Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Policy gradients

CMU 10-403

Katerina Fragkiadaki

Revision

Value-Based and Policy-Based RL

- Value Based
- Learned Value Function
- Implicit policy (e.g. ε-greedy)
- Policy Based
- No Value Function
- Learned Policy
- Actor-Critic
- Learned Value Function
- Learned Policy

Advantages of Policy-Based RL

- Advantages
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Policy function approximators

Policy function approximators

deterministic continuous policy

a

$$
a=\pi_{\theta}(s)
$$

e.g. outputs a steering angle directly
stochastic continuous policy

(stochastic) discrete actions
go left go right press brake

Outputs a distribution over a discrete set of actions

Policy function approximators - this lecture

deterministic continuous policy

e.g. outputs a steering angle directly
stochastic continuous policy

(stochastic) discrete actions

Outputs a distribution over a discrete set of actions

Policy Optimization

- Let $\mathrm{U}(\theta)$ be any policy objective function
- Policy based reinforcement learning is an optimization problem
- Find θ that maximizes $U(\theta)$
- Some approaches do not use gradient
- Hill climbing
- Genetic algorithms
- Greater efficiency often possible using gradient

Policy Gradient

- Let $\mathrm{U}(\theta)$ be any policy objective function
- Policy gradient algorithms search for a local maximum in $U(\theta)$ by ascending the gradient of the policy, w.r.t. parameters θ

$$
\begin{aligned}
\theta_{\text {new }} & =\theta_{\text {old }}+\Delta \theta \\
\Delta \theta & =\alpha \nabla_{\theta} U(\theta)
\end{aligned}
$$

α is a step-size parameter (learning rate)

is the policy gradient

$$
\nabla_{\theta} U(\theta)=\left(\begin{array}{c}
\frac{\partial U(\theta)}{\partial \theta_{1}} \\
\vdots \\
\frac{\partial U(\theta)}{\partial \theta_{n}}
\end{array}\right)
$$

Computing Gradients By Finite Differences

- Numerically approximating the policy gradient of $\pi_{\theta}(\mathrm{s}, \mathrm{a})$
- For each dimension k in $[1, \mathrm{n}]$
- Estimate $k^{\text {th }}$ partial derivative of objective function w.r.t. θ
- By perturbing θ by small amount ε in $\mathrm{k}^{\text {th }}$ dimension

$$
\frac{\partial U(\theta)}{\partial \theta_{k}} \approx \frac{U\left(\theta+\epsilon u_{k}\right)-U(\theta)}{\epsilon}
$$

where u_{k} is a unit vector with 1 in $k^{\text {th }}$ component, 0 elsewhere

- Uses n evaluations to compute policy gradient in n dimensions
- Simple, noisy, inefficient - but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Learning an AIBO running policy

Policy objective

Trajectory τ is a state action sequence $s_{0}, a_{0}, s_{1}, a_{1}, \ldots s_{H}, a_{H}$
Trajectory reward: $R(\tau)=\sum_{t=0}^{H} R\left(s_{t}, a_{t}\right)$
A reasonable policy objective then is $U(\theta)=\mathbb{E}_{\tau \sim P(\tau ; \theta)} R(\tau)$

$$
\max _{\theta} . U(\theta)=\mathbb{E}_{\tau \sim P(\tau ; \theta)}[R(\tau)]=\sum_{\tau} P(\tau ; \theta) R(\tau)
$$

Probability of a trajectory: $P(\tau ; \theta)=\prod_{t=0}^{H} \underbrace{P\left(s_{t+1} \mid s_{t}, a_{t}\right)}_{\text {dynamics }} \cdot \underbrace{\pi_{\theta}\left(a_{t} \mid s_{t}\right)}_{\text {policy }}$

Our problem is to compute $\nabla_{\theta} U(\theta)=\nabla_{\theta} \mathbb{E}_{\tau \sim P(\tau ; \theta)}[R(\tau)]$

This lecture

Computing derivatives of expectations w.r.t. variables that parameterize the distribution, not the quantity inside the expectation

$\max . \mathbb{E}_{x \sim P(x ; \theta)} f(x)$

Assumptions:

- P is a probability density function that is continuous and differentiable
- P is easy to sample from

$$
\max _{\theta} \cdot \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)]
$$

Derivatives of expectations

$$
\nabla_{\theta} \mathbb{E}_{x} f(x)=\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)]
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x)
\end{aligned}
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \quad \text { Why? }
\end{aligned}
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x)
\end{aligned}
$$

What is the problem here?

