Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Natural Policy Gradients (cont.)

Katerina Fragkiadaki

Revision

Policy Gradients

1. Collect trajectories for policy Tty

2. Estimate advantages A

3. Compute policy gradient 2

4. Update policy parameters 6, =60+¢- 2
5.GOTO 1

He(S)

oy(S)

ﬂenew(s)
7N (s)

Policy Gradients

1. Collect trajectories for policy Tty

2. Estimate advantages A

3. Compute policy gradient 2

4. Update policy parameters 6, =60+¢- 3
5.GOTO 1

He(S)

oy(S)

ﬂenew(s)
7N (s)

Policy Gradients

- Step too big
Bad policy->data collected under bad

1. Collect trajectories for policy Ty policy-> we cannot recover

2. Estimate advantages A .) .
J (in Supervised Learning, data does not

3. Compute policy gradient g .
: . depend on neural network weights)
4, t I met 6. =0+¢-
Update policy parameters 6, €-8 . Step too small

5.GOTO 1 . ;
Not efficient use of experience
(in Supervised Learning, data can be
trivially re-used)

S
A ﬂanew(S)
- = Cnew = "

9 He(S)

old ™ o)

What is the underlying optimization problem?

We started here: max. U(0) = E,_p[R()] = Z P(t; 0)R(7)

Policy gradients: o~ Z Vologn (a(’) | s(l))A(s(l), at(l)), T, ~ Ty

i
=1 r=1

g=1I[[Velog my(ax, | s)A(S,, at)]
This result from differentiating the following objective function:

U"(0) = E, [log my(a, | s)A(s, a)]

This is not the right objective: we can’t optimize too far
max. U"%(0) Al -
P (as the advantage values become invalid), and this
constraint shows up nowhere in the optimization:

Compare this to supervised learning using expert actions d ~ 7* and a maximum
likelihood objective:
N

1 L o
U°H0) = ~ Z Z log my(@ | sW), 7, ~ * (+regularization)
i=1 t=1

Hard to choose stepsizes

1. Collect trajectories for policy 7,

2. Estimate advantages A

3. Compute policy gradient @

4. Update policy parameters 6, =60+¢- 3
5.GOTO 1

Consider a family of policies with parametrization:

| o(0) a=1
”9(‘9)_{ 1—0(0) a=2

theta = 4 theta = 2 theta = 0

al a2

1.0

0.8 +

0.6

0.4

0.2

0.0 -

T
az

The same parameter step A0 = -2 changes the policy distribution more or less
dramatically depending on where in the parameter space we are.

Notation

We will use the following to denote values of parameters and corresponding policies before
and after an update:

Hold — Hnew

old — Ty ew

0— 0

T — 7

Gradient Descent in Distribution Space

The stepwise in gradient descent results from solving the following optimization problem, e.g.,
using line search:

d* = arg max U(0 + d)
ld||<e

SGD: ¢

— *
new —_ old+ d

It is hard to predict the result on the parameterized distribution.. hard to pick the threshold
epsilon

Natural gradient descent: the stepwise in parameter space is determined by considering
the KL divergence in the distributions before and after the update:

d* = arg max Ul +d)

d, S.t. KL(”Q””&-{—(Z)SG‘

Easier to pick the distance threshold (and we made the 0 (z)
. . . LN y . . 1) DKL (PHQ) = / p(a:) log(—p) dw
constraint explicit of "don’t optimize too much”) o q(z)

Solving the KL Constrained Problem

U(0) = E, |log my(ar,| s)A(s,, a)]

penalized objective:

d* = argmax U(0 + d) — A(Dgy |myllmp,q| — €)
d

Let’s solve it: first order Taylor expansion for the loss and second order for the KL.:

1
d* ~ arg max U(6,,,) +SGUENRE - @ - 52(d" ViD. [%dnn@] d) + Ae

l 0=0,4

Q: How will you compute this?

KL laylor expansion

1
DKL(pHOZd |Po) & DKW%M) +d' VGDKW Po) |9=901d T EdT VgDKL(p Ot | Po) |9=901dd

KL laylor expansion

1
DKL(peold | Po) * Ed—r VgDKL(p o1 |Py) |9=901dd
1 T
— Ed F@,,)d

1
— 5(9 — eold)TF(eold)(e o eold)

Fisher Information matrix:

F(0) =y [Vglogpg(x) Velogpe(x)T]

F(QOZCZ) = VgDKL(pQOld |p9) |9=901d

Since KL divergence is roughly analogous to a distance measure between distributions,
Fisher information serves as a local distance metric between distributions: how
much you change the distribution if you move the parameters a little bit in a given
direction.

