
Policy gradients |||

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

CMU 10-403

Revision

Policy function approximators - this lecture

deterministic continuous policy

a = ⇡✓(s)

s a

(stochastic) discrete actions

go left
go rights

s

stochastic continuous policy

µ✓(s)

�✓(s)

a ⇠ N (µ✓(s),�
2
✓(s))

Outputs a distribution over a discrete set of actions

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

FA

e.g. outputs a steering angle directly

FA

FA

press brake

Policy Gradient
‣ Let U(θ) be any policy objective function

‣ Policy gradient algorithms search for a local
maximum in U(θ) by ascending the gradient of
the policy, w.r.t. parameters θ

Δθ = α∇θU(θ)
θnew = θold + Δθ

α is a step-size
parameter (learning
rate)

is the policy gradient

∇θU(θ)

∂U(θ)
∂θ1

∂U(θ)
∂θn

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy

Gradients of expectations

max
θ

. 𝔼x∼P(x;θ) f(x)

Computing derivatives of expectations w.r.t. variables that parameterize the
distribution, not the quantity inside the expectation. Conditioned on the
samples, we can estimate the expectation without knowing theta

Assumptions:

• P is a probability density function that is continuous and differentiable

• P is easy to sample from

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]

y = Pθ(x)
max

θ
. f(Pθ(x))

Later today

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)R(τ(i))

Likelihood ratio gradient estimator
max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

An unbiased estimator of this gradient:

𝔼[̂g] = ∇θU(θ)
max

θ
. 𝔼x∼P(x;θ) f(x)

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Temporal structure

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)(
H

∑
k=t

R(s(i)
k , a(i)

k))
Each action takes the
blame for the trajectory
that comes after it

We can call this the return from t onwards Gt

‣ Let’s analyze the update:

‣ Let’s us rewrite is as follows:

‣ Update is proportional to:
- the product of a return Gt and
- the gradient of the probability of taking the action actually taken,
- divided by the probability of taking that action.

Likelihood ratio gradient estimator

‣ Let’s analyze the update:

‣ Let’s us rewrite is as follows:

Update is inversely proportional to the action probability to fight the
fact that actions that are selected frequently are at an advantage
(the updates will be more often in their direction)

move most in the directions that favor
actions that yield the highest return

Likelihood ratio gradient estimator

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Variance

𝔼 ̂g = ∇θU(θ)

Variance is the trace of the covariance matrix:

Var(̂g) = tr (𝔼 [(̂g − 𝔼[̂g])(̂g − 𝔼[̂g])T]) =
n

∑
k=1

𝔼 [(̂gk − 𝔼[̂gk])2]
Our goal is to minimize the variance

Variance of a random variable:

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t)G(i)
t

Here we have a random vector:

Var(X) = 𝔼 [(X − 𝔼[X])2]

n  Good	choice	for	b?		

n  Constant	baseline:	

n  OpQmal	Constant	baseline:	

n  Time-dependent	baseline:		

n  State-dependent	expected	return:		

	

à	Increase	logprob	of	acQon	proporQonally	to	how	much	its	returns	are	
beTer	than	the	expected	return	under	the	current	policy	

Baseline	Choices	

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See:	Greensmith,	BartleT,	Baxter,	JMLR	2004	for	variance	reducQon	techniques.]		

bt =
1

m

mX

i=1

H�1X

k=t

R(s(i)
k
, u(i)

k
)

= V ⇡(st)

Baseline choices

n  Good	choice	for	b?		

n  Constant	baseline:	

n  OpQmal	Constant	baseline:	

n  Time-dependent	baseline:		

n  State-dependent	expected	return:		

	

à	Increase	logprob	of	acQon	proporQonally	to	how	much	its	returns	are	
beTer	than	the	expected	return	under	the	current	policy	

Baseline	Choices	

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See:	Greensmith,	BartleT,	Baxter,	JMLR	2004	for	variance	reducQon	techniques.]		

bt =
1

m

mX

i=1

H�1X

k=t

R(s(i)
k
, u(i)

k
)

= V ⇡(st)

b = 𝔼[R(τ)] ≈
N

∑
i=1

R(τ(i))

n  Good	choice	for	b?		

n  Constant	baseline:	

n  OpQmal	Constant	baseline:	

n  Time-dependent	baseline:		

n  State-dependent	expected	return:		

	

