Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Policy gradients Il

CMU 10-403

Katerina Fragkiadaki

Revision

Policy function approximators - this lecture

deterministic continuous policy stochastic policy
=7 LR y 0 a N , Aoy -
@ =7 (3) 0~ N(po(s), 53(5))

e.g. outputs a steering angle directly

(stochastic) actions

press brake

Outputs a distribution over a discrete set of actions

Policy Gradient

» Let U(B) be any policy objective function

» Policy gradient algorithms search for a local |
maximum in U(8) by ascending the gradient of _ ',,'"O')
the policy, w.r.t. parameters 0

9 =(91d+A6’

new o

AO = aV ,U()
e N

IS the policy gradient

4

a is a step-size

parameter (learning oU(0)
rate) 00,
VoU@)= |
oU(0)
20,

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

Gradients of expectations

Computing derivatives of expectations w.r.t. variables that parameterize the
distribution, not the quantity inside the expectation. Conditioned on the
samples, we can estimate the expectation without knowing theta

Later tod
max. u X~ P(X,H)f (x) yaf;gi)x)ay

0
max. f(Py(x)

Assumptions:
* P is a probability density function that is continuous and differentiable

* P is easy to sample from

AR+ Senpyo) R(®)

Likelihood ratio gradient estimator

m@ax. UO) =E,.p,m [R(T)]

VoU(O) = VyE, p o |R(D)]
=Lk, p, | Vglog Py(D)R(2))

An unbiased estimator of this gradient:

O . 1 L .
g=—) Vylog Py(z MRz = v Y Y Vylog mya®| sOR(ED)
=1

i=1 =1

E[g] = V,U(0)

Temporal structure

N

1 4 Y A o
=3 2 3 vt el

i=1 =1 k=t

Each action takes the
> blame for the trajectory
that comes after it

We can call this the return from t onwards G;

Likelihood ratio gradient estimator

» Let’s analyze the update:
Al = aG Vg logmg(st, at)

» Let’s us rewrite is as follows:
VQT('(At‘St, 0)

0., =0 g
t+1 t +ay Gy (A, 0)

» Update is proportional to:
- the product of a return G; and

- the gradient of the probability of taking the action actually taken,
- divided by the probability of taking that action.

Likelihood ratio gradient estimator

» Let’s analyze the update:
Al = aG Vg logmg(st, at)

» Let’s us rewrite is as follows:

move most in the directions that favor
actions that yield the highest return

/
Vor(A:|St, 0)
W(Atlst, 9)

/I

Update is inversely proportional to the action probability to fight the
fact that actions that are selected frequently are at an advantage
(the updates will be more often in their direction)

0;11 = 0, + av' Gy

Variance

Variance of a random variable:
Var(X) = E |(X — E[X])?]

Here we have a random vector:

T
Z Z Volog my(a | s)GY

=1 =1

.1
STN

Variance is the trace of the covariance matrix:

n

Var(g) = tr ([E (& — E[gD(@E - [E[§])T]> =) [(é’k B [E[ész]

k=1

Our goal is to minimize the variance

Baseline choices

R o
8=~ Z 2 Vylog y(a? | St(l))< 2 R(s©, algl)) — b)

k=t

N
= Constant baseline: b=E[R(D)] ~) RcY)
i=1

N
= Time-dependent baseline: =Y Y Rs®,a?

= State-dependent expected return:

b(St) :E[Tt_l_'rt—kl_I_Tt—|—2_|_---_|_TH—1] ZVE(St)

R N .
g== Y Y Vylog za®|sO)GE - b(s?))
i=1 =0
] &« o .
== Y'Y Vylog za®| sONGE - V(s
=1t

I
-

Variance

N T

1 o .
g== Y Y Vilog mya | sO)GE - b(s))
i=1 =0

Var(2) = tr ([E [(§ — E[g)(g — [E[g’])T]) = i E [(§k — [E[g’k])zl
k=1

-+ Imagine in some state $; the rewards of all actions are ~3000 and
N Sz ~ -4000.

- Now imagine you have S, = 3000 andS$, = —4000. | have much reduced
the variance.

- We want to encourage an action, not when it has high return, but when it
has higher return than the state expected return b(s), i.e., when making

this action MORE probable would allow me to improve over what | get
now from the state.