Solving the KL Constrained Problem

penalized objective:

d* =argmax U(@ + d) — A(Dg [ﬂ@||n9+d] —€)
d

First order Taylor expansion for the loss and second order for the KL.:

1
~ argmax U,1) + VoU(0) |y, - d = 5 4(d" ViDyy [neoldune] d) + Ae

| gzgold

Substitute for the information matrix:

1
= argmax V,U(0) |y, d = > Md"F(0,)d)

1
= arg mdin — V,U(0) |9=901d - d + E/I(dTF(Qold)d)

Natural Gradient Descent

a th : : 0 1
Setting the gradient to zero 0 = — <_ VoU(@) gy ~d+ E/I(dTF(QOZd)d)>

1
- V@ U(Q) |9:9 + _A(F(eold))d
old 2

2
. -1
d = IF (eold) VQU(H) |H=901d

The natural gradient: gy =F~'(8,,)) V,U(©)

Hnew = old+ a - 8N

Let’s solve for the stepzise along the natural gradient direction:

1
DKL(”eold | mp) & 5(9 - 9ozd)TF(901d)(9 — 0510

1 T
E(GgN) F(agy) =€

n=</ 2€

Stepsize along the Natural Gradient direction

The natural gradient: gy =F~'(8,,)) V,U(©)

enew — old+ a - gy

Let’s solve for the stepzise along the natural gradient direction!

1 1
Dy (7, | mp) & 5(9 —0,10) ' F(0,,)(0 — 0,,) = E(agN)TF(agN)

| want the KL between old and new policies to be \epsilon:

1 T
E(agN) F(agy) =€

2e
a =
(gnFen)

Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dy on policy 7, = w(6k)
Estimate advantages /Z\f" using any advantage estimation algorithm
Form sample estimates for

@ policy gradient gx (using advantage estimates)
o and KL-divergence Hessian / Fisher Information Matrix I:Ik

Compute Natural Policy Gradient update:

end for

Natural Gradient Descent

Algorithm 1 Natural Policy Gradient

Input: initial policy parameters 6y

for k=0,1,2,... do
Collect set of trajectories Dy on policy 7, = w(6k)
Estimate advantages /Z\f" using any advantage estimation algorithm
Form sample estimates for

e policy gradient gx (using advantage estimates)
e and KL-divergence Hessian / Fisher Information Matrix Hi

Compute Natural Policy Gradient update:

end for

What is the underlying optimization problem?

We started here: ~ max. U(0) = E,_p,.[R(7)] = 2 P(t; O)R(7)
0

R - -
Policy gradients: &~ — Z Z Volog my(a’ | s'HA(sY, al), 7, ~ m,

=1 r=1

8 = E, | Vylog my(a,| 5)A(s, a,)]

This result from differentiating the following objective function:

U"(0) = E, [log my(a, | s)A(s, a)]

“don’t optimize too much” constraint:
max E, |log my, (@, s)A(s, a,)| — ADyq | mgll g,]

We used the 1st order approximation for the 1st term, but what if d is large??

Alternative derivation

UO) = E;ryo) [R@)]
=) m(0R()

old

od 79 () max. [, A(s,,a) | — ADgy [77:9 ||7r9]

VoUO) gy, = Ernr, Vologm(D)lyy R() < .Gradient evaluated at theta_old is unchanged

Trust region Policy Optimization

Constrained objective:

mo(a,| s
max . [, A1) A(s, a,)

0 7y (4 | 5,)

subject to E, | Dy |7, (- Is)llz(- 10| | <

Or unonstrained objective:

nya,|s,) i _
max . [, A(s,a,)| — PE, | Dy [ﬂgold(sl (- |St)]
0 g , d(at | St) ! _

J. Schulman, S. Levine, P. Moritz, M. |. Jordan, and P. Abbeel. “Trust Region Policy Optimization”.

Proximal Policy Optimization

Can | achieve similar performance without second order information (no Fisher matrix!)

max. LYP =E, [min (rt(H)A(St, a,), clip (rt(H),l -1 + 6) A(s,, at))

A > \‘T
\LCLIP I L

1 3 N
0 1 1+4e LOLIP

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. "“Proximal Policy Optimization Algorithms”. (2017)

PPQO: Clipped Objective

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1

1000 i
2000 2500 8000 TR

A
AN 800
1500 N\
2000 My / 6000
1000 1500 600
4000

500 1000 400
=500

0 0 0

0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
20 —— A2C + Trust Region
A 100 3000 —— CEM
40 80 —— PPO (Clip)
~60 60 2000 Vanilla PG, Adaptive
TRPO
-80 40
W
y.

