution, not the quantity inside the expectation 

Assumptions: 

• P is a probability density function that is continuous and differentiable 

• P is easy to sample from

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]



Derivatives of expectations 

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]



Derivatives of expectations 

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)



Derivatives of expectations 

Why?

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)



Derivatives of expectations 

What is the problem here?

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)



Derivatives of expectations 

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)



Derivatives of expectations 

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)



What have we achieved?

Derivatives of expectations 

∇θ𝔼x f(x) = ∇θ𝔼x∼Pθ(x) [f(x)]
= ∇θ ∑

x

Pθ(x)f(x)

= ∑
x

∇θPθ(x)f(x)

= ∑
x

Pθ(x)
∇θPθ(x)

Pθ(x)
f(x)

= ∑
x

Pθ(x)∇θlog Pθ(x)f(x)

= 𝔼x∼Pθ(x) [∇θlog Pθ(x)f(x)]



From the law of 
large numbers, I 
can obtain an 
unbiased 
estimator for the 
gradient by 
sampling!
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1
N

N

∑
i=1

∇θlog Pθ(x(i))R(x(i))

From the law of 
large numbers, I 
can obtain an 
unbiased 
estimator for the 
gradient by 
sampling!

Derivatives of expectations 
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estimator for the 
gradient by 
sampling!

Derivatives of expectations 

For Gaussian p(x)



∇θ𝔼x f (x) = ∇θ𝔼x∼Pθ(x) [f (x)]
= ∇θ ∑

x

Pθ(x)f (x)

= ∑
x

∇θ Pθ(x)f (x)

= ∑
x

Pθ(x)
∇θ Pθ(x)

Pθ(x)
f (x)

= ∑
x

Pθ(x)∇θ log Pθ(x)f (x)

= 𝔼x∼Pθ(x) [∇θ log Pθ(x)f (x)]
≈

1
N

N

∑
i=1

∇θ log Pθ(x(i))f (x(i))

From the law of 
large numbers, I 
can obtain an 
unbiased 
estimator for the 
gradient by 
sampling!

Derivatives of expectations 

For Gaussian p(x)
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= ∑
x
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∇θ log Pθ(x(i))f (x(i))

From the law of 
large numbers, I 
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Derivatives of expectations 

For Gaussian p(x)



max
θ

. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

Derivatives of the policy objective 



max
θ

. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= ∇θ ∑

τ

Pθ(τ)R(τ)

= ∑
τ

∇θ Pθ(τ)R(τ)

Derivatives of the policy objective 



max
θ

. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= ∇θ ∑

τ

Pθ(τ)R(τ)

= ∑
τ

∇θ Pθ(τ)R(τ)

= ∑
τ

Pθ(τ)
∇θ Pθ(τ)

Pθ(τ)
R(τ)

= ∑
τ

Pθ(τ)∇θ log Pθ(τ)R(τ)

= 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

Derivatives of the policy objective 



max
θ

. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= ∇θ ∑

τ

Pθ(τ)R(τ)

= ∑
τ

∇θ Pθ(τ)R(τ)

= ∑
τ

Pθ(τ)
∇μPθ(τ)

Pθ(τ)
R(τ)

= ∑
τ

Pθ(τ)∇θ log Pθ(τ)R(τ)

= 𝔼τ∼Pθ(τ) [∇θ log Pθ(τ)R(τ)]

∇θU(θ) ≈
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i))

Approximate the gradient with empirical estimate from N sampled trajectories:

Derivatives of the policy objective 



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

∇θ log P(τ(i); θ) = ∇θ log
T

∏
t=0

P(s(i)
t+1 |s(i)

t , a(i)
t )

dynamics

⋅ πθ(a(i)
t |s(i)

t )

policy

= ∇θ

T

∑
t=0

log P(s(i)
t+1 |s(i)

t , a(i)
t )

dynamics

+ log πθ(a(i)
t |s(i)

t )

policy

= ∇θ

T

∑
t=0

log πθ(a(i)
t |s(i)

t )

policy

=
T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t )

∇θU(θ) ≈
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) ∇θU(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

From trajectories to actions



n  Gradient	tries	to:	
n  Increase	probability	of	paths	with	

posiQve	R	

n  Decrease	probability	of	paths	with	
negaQve	R	

Likelihood	RaQo	Gradient:	IntuiQon	

rU(✓) ⇡ ĝ =
1

m

mX

i=1

r✓ logP (⌧ (i); ✓)R(⌧ (i))