à	Increase	logprob	of	acQon	proporQonally	to	how	much	its	returns	are	
beTer	than	the	expected	return	under	the	current	policy	

Baseline	Choices	

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See:	Greensmith,	BartleT,	Baxter,	JMLR	2004	for	variance	reducQon	techniques.]		

bt =
1

m

mX

i=1

H�1X

k=t

R(s(i)
k
, u(i)

k
)

= V ⇡(st)

bt =
N

∑
i=1

H

∑
k=t

R(s(i)
k , a(i)

k)

= Vπ(st)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)(
H

∑
k=t

R(s(i)
k , a(i)

k) − b)

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t)(Gi
t − b(s(i)

t))

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t)(Gi
t − Vπ(s(i)

t))

∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Variance

𝔼 ̂g = ∇θU(θ)

Var(̂g) = tr (𝔼 [(̂g − 𝔼[̂g])(̂g − 𝔼[̂g])T]) =
n

∑
k=1

𝔼 [(̂gk − 𝔼[̂gk])2]

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θlog πθ(a(i)
t |s(i)

t)(Gi
t − b(s(i)

t))

• Imagine in some state the rewards of all actions are ~3000 and
in ~ -4000.

S1
S2

• We want to encourage an action, not when it has high return, but when it
has higher return than the state expected return b(s), i.e., when making
this action MORE probable would allow me to improve over what I get
now from the state.

S1 = 3000 S2 = − 4000• Now imagine you have and . I have much reduced
the variance.

Estimate
̂g =

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)(
H

∑
k=t

R(s(i)
k , a(i)

k) − Vπ(s(i)
k))

Vπ(st)

MC estimation

Initialize V(s,w)

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

H�1X

k=t

R(s(i)
k
, u(i)

k
)� V ⇡(s(i)

k
)

!

How to estimate?

V ⇡

n  Init		

n  Collect	trajectories		

n  Regress	against	empirical	return:	

V ⇡
�0

⌧1, . . . , ⌧m

�i+1 argmin
�

1

m

mX

i=1

H�1X

t=0

V ⇡

✓
(s(i)

t
)�

�H�1X

k=t

R(s(i)
k
, u(i)

k
)
�
!2

EsQmaQon	of						

τ1, . . . τN

N

N

Initialize ϕ

Estimate Vπ(st)

TD estimation

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)(
H

∑
k=t

R(s(i)
k , a(i)

k) − Vπ(s(i)
k))

Initialize V(s,w)

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

H�1X

k=t

R(s(i)
k
, u(i)

k
)� V ⇡(s(i)

k
)

!

How to estimate?

V ⇡

n  Init		

n  Collect	trajectories		

n  Regress	against	empirical	return:	

V ⇡
�0

⌧1, . . . , ⌧m

�i+1 argmin
�

1

m

mX

i=1

H�1X

t=0

V ⇡

✓
(s(i)

t
)�

�H�1X

k=t

R(s(i)
k
, u(i)

k
)
�
!2

EsQmaQon	of						
n  Bellman	EquaQon	for		

n  Init		

n  Collect	data	{s,	u,	s’,	r}	

n  FiTed	V	iteraQon:	

EsQmaQon	of						

V ⇡(s) =
X

u

⇡(u|s)
X

s0

P (s0|s, u)[R(s, u, s0) + �V ⇡(s0)]

V ⇡

V ⇡

V ⇡
�0

�i+1 min
�

X

(s,u,s0,r)

kr + V ⇡
�i
(s0)� V�(s)k22 + �k�� �ik22

Initialize ϕ

Bootstrapping!

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t)(
H

∑
k=t

R(s(i)
k , a(i)

k) − Vπ(s(i)
k))

Better estimates for cumulative future reward

We are essentially attempting to estimate Q from a single rollout:

Qπ(s, a) = 𝔼[R0 + R1 + ⋯ |S0 = s, A0 = a]

Minimize variance by:

• discounting

• introducing a learnt approximation for the extected return (critic),
as opposed to use MC samples

Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]

Reducing variance using a critic

Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]

Reducing variance using a critic

Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2Vπ(S2) |S0 = s, A0 = a]

Reducing variance using a critic

Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2Vπ(S2) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2R2 + γ3Vπ(S3) |S0 = s, A0 = a]
= ⋯

Reducing variance using a critic

REINFORCE/Actor-critic training

• Stability of training neural networks requires the gradient updates to
be de-correlated