Estimate V (s)

R et N A o .
g=- Z Y Vylog my(a®| s;”)(Y R, a) - v”(s,gl>)>

k=t

MC estimation
Initialize ¢
= Collect trajectories 7p,...7y

= Regress against empirical return:

N H-1
¢z+1%argmmﬁ> > (V7T

¢ i—=1 t=0

H

k:

1

t

R(

(2) (7)

Sk 7uk

)

Estimate V. _(s)

R Y A S .
TN D, 2. Vologmy(a?] sf’))< Y R, a) - V”(s,ﬁ’))>

TD estimation

Initialize ¢
s Collectdata{s, u, s/, r}
= Fitted V iteration:

Pit1 < min > VI = V()3 + Al — il

(s,u,s’,r)

Better estimates for cumulative future reward

N T

1
= > Y Vglogzya] S(’))(Y Rs?,a) - V”(s(’))>

=1 r=1

We are essentially attempting to estimate Q from a single rollout:

Q"(s,a) =E[Ry+ R, + - | Sy = 5,A) = d]

Minimize variance by:
- discounting

- introducing a learnt approximation for the extected return (critic),
as opposed to use MC samples

Actor-Critic

Reducing variance using a critic

O™(s,a) = E[Ry+ yR, + y°Ry+++ | Sy, = 5, Ay = a]

Actor-Critic

Reducing variance using a critic

O™(s,a) = E[Ry+ YR, + y*Ry--- | S, = 5, Ay = a]
— E:RO T }/Vﬂ(Sl) | SO =3, AO — Cl]

Actor-Critic

Reducing variance using a critic

E[R, + YR, + 7°Ry-++ | Sy = 5,Ay = a]
E :RO T }/Vﬂ(Sl) | SO =3, AO — Cl]
E :RO T }/Rl + }/2V”(Sz) | SO = 3, AO — a]

Q™'(s,a)

Actor-Critic

Reducing variance using a critic

E[Ry+ YR, + >Ry | Sy = 5, Ay = a]

E[Ry + yV™(S) | Sy = 5,49 = a]

E[Ry + YR, + y*V*(S,) | Sy = 5,Ay = a]

E[R) + YR, + >R, + y°V*(S,) | Sy = 5, Ay = a]

Q™'(s,a)

REINFORCE/Actor-critic training

o Stability of training neural networks requires the gradient updates to
be de-correlated

* This is not the case if data arrives sequentially

« Gradient updates computed from some part of the space can cause
the value (Q) function approximator to oscillate

* Our solution so far has been: Experience buffers where experience
tuples are mixed and sampled from. Resulting sampled batches are
more stationary that the ones encountered online (without buffer)

* This limits deep RL to off-policy methods, since data from an older
policy are used to update the weights of the value approximator
(critic) (except if we take care and weight such data under our current
stochastic policy)

Alternative to experience buffers

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih'! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia' ADRIAP @ GOOGLE.COM
Mehdi Mirza'-? MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley! THARLEY @ GOOGLE.COM
Timothy P. Lillicrap' COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

1 Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

Asynchronous Deep RL for on policy learning

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih'! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia'! ADRIAP @ GOOGLE.COM
Mehdi Mirza' 2 MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

! Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

 Alternative: parallelize the collection of experience and stabilize training
without experience buffers

* Multiple threads of experience, one per agent, each exploring in different
part of the environment contributing experience tuples

- Different exploration strategies (e.g., various \epsilon values) in different
threads increase diversity

 Now you can train on-policy, e.g., using policy gradients

2

Worker 1

!

ﬁ‘

Distributed RL

Global Network

Policy i(s) | Vis)

Network

I

L Input (s) u

.

Worker 2 Worker 3

! !

S

Worker n

!

Environment 1 ‘ Environment 2 ‘ Environment3 ... @ Environmentn

A3C

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 0 and 0., and global shared counter T’ = 0
// Assume thread-specific parameter vectors 0’ and 0,
Initialize thread step counter ¢ <— 1
repeat
Reset gradients: df < 0 and df, < 0.
Synchronize thread-specific parameters " = 6 and 0., = 0,

tstart = T
Get state s
repeat

Perform a; according to policy 7(a¢|s:; ") Rollout

Receive reward r; and new state s;41 S 15 S2, S3, S A

t+—t+1

T+« T+1 o0 0 o
until terminal s; or ¢t — tstart == tmax rl 0 rz, 7"3
R = 0 for terminal s;

