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What Loss to Optimize?
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Policy Gradients
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θnew
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θnew = θ + ϵ ⋅ ̂g

1. Collect trajectories for policy 
2. Estimate advantages 
3. Compute policy gradient
4. Update policy parameters
5. GOTO 1

̂g
A

πθ

How to estimate this gradient
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i
.

but don’t want to optimize it too far

I Equivalently di↵erentiate

LIS✓old(✓) = Êt
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• Step too big
 Bad policy->data collected under bad 
policy-> we cannot recover
(in Supervised Learning, data does not 
depend on neural network weights)

• Step too small
Not efficient use of experience
(in Supervised Learning, data can be 
trivially re-used)



\What is the underlying optimization problem?

̂g ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )A(s(i)
t , a(i)

t ), τi ∼ πθPolicy gradients:

This result from differentiating the following objective function:

UPG(θ) = 𝔼t [log πθ(αt |st)A(st, at)]

Compare this to supervised learning using expert actions            and a maximum 
likelihood objective:

USL(θ) =
1
N

N

∑
i=1

T

∑
t=1

log πθ(α̃(i)
t |s(i)

t ), τi ∼ π* (+regularization)

ã ∼ π*

max
θ

. U(θ) = 𝔼τ∼P(τ;θ)[R(τ)] = ∑
τ

P(τ; θ)R(τ)We started here:

max
θ

. UPG(θ)
This is not the right objective: we can’t optimize too far 
(as the advantage values become invalid), and this 
constraint shows up nowhere in the optimization:

̂g = 𝔼t [∇θlog πθ(αt |st)A(st, at)]



Hard to choose stepsizes

θnew = θold + α ⋅ ̂g

The Problem is More Than Step Size

Consider a family of policies with parametrization:

⇡✓(a) =

⇢
�(✓) a = 1
1� �(✓) a = 2

Figure: Small changes in the policy parameters can unexpectedly lead to big changes in the policy.

Big question: how do we come up with an update rule that doesn’t ever change the
policy more than we meant to?

Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 9 / 41
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θnew = θ + ϵ ⋅ ̂g

The same parameter step                    changes the policy distribution more or less 
dramatically depending on where in the parameter space we are. 
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Two Limitations of “Vanilla” Policy Gradient Methods

I Hard to choose stepsizes
I Input data is nonstationary due to changing policy: observation and reward

distributions change
I Bad step is more damaging than in supervised learning, since it a↵ects

visitation distribution
I Step too far ! bad policy
I Next batch: collected under bad policy
I Can’t recover—collapse in performance

I Sample e�ciency
I Only one gradient step per environment sample
I Dependent on scaling of coordinates

Notation

θnew = θold + α ⋅ ̂g

We will use the following to denote values of parameters and corresponding policies before 
and after an update:

θold → θnew
πold → πnew

θ → θ′�

π → π′�



Gradient Descent in Distribution Space
The stepwise in gradient descent results from solving the following optimization problem, e.g., 
using line search:

θnew = θold + d *

d * = arg max
∥d∥≤ϵ

U(θ + d)

SGD:

KL divergence in distribution space

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold 
epsilon

d * = arg max
d, s.t. KL(πθ∥πθ+d)≤ϵ

U(θ + d)

Natural gradient descent: the stepwise in parameter space is determined by considering 
the KL divergence in the distributions before and after the update:

Easier to pick the distance threshold (and we made the 
constraint explicit of ``don’t optimize too much”)

Euclidean distance in parameter space



Solving the KL Constrained Problem

Let’s solve it: first order Taylor expansion for the loss and second order for the KL:

d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

d* ≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

≈ arg max
d

J(θold) + ∇θ J(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θKL [πθ∥πθ+d] |θ=θold

d) + λϵ

Q: How will you compute this?