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x)
\end{aligned}
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x)
\end{aligned}
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right]
\end{aligned}
$$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right]
\end{aligned}
$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

Derivatives of expectations

$$
\left.\begin{array}{rl}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E} \\
x \sim P_{\theta}(x)
\end{array} \nabla_{\theta} \log P_{\theta}(x) f(x)\right]
$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(x^{(i)}\right) f\left(x^{(i)}\right)
\end{aligned}
$$

For Gaussian $p(x)$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(x^{(i)}\right) f\left(x^{(i)}\right)
\end{aligned}
$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

For Gaussian $p(x)$

Derivatives of expectations

$$
\begin{aligned}
\nabla_{\theta} \mathbb{E}_{x} f(x) & =\nabla_{\theta} \mathbb{E}_{x \sim P_{\theta}(x)}[f(x)] \\
& =\nabla_{\theta} \sum_{x} P_{\theta}(x) f(x) \\
& =\sum_{x} \nabla_{\theta} P_{\theta}(x) f(x) \\
& =\sum_{x} P_{\theta}(x) \frac{\nabla_{\theta} P_{\theta}(x)}{P_{\theta}(x)} f(x) \\
& =\sum_{x} P_{\theta}(x) \nabla_{\theta} \log P_{\theta}(x) f(x) \\
& =\mathbb{E}_{x \sim P_{\theta}(x)}\left[\nabla_{\theta} \log P_{\theta}(x) f(x)\right] \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(x^{(i)}\right) f\left(x^{(i)}\right)
\end{aligned}
$$

From the law of large numbers, I can obtain an unbiased estimator for the gradient by sampling!

For Gaussian $p(x)$

Derivatives of the policy objective

$$
\max _{\theta} . U(\theta)=\mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)]
$$

Derivatives of the policy objective

$$
\begin{aligned}
& \max _{\theta} . U(\theta)=\mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& \begin{aligned}
\nabla_{\theta} U(\theta) & =\nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& =\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau)
\end{aligned}
\end{aligned}
$$

Derivatives of the policy objective

$$
\begin{aligned}
\max _{\theta} . & U(\theta)=\mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
\nabla_{\theta} U(\theta) & =\nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& =\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau) \\
& =\sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau) \\
& =\sum_{\tau} P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \\
& =\mathbb{E}_{\tau \sim P_{\theta}(\tau)}\left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau)\right]
\end{aligned}
$$

Derivatives of the policy objective

$$
\begin{aligned}
\max _{\theta} . & U(\theta)=\mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
\nabla_{\theta} U(\theta) & =\nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& =\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau) R(\tau) \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) R(\tau) \\
& =\sum_{\tau} P_{\theta}(\tau) \frac{\nabla_{\mu} P_{\theta}(\tau)}{P_{\theta}(\tau)} R(\tau) \\
& =\sum_{\tau} P_{\theta}(\tau) \nabla_{\theta} \log P_{\theta}(\tau) R(\tau) \\
& =\mathbb{E}_{\tau \sim P_{\theta}(\tau)}\left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau)\right]
\end{aligned}
$$

Approximate the gradient with empirical estimate from N sampled trajectories:

$$
\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)
$$

From trajectories to actions

$$
\begin{aligned}
\nabla_{\theta} \log P\left(\tau^{(i)} ; \theta\right) & =\nabla_{\theta} \log [\prod_{t=0}^{T} \underbrace{P\left(s_{t+1}^{(i)} \mid s_{t}^{(i)}, a_{t}^{(i)}\right)}_{\text {dynamics }} \cdot \underbrace{\pi_{\theta}\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)}_{\text {policy }}] \\
& =\nabla_{\theta}[\sum_{t=0}^{T} \underbrace{\log P\left(s_{t+1}^{(i)} \mid s_{t}^{(i)}, a_{t}^{(i)}\right)}_{\text {dynamics }}+\underbrace{\log \pi_{\theta}\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)}_{\text {policy }}] \\
& =\nabla_{\theta}[\sum_{t=0}^{T} \underbrace{\log \pi_{\theta}\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)}_{\text {policy }}] \\
& =\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}\left(a_{t}^{(i)} \mid s_{t}^{(i)}\right)
\end{aligned}
$$