!	Likelihood	raQo	changes	probabiliQes	of	experienced	paths,	
does	not	try	to	change	the	paths	(<->	Path	DerivaQve)	

Intuition
∇θU(θ) ≈

1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )R(τ(i))



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

Likelihood ratio gradient estimator
max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

An unbiased estimator of this gradient:

𝔼[ ̂g] = ∇θU(θ)



Pong from Pixels
Deep RL Bootcamp

Andrej Karpathy, Aug 26, 2017

Slides from Andrei Karpathy





Policy network



[80 x 80]
array of

height width

e.g.,

Policy network



[80 x 80]
array

height width

Policy network



E.g. 200 nodes in the hidden network, so:

[(80*80)*200 + 200] + [200*1 + 1] = ~1.3M parameters

Layer 1 Layer 2

[80 x 80]
array

height width

Policy network



Network does not see this. Network sees 80*80 = 6,400 numbers.
It gets a reward of +1 or -1, some of the time.
Q: How do we efficiently find a good setting of the 1.3M parameters?



Random search 

Evolutionary methods 

Approximation to the gradient via finite differences 

Likelihood ratio policy gradients



Suppose we had the training labels… 
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)
...



Suppose we had the training labels… 
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)
...



Suppose we had the training labels… 
(we know what to do in any state)

(x1,UP)
(x2,DOWN)
(x3,UP)
...

maximize:

supervised learning



Except, we don’t have labels...

Should we go UP or DOWN?



Except, we don’t have labels...

“Try a bunch of stuff and see 
what happens. Do more of the 
stuff that worked in the future.”

-RL

trial-and-error learning



Let’s just act according to our current policy...

Rollout the policy 
and collect an 
episode



4 rollouts:

Collect many rollouts...



Not sure whatever we did here, but 
apparently it was good.



Not sure whatever we did here, but it was bad.



Pretend every action we took here 
was the correct label.

Pretend every action we took 
here was the wrong label.

maximize: maximize:



Supervised Learning
maximize:

For images x_i and their 
labels y_i.



Supervised Learning
maximize:

For images x_i and their 
labels y_i.

Reinforcement Learning



Supervised Learning
maximize:

For images x_i and their 
labels y_i.

Reinforcement Learning
1) we have no labels so we sample:



Supervised Learning
maximize:

For images x_i and their 
labels y_i.

Reinforcement Learning

maximize:

1) we have no labels so we sample:

2) once we collect a batch of rollouts:



Supervised Learning
maximize:

For images x_i and their 
labels y_i.

Reinforcement Learning

maximize:

1) we have no labels so we sample:

2) once we collect a batch of rollouts:

We call this the advantage, it’s a 
number, like +1.0 or -1.0 based on how 
this action eventually turned out.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory 
return (episode return)



Supervised Learning
maximize:

For images x_i and their 
labels y_i.

Reinforcement Learning

maximize:

1) we have no labels so we sample:

2) once we collect a batch of rollouts:

+ve advantage will make that action more 
likely in the future, for that state.
-ve advantage will make that action less 
likely in the future, for that state.

Advantage is the same for all actions taken during a trajectory, and depends on the trajectory 
return R(τ)



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Temporal structure
Each action takes the 
blame for the full trajectory!

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

=
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=0

R(s(i)
k , a(i)

k ))



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Temporal structure
Each action takes the 
blame for the full trajectory!

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

=
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=0

R(s(i)
k , a(i)

k ))
=

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
t−1

∑
k=0

R(s(i)
k , a(i)

k ) +
H

∑
k=t

R(s(i)
k , a(i)

k ))
These rewards are not caused by actions that 
come after t



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Temporal structure
Each action takes the 
blame for the full trajectory!

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

=
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=0

R(s(i)
k , a(i)

k ))
=

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
t−1

∑
k=0

R(s(i)
k , a(i)

k ) +
H

∑
k=t

R(s(i)
k , a(i)

k ))

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=t

R(s(i)
k , a(i)

k ))
Consider instead:

Each action takes the 
blame for the trajectory 
that comes after it

We can call this the return from t onwards G_t



‣ Let’s analyze the update: 

‣ Let’s us rewrite is as follows: 

‣ Update is proportional to: 
- the product of a return Gt and  
- the gradient of the probability of taking the action actually taken, 
- divided by the probability of taking that action. 