U(θ) = 𝔼t [log πθ(αt |st)A(st, at)]



KL Taylor expansion

∇2
θ′�( − ∫ p(x |θ)log(p(x |θ′�))

DKL(pθold
|pθ) ≈ DKL(pθold

|pθold
) + d⊤ ∇θDKL(pθold

|pθ) |θ=θold
+

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d



KL Taylor expansion

∇2
θ′�( − ∫ p(x |θ)log(p(x |θ′�))F(θ) = 𝔼θ [∇θlog pθ(x)∇θlog pθ(x)⊤]

Fisher Information matrix:

DKL(pθold
|pθ) ≈

1
2

d⊤ ∇2
θDKL(pθold

|pθ) |θ=θold
d

=
1
2

d⊤F(θold)d

=
1
2

(θ − θold)⊤F(θold)(θ − θold)

Since KL divergence is roughly analogous to a distance measure between distributions, 
Fisher information serves as a local distance metric between distributions:  how 
much you change the distribution if you move the parameters a little bit in a given 
direction.

F(θold) = ∇2
θDKL(pθold

|pθ) |θ=θold



d * = arg max
d

U(θ + d) − λ(DKL [πθ∥πθ+d] − ϵ)

Unconstrained penalized objective:

First order Taylor expansion for the loss and second order for the KL:

≈ arg max
d

U(θold) + ∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤ ∇2
θDKL [πθold

∥πθ] |θ=θold
d) + λϵ

= arg max
d

∇θU(θ) |θ=θold
⋅ d −

1
2

λ(d⊤F(θold)d)

= arg min
d

− ∇θU(θ) |θ=θold
⋅ d +

1
2

λ(d⊤F(θold)d)

Substitute for the information matrix:

Solving the KL Constrained Problem



Natural Gradient Descent
Setting the gradient to zero: 0 =

∂
∂d (−∇θU(θ) |θ=θold

⋅ d +
1
2

λ(d⊤F(θold)d))
= −∇θU(θ) |θ=θold

+
1
2

λ(F(θold))d

d =
2
λ

F−1(θold)∇θU(θ) |θ=θold

The natural gradient: gN = F−1(θold)∇θU(θ)

Let’s solve for the stepzise along the natural gradient direction:

θnew = θold + α ⋅ gN

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold)

1
2

(αgN)⊤F(αgN) = ϵ

α =
2ϵ

(g⊤
NFgN)



Stepsize along the Natural Gradient direction

The natural gradient: gN = F−1(θold)∇θU(θ)

θnew = θold + α ⋅ gN

DKL(πθold
|πθ) ≈

1
2

(θ − θold)⊤F(θold)(θ − θold) =
1
2

(αgN)⊤F(αgN)

1
2

(αgN)⊤F(αgN) = ϵ

I want the KL between old and new policies to be \epsilon:

α =
2ϵ

(g⊤
NFgN)

Let’s solve for the stepzise along the natural gradient direction!



Natural Gradient Descent

ϵ

Both use samples from the current policy πk = π(θk)



Natural Gradient Descent

ϵ

very expensive to compute for a large number of parameters!



\What is the underlying optimization problem?

̂g ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ(α(i)
t |s(i)

t )A(s(i)
t , a(i)

t ), τi ∼ πθPolicy gradients:

This result from differentiating the following objective function:

UPG(θ) = 𝔼t [log πθ(αt |st)A(st, at)]

max
θ

. U(θ) = 𝔼τ∼P(τ;θ)[R(τ)] = ∑
τ

P(τ; θ)R(τ)We started here:

̂g = 𝔼t [∇θlog πθ(αt |st)A(st, at)]

max
d

. 𝔼t [log πθ+d(αt |st)A(st, at)] − λDKL [πθ∥πθ+d]

``don’t optimize too much” constraint:

We used the 1st order approximation for the 1st term, but what if d is large??