$\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right) \quad \square \nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right)$

$$
\nabla_{\theta} U(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right)
$$

- Gradient tries to:
- Increase probability of paths with positive R
- Decrease probability of paths with
 negative R
! Likelihood ratio changes probabilities of experienced paths, does not try to change the paths (<-> Path Derivative)

Likelihood ratio gradient estimator

$$
\begin{aligned}
& \max _{\theta} . U(\theta)=\mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& \begin{aligned}
\nabla_{\theta} U(\theta) & =\nabla_{\theta} \mathbb{E}_{\tau \sim P_{\theta}(\tau)}[R(\tau)] \\
& =\mathbb{E}_{\tau \sim P_{\theta}(\tau)}\left[\nabla_{\theta} \log P_{\theta}(\tau) R(\tau)\right]
\end{aligned}
\end{aligned}
$$

An unbiased estimator of this gradient:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right)
$$

$$
\mathbb{E}[\hat{g}]=\nabla_{\theta} U(\theta)
$$

Pong from Pixels

\bullet
[

Policy network

Policy network

e.g.,
height width
[80 x 80] array of

Policy network

height width
[80 x 80] array
raw pixels

```
h = np.dot(W1, x) # compute hidden layer neuron activations
h[h<0] = 0 # ReLU nonlinearity: threshold at zero
logp = np.dot(W2, h) # compute log probability of going up
p = 1.0 / (1.0 + np.exp(-logp)) # sigmoid function (gives probability of going up)
```


Policy network

height width
[80 x 80] array

E.g. 200 nodes in the hidden network, so:
$\left[\left(80^{*} 80\right)^{*} 200+200\right]+\left[200^{*} 1+1\right]=\sim 1.3 \mathrm{M}$ parameters
Layer 1 Layer 2

\bullet

Network does not see this. Network sees $80 * 80=6,400$ numbers. It gets a reward of +1 or -1 , some of the time. Q: How do we efficiently find a good setting of the 1.3 M parameters?

Random search
Evolutionary methods
Approximation to the gradient via finite differences
Likelihood ratio policy gradients

Suppose we had the training labels...
(we know what to do in any state)

```
(x1,UP)
(x2,DOWN)
(x3,UP)
```


Suppose we had the training labels...
 (we know what to do in any state)

```
(x1,UP)
(x2,DOWN)
(x3,UP)
```


Suppose we had the training labels...
(we know what to do in any state)

maximize:

$\sum_{i} \log p\left(y_{i} \mid x_{i}\right)$

supervised learning

Except, we don't have labels...

Should we go UP or DOWN?

Except, we don't have labels...

trial-and-error learning

Let's just act according to our current policy...

Rollout the policy and collect an episode

Collect many rollouts...

4 rollouts:

Not sure whatever we did here, but apparently it was good.

Not sure whatever we did here, but it was bad.

Pretend every action we took here was the correct label.

Pretend every action we took here was the wrong label.
maximize: $(-1) * \log p\left(y_{i} \mid x_{i}\right)$

Supervised Learning

maximize: $\sum_{i} \log p\left(y_{i} \mid x_{i}\right)$

For images x_i and their labels y_i.

Supervised Learning

maximize:

$$
\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
$$

For images x_i and their labels y_i.

Reinforcement Learning

Supervised Learning

maximize:

$$
\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
$$

Reinforcement Learning

1) we have no labels so we sample:

$$
y_{i} \sim p\left(\cdot \mid x_{i}\right)
$$

For images x_i and their labels y_i.

Supervised Learning

maximize:

$$
\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:
$y_{i} \sim p\left(\cdot \mid x_{i}\right)$
2) once we collect a batch of rollouts:
maximize:
$\sum_{i} A_{i} * \log p\left(y_{i} \mid x_{i}\right)$

Supervised Learning

maximize:

$$
\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

2) once we collect a batch of rollouts: maximize:
$\sum_{i} A_{i} * \log p\left(y_{i} \mid x_{i}\right)$
We call this the advantage, it's a number, like +1.0 or -1.0 based on how this action eventually turned out.

Supervised Learning

maximize:

$$
\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
$$

For images x_i and their labels y_i.

Reinforcement Learning

1) we have no labels so we sample:

2) once we collect a batch of rollouts: maximize:
$\sum_{i} A_{i} * \log p\left(y_{i} \mid x_{i}\right)$
+ve advantage will make that action more likely in the future, for that state.
-ve advantage will make that action less likely in the future, for that state.