‣ Let’s analyze the update: 

‣ Let’s us rewrite is as follows: 

Update is inversely proportional to the action probability -- actions 
that are selected frequently are at an advantage (the updates will 
be more often in their direction)  
 

move most in the directions that favor 
actions that yield the highest return 



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))(R(τ(i)) − b)

Likelihood ratio gradient estimator
For constant b, consider this:

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) −
1
N

N

∑
i=1

∇θ log Pθ(τ(i))b

𝔼∇θ log Pθ(τ)b



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))(R(τ(i)) − b)

Likelihood ratio gradient estimator
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estimator of the gradient!



n  Good	choice	for	b?		

n  Constant	baseline:	

n  OpQmal	Constant	baseline:	

n  Time-dependent	baseline:		

n  State-dependent	expected	return:		

	

à	Increase	logprob	of	acQon	proporQonally	to	how	much	its	returns	are	
beTer	than	the	expected	return	under	the	current	policy	

Baseline	Choices	

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See:	Greensmith,	BartleT,	Baxter,	JMLR	2004	for	variance	reducQon	techniques.]		
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How to estimate? 
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Initialize ϕ



Vanilla	Policy	Gradient	

~	[Williams,	1992]	

REINFORCE



Estimate Vπ(st)
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EsQmaQon	of						
n  Bellman	EquaQon	for		

n  Init		

n  Collect	data	{s,	u,	s’,	r}	

n  FiTed	V	iteraQon:	

EsQmaQon	of						
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Initialize ϕ

Bootstrapping!



-1 rewardball gets past our paddleepisode start

discounted reward

time

we screwed up 
somewhere here

this was all hopeless and only 
contributes noise to the gradient

Actions inherit the blame of the future return

All the random actions we did have been 
found bad, while they really didn’t matter..

Can I find a better estimator for the 
cumulative future reward, instead of the 
return of a single rollout?
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n  EsQmaQon	of	Q	from	single	roll-out	

Recall	Our	Likelihood	RaQo	PG	EsQmator	

Q⇡(s, u) = E[r0 + r1 + r2 + · · · |s0 = s, a0 = a]
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n  =	high	variance	per	sample	based	/	no	generalizaQon	used	
n  Reduce	variance	by	discounQng	

n  Reduce	variance	by	funcQon	approximaQon	(=criQc)				
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Better estimates for cumulative future reward



‣ Monte-Carlo policy gradient still has high variance 
‣ We can use a critic to estimate the action-value function:  

‣ Actor-critic algorithms maintain two sets of parameters  
- Critic Updates action-value function parameters w  
- Actor Updates policy parameters θ, in direction suggested by critic 

‣ Actor-critic algorithms follow an approximate policy gradient 

Actor-Critic



n  Generalized	Advantage	Es<ma<on	uses	an	exponenQally	
weighted	average	of	these	

n  ~	TD(lambda)	

Reducing	Variance	by	FuncQon	ApproximaQon	
Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · | s0 = s, u0 = u]

= E[r0 + �V ⇡(s1) | s0 = s, u0 = u]

= E[r0 + �r1 + �2V ⇡(s2) | s0 = s, u0 = u]

= E[r0 + �r1 ++�2r2 + �3V ⇡(s3) | s0 = s, u0 = u]

= · · ·

Actor-Critic
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n  Async	Advantage	Actor	Cri<c	(A3C)	[Mnih	et	al,	2016]	
n  												one	of	the	above	choices	(e.g.		k=5	step	lookahead)	

Reducing	Variance	by	FuncQon	ApproximaQon	
Q⇡,�(s, u) = E[r0 + �r1 + �2r2 + · · · | s0 = s, u0 = u]

= E[r0 + �V ⇡(s1) | s0 = s, u0 = u]

= E[r0 + �r1 + �2V ⇡(s2) | s0 = s, u0 = u]

= E[r0 + �r1 ++�2r2 + �3V ⇡(s3) | s0 = s, u0 = u]

= · · ·

Q̂

Actor-Critic



Asynchronous Deep RL



• Training stabilization without Experience Buffer

• Use of on policy methods, e.g., SARSA and policy gradients

• Reduction is training time linear to the number of threads

A3C

What is the approximation used for the advantage?
R(n)

t =
n−1

∑
k=0

γ(k)
t Rt+k+1

r1, r2, r3

R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

s1, s2, s3, s4

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)



Distributed RL



Distributed Asynchronous RL

The actor critic trained in such asynchronous way is knows as A3C

Each worker may 
have slightly 
modified version of 
the policy/critic

No locking



Distributed Synchronous RL

The actor critic trained in such synchronous way is knows as A2C

5. Gradients of all 
workers are averaged and 
the central neural net 
weights are updated 

All worker may have 
the same actor/critic 
weights



Advantages of Asynchronous (multi-threaded) RL