U(θ) = 𝔼τ∼πθ(τ) [R(τ)]
= ∑

τ

πθ(τ)R(τ)

= ∑
τ

πθold
(τ)

πθ(τ)
πθold

(τ)
R(τ)

= 𝔼τ∼πθold

πθ(τ)
πθold

(τ)
R(τ)

∇θU(θ) = 𝔼τ∼πθold

∇θπθ(τ)
πθold

(τ)
R(τ)

Alternative derivation

<-Gradient evaluated at theta_old is unchanged∇θU(θ) |θ=θold
= 𝔼τ∼πθold

∇θ log πθ(τ) |θ=θold
R(τ)

max
θ

. 𝔼t [ πθ(at |st)
πθold

(at |st)
A(st, at)] − λDKL [πθold

∥πθ]



Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�

subject to Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]  �.

I Also worth considering using a penalty instead of a constraint

maximize
✓

Êt


⇡✓(at | st)
⇡✓old(at | st)

Ât

�
� �Êt [KL[⇡✓old(· | st), ⇡✓(· | st)]]

I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �

Trust region Policy Optimization

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

Trust Region Policy Optimization

I Define the following trust region update:

maximize
✓

Êt
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Êt
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⇡✓(at | st)
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Ât

�
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I Method of Lagrange multipliers: optimality point of �-constrained problem
is also an optimality point of �-penalized problem for some �.

I In practice, � is easier to tune, and fixed � is better than fixed �

Or unonstrained objective:

max
θ

. 𝔼t [ πθ(at |st)
πθold

(at |st)
A(st, at)] − β𝔼t [DKL [πθold

( ⋅ |st)∥πθ( ⋅ |st)]]

Constrained objective:

max
θ

. 𝔼t [ πθ(at |st)
πθold

(at |st)
A(st, at)]

subject to 𝔼t [DKL [πθold
( ⋅ |st)∥πθ( ⋅ |st)]] ≤ δ



Proximal Policy Optimization
Can I achieve similar performance without second order information (no Fisher matrix!)

Further Reading

I S. Kakade. “A Natural Policy Gradient.” NIPS. 2001

I S. Kakade and J. Langford. “Approximately optimal approximate reinforcement learning”. ICML. 2002

I J. Peters and S. Schaal. “Natural actor-critic”. Neurocomputing (2008)

I J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust Region Policy Optimization”. ICML (2015)

I Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking Deep Reinforcement Learning for Continuous Control”.
ICML (2016)

I J. Martens and I. Sutskever. “Training deep and recurrent networks with Hessian-free optimization”. Springer, 2012

I Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, et al. “Sample E�cient Actor-Critic with Experience Replay”. (2016)

I Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. “Scalable trust-region method for deep reinforcement learning using Kronecker-factored
approximation”. (2017)

I J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal Policy Optimization Algorithms”. (2017)

I blog.openai.com: recent posts on baselines releases

max
θ

. LCLIP = 𝔼t [min (rt(θ)A(st, at), clip (rt(θ),1 − ϵ,1 + ϵ) A(st, at))]

rt(θ) =
πθ(at |st)

πθold
(at |st)



Empirical Performance of PPO

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

10Schulman, Wolski, Dhariwal, Radford, Klimov, 2017
Joshua Achiam (UC Berkeley, OpenAI) Advanced Policy Gradient Methods October 11, 2017 39 / 41

PPO: Clipped Objective



Training linear policies to solve control tasks with natural policy gradients 

https://youtu.be/frojcskMkkY 

https://youtu.be/frojcskMkkY


State s: joint positions, joint velocities, contact info



observations: joint positions, joint velocities, contact info



Multigoal RL

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science



So far we train one policy/value function per task, e.g., win the game of Tetris, win the 
game of Go, reach to a *particular* location, put the green cube inside the gray bucket, 

etc. 



Universal value function Approximators

Universal Value Function Approximators, Schaul et al.