Temporal structure

$$
\begin{aligned}
\hat{g} & =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=0}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right)
\end{aligned}
$$

Each action takes the blame for the full trajectory!

Temporal structure

$$
\begin{aligned}
\hat{g} & =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=0}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=0}^{t-1} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)+\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right)
\end{aligned}
$$

Each action takes the blame for the full trajectory!

Temporal structure

$$
\begin{array}{rlrl}
\hat{g} & =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right) R\left(\tau^{(i)}\right) & & \text { Each action takes the } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=0}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right. & & \text { blame for the full trajectory! } \\
& =\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=0}^{t-1} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)+\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right.
\end{array}
$$

Consider instead:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)\right)
$$

Each action takes the blame for the trajectory that comes after it

We can call this the return from t onwards G_t

- Let's analyze the update:

$$
\Delta \theta_{t}=\alpha G_{t} \nabla_{\theta} \log \pi_{\theta}\left(s_{t}, a_{t}\right)
$$

- Let's us rewrite is as follows:

$$
\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t}+\alpha \gamma^{t} G_{t} \frac{\nabla_{\boldsymbol{\theta}} \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)}{\pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)}
$$

- Update is proportional to:
- the product of a return G_{t} and
- the gradient of the probability of taking the action actually taken,
- divided by the probability of taking that action.
- Let's analyze the update:

$$
\Delta \theta_{t}=\alpha G_{t} \nabla_{\theta} \log \pi_{\theta}\left(s_{t}, a_{t}\right)
$$

- Let's us rewrite is as follows:
move most in the directions that favor actions that yield the highest return

$$
\boldsymbol{\theta}_{t+1} \doteq \boldsymbol{\theta}_{t}+\alpha \gamma^{t} G_{t} \frac{\nabla_{\boldsymbol{\theta}} \pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)}{\pi\left(A_{t} \mid S_{t}, \boldsymbol{\theta}\right)}
$$

Update is inversely proportional to the action probability -- actions that are selected frequently are at an advantage (the updates will be more often in their direction)

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$\mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b
\end{aligned}
$$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau ; \theta)} b
\end{aligned}
$$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau ; \theta)} b \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b
\end{aligned}
$$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau ; \theta)} b \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b \\
& =b\left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau)\right)
\end{aligned}
$$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau ; \theta)} b \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b \\
& =b\left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau)\right) \\
& =b\left(\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau)\right)
\end{aligned}
$$

Likelihood ratio gradient estimator

For constant b , consider this:

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right)\left(R\left(\tau^{(i)}\right)-b\right)
$$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) R\left(\tau^{(i)}\right)-\frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log P_{\theta}\left(\tau^{(i)}\right) b
$$

$$
\begin{aligned}
& \mathbb{E} \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \nabla_{\theta} \log P_{\theta}(\tau) b \\
& =\sum_{\tau} P(\tau ; \theta) \frac{\nabla_{\theta} P_{\theta}(\tau)}{P(\tau ; \theta)} b \\
& =\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau) b \\
& =b\left(\sum_{\tau} \nabla_{\theta} P_{\theta}(\tau)\right) \\
& =b\left(\nabla_{\theta} \sum_{\tau} P_{\theta}(\tau)\right)
\end{aligned}
$$

We still have an unbiased estimator of the gradient!

Baseline choices

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)-b\right)
$$

- Constant baseline: $\quad b=\mathbb{E}[R(\tau)] \approx \sum_{i=1}^{N} R\left(\tau^{(i)}\right)$
- Time-dependent baseline: $\quad b_{t}=\sum_{i=1}^{N} \sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)$
- State-dependent expected return:

$$
b\left(s_{t}\right)=\mathbb{E}\left[r_{t}+r_{t+1}+r_{t+2}+\ldots+r_{H-1}\right]=V_{\pi}\left(s_{t}\right)
$$

Estimate $V_{\pi}\left(s_{t}\right)$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)-V^{\pi}\left(s_{k}^{(i)}\right)\right)
$$

MC estimation

Initialize ϕ

- Collect trajectories $\tau_{1}, \ldots \tau_{N}$
- Regress against empirical return:

$$
\phi_{i+1} \leftarrow \underset{\phi}{\arg \min } \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{H-1}\left(V_{\phi}^{\pi}\left(s_{t}^{(i)}\right)-\left(\sum_{k=t}^{H-1} R\left(s_{k}^{(i)}, u_{k}^{(i)}\right)\right)\right)^{2}
$$