• This is not the case if data arrives sequentially

• Gradient updates computed from some part of the space can cause
the value (Q) function approximator to oscillate

• Our solution so far has been: Experience buffers where experience
tuples are mixed and sampled from. Resulting sampled batches are
more stationary that the ones encountered online (without buffer)

• This limits deep RL to off-policy methods, since data from an older
policy are used to update the weights of the value approximator
(critic) (except if we take care and weight such data under our current
stochastic policy)

Alternative to experience buffers

Asynchronous Deep RL for on policy learning

• Alternative: parallelize the collection of experience and stabilize training
without experience buffers

• Multiple threads of experience, one per agent, each exploring in different
part of the environment contributing experience tuples

• Different exploration strategies (e.g., various \epsilon values) in different
threads increase diversity

• Now you can train on-policy, e.g., using policy gradients

Distributed RL

A3C

What is the approximation used for the advantage?
R(n)

t =
n−1

∑
k=0

γ(k)
t Rt+k+1

r1, r2, r3

R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

s1, s2, s3, s4

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)

R3 − V(s3)

Rollout

Advantage

Learning the critic

Copying the weights

Distributed Asynchronous RL-A3C
Each worker may
have slightly
modified version of
the policy/critic

No locking

Distributed Synchronous RL-A2C

5. Gradients of all
workers are averaged and
the central neural net
weights are updated

All worker may have
the same actor/critic
weights

What is the approximation used for the advantage?
R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)

R(n)
t =

n−1

∑
k=0

γ(k)
t Rt+k+1

``We also found that adding the entropy of the policy π to
the objective function improved exploration by
discouraging premature convergence to suboptimal
deterministic policies.” So you need to add to the policy
gradient:

We will look into the entropy as part of the reward in later
lecture

+β∇θH(πθ(at |st; θ))

Advantages of Asynchronous (multi-threaded) RL

Summary of policy gradients so far
‣ The policy gradient has many equivalent forms

‣ Each leads a stochastic gradient ascent algorithm

‣ Critic uses policy evaluation (e.g. MC or TD learning) to estimate

∇θU(θ)

Computing Gradients of Expectations

∇θ𝔼a∼πθ
R(a, s)

max
θ

. 𝔼x∼Pθ(x) f(x) max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]
𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x) 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t)R(τ(i))

𝔼s∼d0(s), a∼πθ(a|s) ∇θlog πθ(a |s)[Q(s, a)]
𝔼s∼d0(s), a∼πθ(a|s) ∇θlog πθ(a |s)[Q(s, a) − V(s)]

Likelihood ratio gradient estimator:

Qs:

• Do the gradients of Q(s,a) or A(s,a)=Q(s,a)-V(s) w.r.t. \theta exist?

• Do we use them?

What if we have a deterministic policy?

y = Pθ(x)
max

θ
. f(Pθ(x))

df(Pθ(x))
dθ

=
df(y)

dy
dy
dθ

d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, πθ(St))
da

da
dθ

a = πθ(s)

max
θ

. 𝔼∑
t

R(St, πθ(St))

max
θ

. 𝔼∑
t

Q(St, πθ(St))

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Qs:

• Can we backpropagate through R?

• Can we backpropagate through Q?

What if we have a deterministic policy?

y = Pθ(x)
max

θ
. f(Pθ(x))

df(Pθ(x))
dθ

=
df(y)

dy
dy
dθ

d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, πθ(St))
da

da
dθ

a = πθ(s)

max
θ

. 𝔼∑
t

R(St, πθ(St))

max
θ

. 𝔼∑
t

Q(St, πθ(St))

Pathwise derivatives

Likelihood ratio gradient estimator

max
θ

. 𝔼x∼Pθ(x) f(x) max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]

𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x) 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

Q: does this expectation depend on theta?

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicarp et al. 2016

This expectation refers to the dynamics after time t

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

\pi(s_t;\theta)

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

⇡(st; ✓))

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Deep Deterministic Policy Gradients

s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

a = µ(✓)

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG

Deep Deterministic Policy Gradients

https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

State representation input can be pixels or robotic configuration and target locations

Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)

Model Free Methods - Comparison
Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)

Computing Gradients of Expectations

∇θ𝔼x∼Pθ(x) f(x) = 𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x)

When the variable w.r.t. which we are differentiating appears in the distribution:

∇θ𝔼z∼𝒩(0,1) f(x(θ), z) = 𝔼z∼𝒩(0,1) ∇θ f(x(θ), z) = 𝔼z∼𝒩(0,1)
df(x(θ), z)

dx
dx
dθ

When the variable w.r.t. which we are differentiating appears inside the expectation:

likelihood ratio gradient estimator

pathwise derivative

Why would we want to do so?