V(s; θ) V(s, g; θ)

• All methods we have learnt so far can be used.
• At the beginning of an episode, we sample not only a start state but 

also a goal g, which stays constant throughout the episode
• The experience tuples should contain the goal.

π(s; θ) π(s, g; θ)

(s, a, r, s′�) (s, g, a, r, s′�)



Universal value function Approximators

V(s, θ) V(s, θ, g)

What should be my goal representation?
(not an easy question, same as your state representation)

• Manual: 3d centroids of objects, robot joint angles and velocities, 3d 
location of the gripper, etc.  

• Learnt: We supply a target image as the goal, and an autoencoder  
learns to map it to an embedding vector by minimizing reconstruction loss

π(s; θ) π(s, g; θ)



Hindsight Experience Replay

Main idea: use failed executions under one goal g, as successful executions 
under an alternative goal g’ (which is where we ended spat the end of the 
episode)

No reward :-(

Goal g Our reacher at the end of the episode

(s, g, a,0,s′�)

Goal g’

Our reacher at the end of the episode

reward :-)

(s, g′�, a,1,s′�)



Hindsight Experience Replay

Main idea: use failed executions under one goal g, as successful executions 
under an alternative goal g’ (which is where we ended spat the end of the 
episode)



Hindsight Experience Replay

Usually as additional goal 
we pick the goal that this 

episode achieved, and the 
reward becomes non zero



Hindsight Experience Replay

HER does not require reward shaping! :-)

Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by 
considering Euclidean distances from goal configuration

The burden goes from designing the reward to designing the goal encoding.. :-(



Hindsight Experience Replay



MCTS with neural networks

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science



• Given a model          and a most of the times random policy

• For each action

• Simulate     episodes from current (real) state   :

• Evaluate action value function of the root by mean return

• Select current (real) action with maximum value

Simplest Monte-Carlo Search

M⌫ ⇡

a 2 A
K s

Q(st, a) =
1

K

KX

k=1

Gt
P�! q⇡(st, a)

at = argmax
a2A

Q(st, a)

{st, a, Rk
t+1, S

k
t+1, A

k
t+1, ..., S

k
T }Kk=1 ⇠ M⌫ ,⇡



Can we do better?

• Could we be improving our simulation policy the more simulations we 
obtain?

• Yes we can! We can have two policies:
1.Internal to the tree: keep track of action values Q not only for the root 

but also for nodes internal to a tree we are expanding, and (maybe) 
use \epsilon-greedy(Q) to improve the simulation policy over time

2.External to the tree: we do not have Q estimates and thus we use a 
random policy

In MCTS, the simulation policy improves

• Any better ideas for the simulation policy?



Monte-Carlo Tree Search

• In MCTS, the simulation policy improves
• Each simulation consists of two phases (in-tree, out-of-tree)

• Tree policy (improves): pick actions to maximize

• Default policy (fixed): pick actions often randomly

• Repeat (each simulation)

• Evaluate states                      by Monte-Carlo evaluation

• Improve there policy, e.g. by

• Converges on the optimal search tree assuming each action in the tree is 
tried infinitely often.

Q(s, a)

Q(s, a)

✏� greedy(Q)

We will allocate samples more efficiently!



Monte-Carlo Tree Search

The state is inside the tree

The state is in the frontier

expansion



Monte-Carlo Tree Search

unrolling

Sample actions based on UCB score



Monte-Carlo Tree Search



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
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Can we do better?

Can we inject prior knowledge into value functions to be estimated and 
actions to be tried, instead of initializing uniformly?