Algorithm 1 "Vanilla" policy gradient algorithm
Initialize policy parameter θ, baseline b
for iteration $=1,2, \ldots$ do
Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_{t}=\sum_{t^{\prime}=t}^{T-1} \gamma^{t^{\prime}-t} r_{t^{\prime}}$, and the advantage estimate $\hat{A}_{t}=R_{t}-b\left(s_{t}\right)$.
Re-fit the baseline, by minimizing $\left\|b\left(s_{t}\right)-R_{t}\right\|^{2}$, summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate \hat{g}, which is a sum of terms $\nabla_{\theta} \log \pi\left(a_{t} \mid s_{t}, \theta\right) \hat{A}_{t}$
end for

Estimate $V_{\pi}\left(s_{s}\right)$

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)-V^{\pi}\left(s_{k}^{(i)}\right)\right)
$$

TD estimation

Initialize ϕ

- Collect data $\left\{s, u, s^{\prime}, r\right\}$
- Fitted V iteration:

$$
\phi_{i+1} \leftarrow \min _{\phi} \sum_{\left(s, u, s^{\prime}, r\right)}\left\|r+V_{\phi_{i}}^{\pi}\left(s^{\prime}\right)-V_{\phi}(s)\right\|_{2}^{2}+\lambda\left\|\phi-\phi_{i}\right\|_{2}^{2}
$$

Actions inherit the blame of the future return

All the random actions we did have been found bad, while they really didn't matter..

Can I find a better estimator for the cumulative future reward, instead of the return of a single rollout?
discounted reward
ball gets past our paddle
-1 reward
we screwed up this was all hopeless and only somewhere here contributes noise to the gradient

Better estimates for cumulative future reward

$$
\hat{g}=\frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}\left(\alpha_{t}^{(i)} \mid s_{t}^{(i)}\right)\left(\sum_{k=t}^{H} R\left(s_{k}^{(i)}, a_{k}^{(i)}\right)-V^{\pi}\left(s_{k}^{(i)}\right)\right)
$$

- Estimation of Q from single roll-out

$$
Q^{\pi}(s, u)=\mathbb{E}\left[r_{0}+r_{1}+r_{2}+\cdots \mid s_{0}=s, a_{0}=a\right]
$$

- = high variance per sample based / no generalization
- Reduce variance by discounting
- Reduce variance by function approximation (=critic)

Actor-Critic

- Monte-Carlo policy gradient still has high variance
- We can use a critic to estimate the action-value function:

$$
Q_{w}(s, a) \approx Q^{\pi_{\theta}}(s, a)
$$

- Actor-critic algorithms maintain two sets of parameters
- Critic Updates action-value function parameters w
- Actor Updates policy parameters θ, in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

Actor-Critic

$$
Q^{\pi, \gamma}(s, u)=\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\cdots \mid s_{0}=s, u_{0}=u\right]
$$

Actor-Critic

$$
\begin{aligned}
Q^{\pi, \gamma}(s, u) & =\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\cdots \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma V^{\pi}\left(s_{1}\right) \mid s_{0}=s, u_{0}=u\right]
\end{aligned}
$$

Actor-Critic

$$
\begin{aligned}
Q^{\pi, \gamma}(s, u) & =\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\cdots \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma V^{\pi}\left(s_{1}\right) \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} V^{\pi}\left(s_{2}\right) \mid s_{0}=s, u_{0}=u\right]
\end{aligned}
$$

Actor-Critic

$$
\begin{aligned}
Q^{\pi, \gamma}(s, u) & =\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\cdots \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma V^{\pi}\left(s_{1}\right) \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma r_{1}+\gamma^{2} V^{\pi}\left(s_{2}\right) \mid s_{0}=s, u_{0}=u\right] \\
& =\mathbb{E}\left[r_{0}+\gamma r_{1}++\gamma^{2} r_{2}+\gamma^{3} V^{\pi}\left(s_{3}\right) \mid s_{0}=s, u_{0}=u\right] \\
& =\cdots
\end{aligned}
$$

- Async Advantage Actor Critic (A3C) [Mnih et al, 2016]
- \hat{Q} one of the above choices (e.g. k=5 step lookahead)

