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Policy function approximators - this lecture

deterministic continuous policy
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Policy Gradient 
‣ Let U(θ) be any policy objective function 

‣ Policy gradient algorithms search for a local 
maximum in U(θ) by ascending the gradient of 
the policy, w.r.t. parameters θ 

Δθ = α∇θU(θ)
θnew = θold + Δθ

α is a step-size 
parameter (learning 
rate) 

is the policy gradient 

∇θU(θ)

∂U(θ)
∂θ1

∂U(θ)
∂θn

Policy gradient: the gradient of the policy objective w.r.t. the parameters of the policy



Gradients of expectations

max
θ

. 𝔼x∼P(x;θ) f(x)

Computing derivatives of expectations w.r.t. variables that parameterize the 
distribution, not the quantity inside the expectation. Conditioned on the 
samples, we can estimate the expectation without knowing theta  

Assumptions: 

• P is a probability density function that is continuous and differentiable 

• P is easy to sample from

max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]

y = Pθ(x)
max

θ
. f(Pθ(x))

Later today



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

Likelihood ratio gradient estimator
max

θ
. U(θ) = 𝔼τ∼Pθ(τ) [R(τ)]

∇θU(θ) = ∇θ𝔼τ∼Pθ(τ) [R(τ)]
= 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

An unbiased estimator of this gradient:

𝔼[ ̂g] = ∇θU(θ)
max

θ
. 𝔼x∼P(x;θ) f(x)



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Temporal structure

𝔼 ̂g = ∇θU(θ)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=t

R(s(i)
k , a(i)

k ))
Each action takes the 
blame for the trajectory 
that comes after it

We can call this the return from t onwards Gt



‣ Let’s analyze the update: 

‣ Let’s us rewrite is as follows: 

‣ Update is proportional to: 
- the product of a return Gt and  
- the gradient of the probability of taking the action actually taken, 
- divided by the probability of taking that action.

Likelihood ratio gradient estimator



‣ Let’s analyze the update: 

‣ Let’s us rewrite is as follows: 

Update is inversely proportional to the action probability to fight the 
fact that actions that are selected frequently are at an advantage 
(the updates will be more often in their direction)  
 

move most in the directions that favor 
actions that yield the highest return 

Likelihood ratio gradient estimator



∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Variance

𝔼 ̂g = ∇θU(θ)

Variance is the trace of the covariance matrix:

Var( ̂g) = tr (𝔼 [( ̂g − 𝔼[ ̂g])( ̂g − 𝔼[ ̂g])T]) =
n

∑
k=1

𝔼 [( ̂gk − 𝔼[ ̂gk])2]
Our goal is to minimize the variance

Variance of a random variable:

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )G(i)
t

Here we have a random vector:

Var(X) = 𝔼 [(X − 𝔼[X])2]



n  Good	choice	for	b?		

n  Constant	baseline:	

n  OpQmal	Constant	baseline:	

n  Time-dependent	baseline:		

n  State-dependent	expected	return:		

	

à	Increase	logprob	of	acQon	proporQonally	to	how	much	its	returns	are	
beTer	than	the	expected	return	under	the	current	policy	

Baseline	Choices	

b(st) = E [rt + rt+1 + rt+2 + . . .+ rH�1]

b = E [R(⌧)] ⇡ 1

m

mX

i=1

R(⌧ (i))

[See:	Greensmith,	BartleT,	Baxter,	JMLR	2004	for	variance	reducQon	techniques.]		

bt =
1

m

mX

i=1

H�1X

k=t
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k
, u(i)

k
)

= V ⇡(st)
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bt =
N

∑
i=1

H

∑
k=t

R(s(i)
k , a(i)
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= Vπ(st)

̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=t

R(s(i)
k , a(i)

k ) − b)

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t )(Gi
t − b(s(i)

t ))

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θ log πθ(a(i)
t |s(i)

t )(Gi
t − Vπ(s(i)
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∇μ𝔼θ∼Pμ(θ) [R(τ)] = ∇μ ∫ Pμ(θ)R(τ)dθ = ∫ ∇μPμ(θ)R(τ)dθ = ∫ Pμ(θ)
∇μPμ(θ)

Pμ(θ)
R(τ)dθ = ∫ Pμ(θ)∇μlogPμ(θ)R(τ)dθ = 𝔼θ∼Pμ(θ) [∇μlogPμ(θ)R(τ)]

Variance

𝔼 ̂g = ∇θU(θ)

Var( ̂g) = tr (𝔼 [( ̂g − 𝔼[ ̂g])( ̂g − 𝔼[ ̂g])T]) =
n

∑
k=1

𝔼 [( ̂gk − 𝔼[ ̂gk])2]

̂g =
1
N

N

∑
i=1

T

∑
t=0

∇θlog πθ(a(i)
t |s(i)

t )(Gi
t − b(s(i)

t ))

• Imagine in some state       the rewards of all actions are ~3000 and 
in      ~ -4000. 