- { V(st,0,) for non-terminal s:// Bootstrap from last state

for 1 - {t — 1, “ e ,tstart} do

R+—r;+vR

Accumulate gradients wrt 0’: df < df + Vg: log w(ai|si; 0") (R — V (s4;6y,))
Accumulate gradients wrt 0/,: df, < db, + 0 (R — V (s::0.,))° /90,
end for

Perform asynchronous update of 6 using df and of 6,, using d@\

until 7' > T, 02

What is the approximation used for the advantage? R, — V(s3)
Ry = r; +yV(sy, 0)) Az = Ry — V(s3;0))
Ry =ry+yrs+y? V(s 6)) A, =R, — V(s 0))

Distributed Asynchronous RL-A3C

5. Worker
updates global
network with
gradients

4. Worker
gets
gradients
from losses

3. Worker

T ca
va

po

culates
ue and

icy loss

’ 1. Worker reset

to global
network

2. Worker
interacts
with
environment

Distributed Synchronous RL-A2C

5. Gradients of all
workers are averaged and
the central neural net
weights are updated

1. Worker reset
to global
network

4. Worker 2. Worker
gets interacts
gradients with
from losses environment
. 3. Worker
07 calculates
value and
policy loss

We also found that adding the entropy of the policy m to
the objective function improved exploration by
discouraging premature convergence to suboptimal
deterministic policies.” So you need to add to the policy
gradient: +pV H(zya,|s;0))

We will look into the entropy as part of the reward in later
lecture

Score

Advantages of Asynchronous (multi-threaded

16000

14000

12000

10000

8000

6000

4000

2000

Training time (hours)

Beamrider

—— A3C, 1 threads
—— A3C, 2 threads
— A3C, 4 threads
—— A3C, 8 threads
A3C, 16 threads

2 4 6 8 10

Trainina tima (hanire)

12

14

600

500

400

200

100

Training time (hours)

Breakout

A3C, 1 threads
A3C, 2 threads
A3C, 4 threads
A3C, 8 threads
A3C, 16 threads

2 4 6 8 10 12 14

Trainina tima (hanre)

30

20

10

Score
o

-10

Training time (hours)

Pong

— A3C, 1 threads

—— A3C, 2 threads

—— A3C, 4 threads

—— A3C, 8 threads A
A3C, 16 threads

2 4 6 8 10

Trainina tima (hanre)

14

12000

10000

8000

6000

Score

4000

2000

Training time (hours)

Q*bert

—— A3C, 1 threads
—— A3C, 2 threads
— A3C, 4 threads
—— A3C, 8 threads
A3C, 16 threads

Trainina tima (hanire)

Score

1600

1400

1200

1000

800

Training time (hours)

Space Invaders

A3C, 1 threads
A3C, 2 threads
A3C, 4 threads
A3C, 8 threads
A3C, 16 threads

2 4 6 8 10

Trainina tima (hanre)

12

Summary of policy gradients so far

» The policy gradient has many equivalent forms

VoU©) = E,, [Vg log mg(s,a) v¢] REINFORCE
= E,, [Vglogmg(s,a) Q" (s,a)] Q Actor-Critic
= E,, [Vglogmg(s,a) A¥(s,a)] Advantage Actor-Critic

» Each leads a stochastic gradient ascent algorithm

» Critic uses policy evaluation (e.g. MC or TD learning) to estimate

Q™(s,a), A™(s,a) or V™(s)

Computing Gradients of Expectations

Likelihood ratio gradient estimator:

mea A Ly~p e(x)f (<) méch + 'z Py(7) [R(T)]
E b0 V 9108 Py()f(x) L pyo | Volog Po(D)R(7))

—s~dO(s), a~my(als) Vﬁlog JZ'@(CZ S) [Q(S) CZ)]

Ei0(s). amryals) Y6108 T(a| 5) :Q(s, a) — V(s)]
Qs:

- Do the gradients of Q(s,a) or A(s,a)=Q(s,a)-V(s) w.r.t. \theta exist?

- Do we use them?

What if we have a deterministic policy”?

p () a = my(s)
— X
Y 0 mglx. —ZR(SP 7o(S,))
max . f(P,(x)) t
0 max. E D OGS, 7))
t
Qs:
- Can we backpropagate through R?
- Can we backpropagate through Q?
dE Y. O(S, 7y(S)) dO(S,, 7/S,) da
d P d d ! 0 — 1 O\t
[(Pex) _ df(y) dy — EY

do dy do

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

What if we have a deterministic policy”?