Asynchronous Deep RL

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih ${ }^{1}$
Adrià Puigdomènech Badia
Mehdi Mirza ${ }^{1,2}$
Alex Graves ${ }^{1}$
Tim Harley ${ }^{1}$
Timothy P. Lillicrap ${ }^{1}$
David Silver ${ }^{1}$
Koray Kavukcuoglu ${ }^{1}$
${ }^{1}$ Google DeepMind
${ }^{2}$ Montreal Institute for Learning Algorithms (MILA), University of Montreal

VMNIH@ GOOGLE.COM
ADRIAP@GOOGLE.COM
MIRZAMOM@IRO.UMONTREAL.CA

```
Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.
    // Assume global shared parameter vectors \(\theta\) and \(\theta_{v}\) and global shared counter \(T=0\)
    \(/ /\) Assume thread-specific parameter vectors \(\theta^{\prime}\) and \(\theta_{v}^{\prime}\)
    Initialize thread step counter \(t \leftarrow 1\)
    repeat
        Reset gradients: \(d \theta \leftarrow 0\) and \(d \theta_{v} \leftarrow 0\).
        Synchronize thread-specific parameters \(\theta^{\prime}=\theta\) and \(\theta_{v}^{\prime}=\theta_{v}\)
        \(t_{\text {start }}=t\)
        Get state \(s_{t}\)
        repeat
            Perform \(a_{t}\) according to policy \(\pi\left(a_{t} \mid s_{t} ; \theta^{\prime}\right)\)
            Receive reward \(r_{t}\) and new state \(s_{t+1}\)
            \(t \leftarrow t+1\)
            \(T \leftarrow T+1\)
        until terminal \(s_{t}\) or \(t-t_{\text {start }}=t_{\text {max }}\)
```

ABC

```
\(R= \begin{cases}0 & \text { for terminal } s_{t} \\ V\left(s_{t}, \theta_{v}^{\prime}\right) & \text { for non-terminal } s_{t} / / \text { Bootstrap from last state }\end{cases}\)
```

$R= \begin{cases}0 & \text { for terminal } s_{t} \\ V\left(s_{t}, \theta_{v}^{\prime}\right) & \text { for non-terminal } s_{t} / / \text { Bootstrap from last state }\end{cases}$
for $i \in\left\{t-1, \ldots, t_{\text {start }}\right\}$ do
$R \leftarrow r_{i}+\gamma R$
Accumulate gradients writ $\theta^{\prime}: d \theta \leftarrow d \theta+\nabla_{\theta^{\prime}} \log \pi\left(a_{i} \mid s_{i} ; \theta^{\prime}\right)\left(R-V\left(s_{i} ; \theta_{v}^{\prime}\right)\right)$
Accumulate gradients writ $\theta_{v}^{\prime}: d \theta_{v} \leftarrow d \theta_{v}+\partial\left(R-V\left(s_{i} ; \theta_{v}^{\prime}\right)\right)^{2} / \partial \theta_{v}^{\prime}$
end for
Perform asynchronous update of θ using $d \theta$ and of θ_{v} using $d \theta_{v}$.
until $T>T_{\max }$

```

What is the approximation used for the advantage?
\[
\begin{array}{ll}
R_{3}=r_{3}+\gamma V\left(s_{4}, \theta_{v}^{\prime}\right) & A_{3}=R_{3}-V\left(s_{3} ; \theta_{v}^{\prime}\right) \\
R_{2}=r_{2}+\gamma r_{3}+\gamma^{2} V\left(s_{4}, \theta_{v}^{\prime}\right) & A_{2}=R_{2}-V\left(s_{2} ; \theta_{v}^{\prime}\right)
\end{array}
\]

\section*{Distributed RL}


\section*{Distributed Asynchronous RL}

No locking

\author{
5. Worker updates global network with gradients
}

Each worker may have slightly modified version of the policy/critic

4. Worker
gets
gradients
from losses

2. Worker interacts with environment

3. Worker calculates value and policy loss

The actor critic trained in such asynchronous way is knows as A3C

\section*{Distributed Synchronous RL}
5. Gradients of all workers are averaged and the central neural net weights are updated

4. Worker
gets
gradients
from losses

2. Worker interacts with environment

3. Worker calculates value and policy loss

The actor critic trained in such synchronous way is knows as A2C

\section*{Advantages of Asynchronous (multi-threaded) RL}








```