S1
S2

• We want to encourage an action, not when it has high return, but when it 
has higher return than the state expected return b(s), i.e., when making 
this action MORE probable would allow me to improve over what I get 
now from the state. 

S1 = 3000 S2 = − 4000• Now imagine you have                  and                   . I have much reduced 
the variance. 



Estimate
̂g =

1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )(
H

∑
k=t

R(s(i)
k , a(i)

k ) − Vπ(s(i)
k ))

Vπ(st)

MC estimation

Initialize V(s,w)

1

m

mX

i=1

H�1X

t=0

r✓ log ⇡✓(u
(i)
t
|s(i)

t
)

 
H�1X

k=t

R(s(i)
k
, u(i)

k
)� V ⇡(s(i)

k
)

!

How to estimate? 

V ⇡

n  Init		

n  Collect	trajectories		

n  Regress	against	empirical	return:	

V ⇡
�0

⌧1, . . . , ⌧m

�i+1  argmin
�

1

m

mX

i=1

H�1X

t=0

 
V ⇡

✓
(s(i)

t
)�

�H�1X

k=t

R(s(i)
k
, u(i)

k
)
�
!2

EsQmaQon	of						

τ1, . . . τN

N

N

Initialize ϕ



Estimate Vπ(st)

TD estimation

̂g =
1
N

N
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T
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t |s(i)

t )(
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R(s(i)
k , a(i)

k ) − Vπ(s(i)
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EsQmaQon	of						
n  Bellman	EquaQon	for		

n  Init		

n  Collect	data	{s,	u,	s’,	r}	

n  FiTed	V	iteraQon:	

EsQmaQon	of						

V ⇡(s) =
X

u

⇡(u|s)
X

s0

P (s0|s, u)[R(s, u, s0) + �V ⇡(s0)]

V ⇡

V ⇡

V ⇡
�0

�i+1  min
�

X

(s,u,s0,r)

kr + V ⇡
�i
(s0)� V�(s)k22 + �k�� �ik22

Initialize ϕ

Bootstrapping!



̂g =
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )(
H

∑
k=t

R(s(i)
k , a(i)

k ) − Vπ(s(i)
k ))

Better estimates for cumulative future reward

We are essentially attempting to estimate Q from a single rollout:

Qπ(s, a) = 𝔼[R0 + R1 + ⋯ |S0 = s, A0 = a]

Minimize variance by: 

• discounting 

• introducing a learnt approximation for the extected return (critic), 
as opposed to use MC samples



Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]

Reducing variance using a critic



Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]

Reducing variance using a critic



Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2Vπ(S2) |S0 = s, A0 = a]

Reducing variance using a critic



Actor-Critic

Qπ,γ(s, a) = 𝔼[R0 + γR1 + γ2R2⋯ |S0 = s, A0 = a]
= 𝔼[R0 + γVπ(S1) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2Vπ(S2) |S0 = s, A0 = a]
= 𝔼[R0 + γR1 + γ2R2 + γ3Vπ(S3) |S0 = s, A0 = a]
= ⋯

Reducing variance using a critic



REINFORCE/Actor-critic training

• Stability of training neural networks requires the gradient updates to 
be de-correlated

• This is not the case if data arrives sequentially

• Gradient updates computed from some part of the space can cause 
the value (Q) function approximator to oscillate 

• Our solution so far has been: Experience buffers where experience 
tuples are mixed and sampled from. Resulting sampled batches are 
more stationary that the ones encountered online (without buffer)

• This limits deep RL to off-policy methods, since data from an older 
policy are used to update the weights of the value approximator 
(critic) (except if we take care and weight such data under our current 
stochastic policy)



Alternative to experience buffers



Asynchronous Deep RL for on policy learning

• Alternative: parallelize the collection of experience and stabilize training 
without experience buffers

• Multiple threads of experience, one per agent, each exploring in different 
part of the environment contributing experience tuples

• Different exploration strategies (e.g., various \epsilon values) in different 
threads increase diversity

• Now you can train on-policy, e.g., using policy gradients



Distributed RL



A3C

What is the approximation used for the advantage?
R(n)

t =
n−1

∑
k=0

γ(k)
t Rt+k+1

r1, r2, r3

R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

s1, s2, s3, s4

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)

R3 − V(s3)

Rollout

Advantage

Learning the critic

Copying the weights



Distributed Asynchronous RL-A3C
Each worker may 
have slightly 
modified version of 
the policy/critic