Pathwise derivatives
a = my(s)

y = PQ(X) max . [EZR(SP 7o(S,))

0
max . f(P,(x
p f(9()) meax. E 2 O(S,, my(S,))

dE Y. O(S,, my(S,) dQ(S,, m,(S,)) da
df(P df(v) d ! - p T
If(Py(x)) _ if(y) dy - E) - o
do dy do

Likelihood ratio gradient estimator

mglx. E.. P,(x) f(x) m@ax. E.. P,(7) [R(T)]

__XNPH(_X) Velog P@(x)f(x) _TNPH(T) [V@log PH(T)R(T)]

Deep Deterministic Policy Gradients

d B dR; da,
Tk [Rr] = Z da; df

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Ry

This expectation refers to the dynamics after time t
d '~ dRy da,

. _
d E da;
YRR =F _EIST SRR dat
1™ IRl da, d0 Z}m [Rr 2] -5

| t=1

Continuous control with deep reinforcement learning, Lilicarp et al. 2016

Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
—E|Rs| = =K —E|R —_
qg™ IRl = Z da, d6 Zdat [Rr | a:] 3
T
dQ(St, 3t) dat
— K
; da; do

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

Ry

T

d dRT dat dat
L RIR] = § : _ § j— il
o Rl = da, a0 | ~© datE[RT|at]
- _
dQ(s:, at) dat d
— K — K - .
; da, df ; ag Lt m(5¢30))

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG

Deep Deterministic Policy Gradients

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#%) and actor y(s|6*) with weights 69 and 6+,
Initialize target network @’ and x’ with weights 69" «+ 69, 9*" «+ g*
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s,
fort=1,Tdo
Select action a; = u(s¢|6*) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (sy, a;, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;, 7, Si+1) from R
Set y; = r; + Q' (sit1, 1/ (si+1]0)|09")
Update critic by minimizing the loss: L = + >_.(yi — Q(si, a;|09))?
Update the actor policy using the sampled policy gradient:

Si

1
Vound =]_V ;an(SaaloQ)|s=si,a=u(si)v9”:u’(3|9“)

Update the target networks:
09 « 769 + (1 —7)8°
O T + (1 — T)6

end for
end for

Deep Deterministic Policy Gradients

Figure 1: Example screenshots of a sample of environments we attempt to solve with DDPG. In
order from the left: the cartpole swing-up task, a reaching task, a gasp and move task, a puck-hitting
task, a monoped balancing task, two locomotion tasks and Torcs (driving simulator). We tackle
all tasks using both low-dimensional feature vector and high-dimensional pixel inputs. Detailed
descriptions of the environments are provided in the supplementary. Movies of some of the learned
policies are available at https://goo.gl/J4PIAz.

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balancing

-~V

Puck Shooting Cheetah
P 1r
©
=
& 0 AWM MAAAANA
T
1))
N
©
-
O
= 0 1

Million Steps

Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.

State representation input can be pixels or robotic configuration and target locations