Re-parametrization trick: For some distributions we can switch from one
gradient estimator to the other.

Pθ(x)

Known MDP

...T(s, a)

πθ(s)

ρ(s, a)

πθ(s)

s0 s1

a0 a1

T(s, a)

ρ(s, a)

r0 r1

θ Reward and dynamics are known

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Known MDP-let’s make it simpler

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the average
reward obtained.

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

What if the policy is deterministic?

πθ(s)

ρ(s, a)

s0

a0

r0

θ

I want to learn \theta to maximize the reward
obtained.

a = πθ(s)

I can compute the gradient with backpropagation.

∇θ ρ(s, a) = ρaπθθ

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

Derivative of the known reward w.r.t. the action

What if the policy is stochastic?

πθ(s)

ρ(s, a)

s0

a0

r0

θ

I want to learn \theta to maximize the average
reward obtained.

𝔼a ∇θ log πθ(s)ρ(s, a)

Likelihood ratio estimator, works for both
continuous and discrete actions

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

It does not use the derivative of the reward w.r.t.
the action.

Policies are parametrized Gaussians

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the average
reward obtained.

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

𝔼a ∇θ log πθ(s)ρ(s, a)

deterministic node: the value is a
deterministic function of its input

stochastic node: the value is sampled
based on its input (which parametrizes
the distribution to sample from)

deterministic computation node

r✓ log ⇡✓(s, a) =
(a� µ(s; ✓))@µ(s;✓)@✓

�2

If is constant:σ2

Re-parametrization for Gaussian

πθ(s)

ρ(s, a)

s0

r0

θ

µ✓(s) �✓(s)

z

a0

a ∼ 𝒩(μ(s, θ), Σ(s, θ))Instead of:

z ∼ 𝒩(0,I)a = μ(s, θ) + z ⊙ σ(s, θ)We can write:

Why?

𝔼z(μ(s, θ) + zσ(s, θ)) = μ(s, θ)

Varz(μ(s, θ) + zσ(s, θ)) = σ(s, θ)2Because:

da(θ, z)
dθ

=
dμ(s, θ)

dθ
+ z ⊙

dσ(s, θ)
dθ

∇θ𝔼z [ρ (a(θ, z), s)] = 𝔼z
dρ (a(θ, z), s)

da
da(θ, z)

dθ

Sample estimate:

∇θ
1
N

N

∑
i=1

[ρ (a(θ, zi), s)] =
1
N

N

∑
i=1

dρ (a(θ, z), s)
da

da(θ, z)
dθ

|z=zi

What do we gain?

Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:

Re-parametrized Policy Gradients

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

I Only works if P(s2 | s1, a1) is known _̈

Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT]. We’ll use r✓ log ⇡(at | st ; ✓)

I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:

For pathwise derivative to work, we need transition dynamics and reward
function to be known.

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Re-parametrized Policy Gradients

For path wise derivative to work, we need transition dynamics and reward
function to be known, or…

Using a Q-function

✓

s1 s2 . . . sT

a1 a2 . . . aT

z1 z2 . . . zT

RT

d

d✓
E [RT] = E

"
TX

t=1

dRT

dat

dat
d✓

#
= E

"
TX

t=1

d

dat
E [RT | at]

dat
d✓

#

= E
"

TX

t=1

dQ(st , at)

dat

dat
d✓

#
= E

"
TX

t=1

d

d✓
Q(st , ⇡(st , zt ; ✓))

#

Re-parametrized Policy Gradients

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Learning continuous control by stochastic value gradients, Hees et al.

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Stochastic Value Gradients V0
SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Learning continuous control by stochastic value gradients, Hees et al.

s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

z

z ⇠ N (0, 1)
a = µ(s; ✓) + z�(s; ✓)

Stochastic Value Gradients V0

Learning continuous control by stochastic value gradients, Hees et al.

s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

a = µ(✓)

Compare with: Deep Deterministic Policy Gradients

No z!