No locking



Distributed Synchronous RL-A2C

5. Gradients of all 
workers are averaged and 
the central neural net 
weights are updated 

All worker may have 
the same actor/critic 
weights



What is the approximation used for the advantage?
R3 = r3 + γV(s4, θ′�v)
R2 = r2 + γr3 + γ2V(s4, θ′�v)

A3 = R3 − V(s3; θ′�v)
A2 = R2 − V(s2; θ′�v)

R(n)
t =

n−1

∑
k=0

γ(k)
t Rt+k+1

``We also found that adding the entropy of the policy π to 
the objective function improved exploration by 
discouraging premature convergence to suboptimal 
deterministic policies.” So you need to add to the policy 
gradient: 

We will look into the entropy as part of the reward in later 
lecture

+β∇θH(πθ(at |st; θ))



Advantages of Asynchronous (multi-threaded) RL



Summary of policy gradients so far 
‣ The policy gradient has many equivalent forms 

‣ Each leads a stochastic gradient ascent algorithm 

‣ Critic uses policy evaluation (e.g. MC or TD learning) to estimate

∇θU(θ)



Computing Gradients of Expectations

∇θ𝔼a∼πθ
R(a, s)

max
θ

. 𝔼x∼Pθ(x) f(x) max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]
𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x) 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

̂g =
1
N

N

∑
i=1

∇θ log Pθ(τ(i))R(τ(i)) =
1
N

N

∑
i=1

T

∑
t=1

∇θ log πθ(α(i)
t |s(i)

t )R(τ(i))

𝔼s∼d0(s), a∼πθ(a|s) ∇θlog πθ(a |s)[Q(s, a)]
𝔼s∼d0(s), a∼πθ(a|s) ∇θlog πθ(a |s)[Q(s, a) − V(s)]

Likelihood ratio gradient estimator:

Qs:  

• Do the gradients of Q(s,a) or A(s,a)=Q(s,a)-V(s) w.r.t. \theta exist? 

• Do we use them?



What if we have a deterministic policy?

y = Pθ(x)
max

θ
. f(Pθ(x))

df(Pθ(x))
dθ

=
df(y)

dy
dy
dθ

d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, πθ(St))
da

da
dθ

a = πθ(s)

max
θ

. 𝔼∑
t

R(St, πθ(St))

max
θ

. 𝔼∑
t

Q(St, πθ(St))

Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Qs:  

• Can we backpropagate through R? 

• Can we backpropagate through Q?



What if we have a deterministic policy?

y = Pθ(x)
max

θ
. f(Pθ(x))

df(Pθ(x))
dθ

=
df(y)

dy
dy
dθ

d𝔼∑t Q(St, πθ(St))

dθ
= 𝔼∑

t

dQ(St, πθ(St))
da

da
dθ

a = πθ(s)

max
θ

. 𝔼∑
t

R(St, πθ(St))

max
θ

. 𝔼∑
t

Q(St, πθ(St))

Pathwise derivatives

Likelihood ratio gradient estimator

max
θ

. 𝔼x∼Pθ(x) f(x) max
θ

. 𝔼τ∼Pθ(τ) [R(τ)]

𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x) 𝔼τ∼Pθ(τ) [∇θlog Pθ(τ)R(τ)]

Q: does this expectation depend on theta?



Using a Q-function
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Deriving the Policy Gradient, Reparameterized

I Episodic MDP:
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Deep Deterministic Policy Gradients



Using a Q-function
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This expectation refers to the dynamics after time t

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:
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Using a Q-function
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Continuous control with deep reinforcement learning, Lilicrap et al. 2016

Deriving the Policy Gradient, Reparameterized

I Episodic MDP:

✓

s1 s2 . . . sT

a1 a2 . . . aT

RT

Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈
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Deriving the Policy Gradient, Reparameterized

I Episodic MDP:
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s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

a = µ(✓)

Deep Deterministic Policy Gradients

We are following a stochastic behavior policy to collect data.
Deep Q learning for contours actions-> DDPG 



Deep Deterministic Policy Gradients



https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients



https://www.youtube.com/watch?v=tJBIqkC1wWM&feature=youtu.be

Deep Deterministic Policy Gradients

State representation input can be pixels or robotic configuration and target locations



Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)

Model Free Methods - Comparison
Policy Gradient Methods: Comparison

Y. Duan, X. Chen, R. Houthooft, et al. “Benchmarking Deep Reinforcement Learning for Continuous Control”. In: ICML (2016)



Computing Gradients of Expectations

∇θ𝔼x∼Pθ(x) f(x) = 𝔼x∼Pθ(x) ∇θlog Pθ(x)f(x)

When the variable w.r.t. which we are differentiating appears in the distribution:

∇θ𝔼z∼𝒩(0,1) f(x(θ), z) = 𝔼z∼𝒩(0,1) ∇θ f(x(θ), z) = 𝔼z∼𝒩(0,1)
df(x(θ), z)

dx
dx
dθ

When the variable w.r.t. which we are differentiating appears inside the expectation:

likelihood ratio gradient estimator

pathwise derivative

Why would we want to do so? 