https://www.youtube.com/watch?v=tdBIgkC1wWM&feature=youtu.be

Model Free Methods - Comparison

Task Random REINFORCE TNPG RWR REPS TRPO CEM CMA-ES DDPG
Cart-Pole Balancing 77.1+£0.0 4693.74+ 14.0 39864 4 7489 4861.5 4+ 123 565.6 +137.6 4869.8 4+ 37.6 4815.44+ 4.8 2440.44+568.3 46344 4+ B87.8
Inverted Pendulum?* —153.440.2 13.44 18.0 209.7 + 555 84. 74+ 13.8 —113.3+ 4.6 2472 -+ 7e6.1 38.24+ 25.7 —40.14+ 5.7 400 +244.6
Mountain Car —415.440.0 —67.14+ 1.0 -66.5 + 4.5 —79.44+ 1.1 —-275.61+166.3 -61.7 + 09 —66.0+ 2.4 —85.0x 7.7 —288.44+170.3
Acrobot —1904.54+1.0 —508.1+ 91.0 —395.8+121.2 —352.74+ 35.9 —1001.54+ 10.8 —326.0+ 24.4 —436.8+ 14.7 —T785.6+ 13.1 -223.6 + 5.8
Double Inverted Pendulum®*® 149.74+ 0.1 4116.5+ 65.2 44554 + 37.6 3614.8 +-368.1 446.74+114.8 44124 + 504 2566.24+178.9 1576.14+ 51.3 2863.44154.0
Swimmer#* —1.74+0.1 92.34+ 0.1 96.0 4+ 0.2 60.7+ 5.5 3.84 3.3 96.0 4+ 0.2 68.8+ 2.4 64.9+ 1.4 85.8 + 1.8
Hopper 8.44+0.0 714.0+ 29.3 1155.1 4+ 579 5563.2+ T71.0 86.7+ 17.6 1183.3 -+ 150.0 63.1+ 7.8 20.3+ 14.3 267.1 + 43.5
2D Walker —1.74+0.0 506.5+ TR.8 1382.6 4+ 108.2 136.0+ 15.9 —37.04+ 38.1 1353.8 1+ 85.0 84.54+ 19.2 T7.14+ 24.3 318.44181.6
Half-Cheetah —900.84+0.3 1183.14+ 69.2 17295 4+ 184.6 376.1 4+ 28.2 34.54+ 38.0 1914.0 + 120.1 330.44-274.8 441.34+107.6 2148.6 4+ T02.7
Ant* 13.440.7 548.3+ 55.5 706.0 4 127.7 37.6+ 3.1 39.04+ 9.8 7302 -+ 613 49.24+ 5.9 17.8+ 15.5 326.2 + 20.8
Simple Humanoid 41.54+0.2 128.1 4+ 34.0 255.0 4+ 245 93.34+ 17.4 28.3+ 4.7 2697 -+ 403 60.6 - 12.9 28. 7T+ 3.9 99.4+ 28.1
Full Humanoid 13.240.1 262.2+ 10.5 2884 4+ 252 46.7T+ 5.6 41.74+ 6.1 287.0 + 234 36.9+ 2.9 N/A + N/A 119.04+ 31.2
Cart-Pole Balancing (LS)* 77.1+0.0 420.94265.5 9451 L+ 278 68.94+ 1.5 898.14 22.1 960.2 -+ 46.0 227.04 223.0 68.0x 1.6

Inverted Pendulum (LS) —122.140.1 —13.44+ 3.2 0.7 + 6.1 —107.44+ 0.2 —87.24+ 8.0 4.5 + 4.1 —81.2+ 33.2 —62.4+ 3.4

Mountain Car (LS) —83.04+0.0 —81.24+ 0.6 657 + 9.0 —81.74+ 0.1 —82.6+ 0.4 642 + 95 689 + 13 -73.2 <+ 0.6

Acrobot (LS)* —303.240.0 —128.94+ 11.86 846 <+ 29 —235.94+ 5.3 —-379.5+ 1.4 -83.3 4+ 99 —149.54+ 15.3 —159.94+ 7.5

Cart-Pole Balancing (NO)* 101.440.1 616.04+210.8 9163 L+ 23.0 93.84+ 1.2 9964+ T.2 606.24122.2 181.4+ 32.1 104.4+ 16.0

Inverted Pendulum (NQO) —122.240.1 6.5+ 1.1 115 + 0.5 —110.04+ 1.4 —-119.3+ 4.2 104 + 2.2 —55.6+ 16.7 —80.3+ 2.8

Mountain Car (NO) —83.04+0.0 —T74.7T4+ 7.8 645 4+ 8.6 —81.74+ 0.1 —82.94+ 0.1 -60.2 4+ 2.0 —67.4+ 1.4 —73.5+ 0.5

Acrobot (NO)* —393.54+0.0 -186.7 + 31.3 -164.5 4+ 134 —233.14+ 0.4 —258.5+ 14.0 -1496 + 8.6 —213.44+ 6.3 —236.6%+ 6.2

Cart-Pole Balancing (SI)* 76.3+0.1 431.71+274.1 9805 + 7.3 69.04+ 2.8 702.44+196.4 9803 + 5.1 746.6 + 93.2 7T1.6+ 2.9

Inverted Pendulum (SI) —121.840.2 —5.34+ 5.6 148 + 1.7 —108.7+ 4.7 —92.84+ 23.9 141 <+ 09 —51.8+ 10.6 —63.14+ 4.8

Mountain Car (SI) —82.74+0.0 —63.94+ 0.2 618 4+ 04 —81.44 0.1 —80.74+ 2.3 -61.6 + 04 —63.9+ 1.0 —66.9+ 0.6

Acrobot (SI)* —387.84+1.0 -169.1 -+ 323 -156.6 -+ 389 —233.24+ 2.6 —-216.14& T.7 -1709 L+ 403 —250.24+ 13.7 —245.04L+ 5.5