1. Selection
• Used for nodes we have seen before
• Pick according to UCB

2. Expansion
• Used when we reach the frontier
• Add one node per playout

3. Simulation
• Used beyond the search frontier
• Don’t bother with UCB, just play randomly

4. Backpropagation
• After reaching a terminal node
• Update value and visits for states expanded in selection and expansion

Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006



Case Study: the Game of Go

• The ancient oriental game 
of Go is 2500 years old

• Considered to be the 
hardest classic board 
game

• Considered a grand 
challenge task for AI 
(John McCarthy)

• Traditional game-tree 
search has failed in Go

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go
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Rules of Go

• Usually played on 19x19, also 13x13 or 9x9 board

• Simple rules, complex strategy

• Black and white place down stones alternately

• Surrounded stones are captured and removed

• The player with more territory wins the game
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AlphaGo: Learning-guided MCTS

• Value neural net to evaluate board positions
• Policy neural net to select moves
• Combine those networks with MCTS



AlphaGo: Actions Policies

1. Train two action policies, one cheap (rollout) policy      and one expensive policy       by 
mimicking expert moves (standard supervised learning).

2. Then, train a new policy       with RL and self-play      initialized from SL policy.
3. Train a value network that predicts the winner of games played by        against itself.

AlphaGo: Learning-guided search

pρ
pρ



Supervised learning of policy networks

• Objective: predicting expert moves
• Input: randomly sampled state-action pairs (s, a) from expert games
• Output: a probability distribution over all legal moves a.

SL policy network: 13-layer policy 
network trained from 30 million 
positions. The network predicted 
expert moves on a held out test 
set with an accuracy of 57.0% 
using all input features, and 55.7% 
using only raw board position and 
move history as inputs, compared 
to the state-of-the-art from other 
research groups of 44.4%.

pσ



Reinforcement learning of policy networks
• Objective: improve over SL policy
• Weight initialization from SL network
• Input: Sampled states during self-play
• Output: a probability distribution over all legal moves a.

Rewards are provided only at the end of 
the game, +1 for winning, -1 for loosing

The RL policy network won more than 80% 
of games against the SL policy network.

pρ



Reinforcement learning of value networks

• Objective: Estimating a value function vp(s) that predicts the outcome from 
position s of games played by using RL policy p for both players (in 
contrast to min-max search)

• Input: Sampled states during self-play, 30 million distinct positions, each 
sampled from a separate game, played by the RL policy against itself. 

• Output: a scalar value

Trained by regression on state-outcome pairs (s, z) to 
minimize the mean squared error between the predicted 
value v(s), and the corresponding outcome z. 



MCTS + Policy/ Value networks
Selection: selecting actions within the expanded tree

provided by SL policy 

Tree policy

average reward collected so far from MC simulations



$
Expansion: when reaching a leaf, play the action with highest score from 

MCTS + Policy/ Value networks



MCTS + Policy/ Value networks
Simulation/Evaluation: use the rollout policy to reach to the end of the game

• From the selected leaf node, run 
multiple simulations in parallel 
using the rollout policy

• Evaluate the leaf node as:



MCTS + Policy/ Value networks
Backup: update visitation counts and recorded rewards for the chosen path 
inside the tree:



AlphaGoZero: Lookahead search during training!

• So far, look-ahead search was used for online planning at test time!
• AlphaGoZero uses it during training instead, for improved exploration 

during self-play
• AlphaGo trained the RL policy using the current policy network pρ and a 

randomly selected previous iteration of the policy network as opponent 
(for exploration).

• The intelligent exploration in AlphaGoZero gets rid of human supervision.



AlphaGoZero: Lookahead search during training!

• Given any policy, a MCTS guided by this policy will produce 
an improved policy (policy improvement operator)

• Train to mimic such improved policy



MCTS as policy improvement operator

• Train so that the policy network 
mimics this improved policy

• Train so that the position 
evaluation network output 
matches the outcome (same as 
in AlphaGo)



MCTS: no MC rollouts till termination

MCTS: using always value net evaluations of leaf nodes, no rollouts!



Architectures

• Resnets help
• Jointly training the 

policy and value 
function using the 
same main feature 
extractor helps

• Lookahead 
tremendously 
improves the basic 
policy
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Separate policy/value nets Joint policy/value nets



RL VS SL