Re-parametrization trick: For some distributions            we can switch from one 
gradient estimator to the other.

Pθ(x)



Known MDP

...T(s, a)

πθ(s)

ρ(s, a)

πθ(s)

s0 s1

a0 a1

T(s, a)

ρ(s, a)

r0 r1

θ Reward and dynamics are known

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



Known MDP-let’s make it simpler

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the average 
reward obtained.

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 



What if the policy is deterministic?

πθ(s)

ρ(s, a)

s0

a0

r0

θ

I want to learn \theta to maximize the reward 
obtained.

a = πθ(s)

I can compute the gradient with backpropagation.

∇θ ρ(s, a) = ρaπθθ

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

Derivative of the known reward w.r.t. the action



What if the policy is stochastic?

πθ(s)

ρ(s, a)

s0

a0

r0

θ

I want to learn \theta to maximize the average 
reward obtained.

𝔼a ∇θ log πθ(s)ρ(s, a)

Likelihood ratio estimator, works for both 
continuous and discrete actions

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

It does not use the derivative of the reward w.r.t. 
the action.



Policies are parametrized Gaussians

πθ(s)

ρ(s, a)

s0

a0

r0

θ
I want to learn \theta to maximize the average 
reward obtained.

µ✓(s) �✓(s)

a ∼ 𝒩(μ(s, θ), Σ(s, θ))

𝔼a ∇θ log πθ(s)ρ(s, a)

deterministic node: the value is a 
deterministic function of its input 

stochastic node: the value is sampled 
based on its input (which parametrizes 
the distribution to sample from)

deterministic computation node 

r✓ log ⇡✓(s, a) =
(a� µ(s; ✓))@µ(s;✓)@✓

�2

If      is constant:σ2



Re-parametrization for Gaussian

πθ(s)

ρ(s, a)
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z
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a ∼ 𝒩(μ(s, θ), Σ(s, θ))Instead of: 

z ∼ 𝒩(0,I)a = μ(s, θ) + z ⊙ σ(s, θ)We can write:

Why?

𝔼z(μ(s, θ) + zσ(s, θ)) = μ(s, θ)

Varz(μ(s, θ) + zσ(s, θ)) = σ(s, θ)2Because:
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What do we gain?



Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:
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I Reparameterize: at = ⇡(st , zt ; ✓). zt is noise from fixed distribution.

I Only works if P(s2 | s1, a1) is known _̈

∇θ𝔼[RT]We want to compute:
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Re-parametrized Policy Gradients
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Re-parametrized Policy GradientsDeriving the Policy Gradient, Reparameterized

I Episodic MDP:
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Want to compute r✓E [RT ]. We’ll use r✓ log ⇡(at | st ; ✓)
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For pathwise derivative to work, we need transition dynamics and reward 
function to be known.
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Re-parametrized Policy Gradients

For path wise derivative to work, we need transition dynamics and reward 
function to be known, or… 
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Re-parametrized Policy Gradients

SVG(0) Algorithm

I Learn Q� to approximate Q⇡,�
, and use it to compute gradient estimates.

I Pseudocode:

for iteration=1, 2, . . . do
Execute policy ⇡✓ to collect T timesteps of data

Update ⇡✓ using g / r✓

P
T

t=1
Q(st , ⇡(st , zt ; ✓))

Update Q� using g / r�

P
T

t=1
(Q�(st , at) � Q̂t)

2
, e.g. with TD(�)

end for

N. Heess, G. Wayne, D. Silver, et al. “Learning continuous control policies by stochastic value gradients”. In: NIPS. 2015

Learning continuous control by stochastic value gradients, Hees et al.
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Stochastic Value Gradients V0
SVG(0) Algorithm
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s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

z

z ⇠ N (0, 1)
a = µ(s; ✓) + z�(s; ✓)

Stochastic Value Gradients V0

Learning continuous control by stochastic value gradients, Hees et al.



s DNN

DPG in Simulated Physics
I Physics domains are simulated in MuJoCo
I End-to-end learning of control policy from raw pixels s
I Input state s is stack of raw pixels from last 4 frames
I Two separate convnets are used for Q and ⇡
I Policy ⇡ is adjusted in direction that most improves Q

Q(s,a)

π(s)

as DNN a
(✓µ)

(✓Q)

a = µ(✓)

Compare with: Deep Deterministic Policy Gradients

No z!