Swimmer + Gathering 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Gathering —5.84+5.0 —0.14+ 0.1 —0.44+ 0.1 —5.54+ 0.5 —6.74+ 0.7 —0.44+ 0.0 —4.74+ 0.7 N/A + N/A —0.34+ 0.3
Swimmer + Maze 0.04+£0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.04+& 0.0 0.0+ 0.0 0.0+ 0.0
Ant + Maze 0.0+0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 0.0+ 0.0 N/A + N/A 0.0+ 0.0

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control"

Computing Gradients of Expectations

When the variable w.r.t. which we are differentiating appears in the distribution:

7 _XNPQ(x)f (0) = Erop, Vglog Py(x)f(x)

When the variable w.r.t. which we are differentiating appears inside the expectation:

df(x(0), z) dx
dx do

VQ[EZNJV(O,l)f(x(H)a Z) — [EZNJV(O,I) ng(X(H), Z) — [EZNJV(O,l)

Re-parametrization trick: For some distributions P,(x) we can switch from one
gradient estimator to the other.

Why would we want to do so?

Known MDP

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Reward and dynamics are known

Known MDP-let's make It simpler

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the average
reward obtained.

What if the policy is deterministic”?

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the reward
obtained.

| can compute the gradient with backpropagation.

Vop(s,a) = p,my,

What if the policy is stochastic”

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the average
reward obtained.

Likelihood ratio estimator, works for both
continuous and discrete actions

E,Volog z,(s)p(s, a)

It does not use the derivative of the reward w.r.i.
the action.

Policies are parametrized Gaussians

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes

the distribution to sample from)

deterministic computation node

| want to learn \theta to maximize the average
reward obtained.

E,Volog zy(s)p(s, a)

If 62 is constant:

ou(s;0
(a — u(s; 6)) 20
2

v@ 1Og 7T9(87 CL) —
o)

Re-parametrization for Gaussian

Instead of: a ~ ' (u(s, 6),Z(s, 6))

We can write: a=u(s,0)+z00o(s,0) 7~ N(0,])

Why?

E.(u(s,0) + zo(s, 0)) = u(s, 0)
Because:)
Var (u(s, 0) + zo(s,0)) = o(s, 0)

What do we gain?

dp (a(6,2),s) da(0, z)
da do
da(0,z) du(s,0) N do(s,)

0 o %
Sample estimate:

| X 1 & dp (a(Q,Z),S) da(0, z)
Vo & | (a.09) | =5 X1 a0 =

VoE, [p (a(@, z),s)] =E,

Re-parametrized Policy Gradients

» Episodic MDP:

0

Ve

We want to compute: V,E[R;]

Re-parametrized Policy Gradients

» Episodic MDP:

0
(50 A5y Sor)
ﬁ PR
(af () T (en)
We want to compute: V,E[R;]

» Reparameterize: a; = 7(s:, z;; 0). z; is noise from fixed distribution.

£ N S

Re-parametrized Policy Gradients

» Episodic MDP:

e

We want to compute: V,E[R;]

» Reparameterize: a; = 7w(s;, z;; 0). z; is noise from fixed distribution.

For pathwise derivative to work, we need transition dynamics and reward

function to be known.

o

6

o

5o .

e

®

Re-parametrized Policy Gradients

S _

d day
—E[Rr| =K — K — REI[R |t
a6 1R tzdat d ;dat Rrlad g

For path wise derivative to work, we need transition dynamics and reward
function to be known, or...

Re-parametrized Policy Gradients

] d da,
1o k7] tz da, d0 Zdat [Rrlad 5

| t=1

Qs a) dar | [~ d '
—E |} (5t dac | > 5 Qse. (s, 2:0))
i | t=1 _

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

Learning continuous control by stochastic value gradients, Hees et al.

Stochastic Value Gradients VO

> Learn @4 to approximate QQ™7, and use it to compute gradient estimates.

» Pseudocode:

for iteration=1,2,... do
Execute policy my to collect T timesteps of data

Update 7y using g o< Vo 3., Q(st, 7(st, z¢; 6))

Update Qg using g o< Vo 3.7 (Qq(se, a:) — Q¢)?, e.g. with TD()\)
end for

Learning continuous control by stochastic value gradients, Hees et al.

Stochastic Value Gradients VO

a = pu(s;0) + zo(s;0)

Learning continuous control by stochastic value gradients, Hees et al.

Compare with: Deep Deterministic Policy Gradients

No z!