20 7

=100
0

-120 0
0 1000000 0 1000000 0 1000000

Figure: Performance comparison between PPO with clipped objective and various other deep RL
methods on a slate of MuJoCo tasks. 10

Towards Generalization and Simplicity
in Continuous Control

Aravind Rajeswaran® Kendall Lowrey®* Emanuel Todorov Sham Kakade

University of Washington Seattle

{ aravraj, klowrey, todorov, sham } @ cs.washington.edu

Training linear policies to solve control tasks with natural policy gradients

https://voutu.be/frojcskMkk

https://youtu.be/frojcskMkkY

Algorithm 1 Policy Search with Natural Gradient

1: Initialize policy parameters to fg

2: fork=1to K do

3. Collect trajectories {7(1), ... 7(")} by rolling out the stochastic policy 7(-; 8;,).

4. Compute Vg log m(as|s¢; HA) for each (s, a) pair along trajectories sampled in iteration k.

5. Compute advantages A7 based on trajectories in iteration k and approximate value function

1

6: Compute policy gradient according to (2).

7. Compute the Fisher matrix (4) and perform gradient ascent (5).
Update parameters of value function in order to approximate Vk?r(sg”)) = R(sgn)), where
R(s{™) is the empirical return computed as R(s\™) = S, ~' =07 Here n indexes
over the trajectories.

9: end for

State s: joint positions, joint velocities, contact info

ar ~N(Wsg+b,0).

Swimmer (3D)

g

8

1

Performance
g

w— RBF-100
w— LINear
=== TRPO+NN

5000

3000 -

Performance

— RBF-500
w—— LINear
==« TRPO+NN

1 |

| ||
100 200 300 400 500
lterations

Hopper

3000

2000

1000 -

= RBF-100
— L iNEAr
=== TRPO+NN

1 |

100 150 20 250
Ant (3D)

— RBF-500
- INEAr
==« TRPO+NN

1

100

| |

1
200 300 400 500
lterations

Cheetah

w— RBF-500
— LiNEAr
=== TRPO+NN

) 1 1

100 200 360 400 500
Humanoid (3D)

6000 -

2000 -

— RBF-500
——INEAr
=== TRPO+NN

I 1

|
200 400 600 800

1

1000
lterations

Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Multigoal RL

Katerina Fragkiadaki

So far we train one policy/value function per task, e.g., win the game of Tetris, win the
game of Go, reach to a *particular” location, put the green cube inside the gray bucket,
etc.

Universal value function Approximators

V(is;0) = V(s,g;0)

=

- All methods we have learnt so far can be used.

7(s; 60)

n(s, g;0)

- At the beginning of an episode, we sample not only a start state but
also a goal g, which stays constant throughout the episode

-+ The experience tuples should contain the goal.

(s,a,r,s’) = (S, g,a,r, s’)

Universal Value Function Approximators, Schaul et al.

Universal value function Approximators

V(s,0) = Vi(s,0,8)

n(s;0) = 7x(s,g;0)

What should be my goal representation?
(not an easy question, same as your state representation)

- Manual: 3d centroids of objects, robot joint angles and velocities, 3d
location of the gripper, etc.

- Learnt: We supply a target image as the goal, and an autoencoder
learns to map it to an embedding vector by minimizing reconstruction loss

Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the

episode)

/ ‘ Goal g’
No reward :-(
O reward :-)
Goal g Our reacher at the end of the episode Our reacher at the end of the episode

(s, g,a,0,5) (S, g, a,l,s’)

Hindsight Experience Replay

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

Main idea: use failed executions under one goal g, as successful executions
under an alternative goal g’ (which is where we ended spat the end of the
episode)

HINAsIgnt Experience Replay

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A, >e.g. DQN, DDPG, NAF, SDQN
e astrategy S for sampling goals for replay, >e.g S(sg,...,s7) =m(sr)
e areward functionr: S x A x G — R. >e.g. r(s,a,g9) = —[fy(s) =0]
Initialize A > e.g. initialize neural networks

Initialize replay buffer R
for episode=1, M do
Sample a goal g and an initial state sy.
fort = 0,7 —1do
Sample an action a; using the behavioral policy from A:
a; < mp(5¢]|9) > || denotes concatenation
Execute the action a; and observe a new state s; 1
end for
fort = 0,7 —1do
re = 1(S¢,a¢, g)

Store the transition (s¢||g, a¢, r¢, Si+1/lg) in R > standard experience replay
Sample a set of additional goals for replay G := S(current episode)
for ¢’ € G do
r' = 1r(s,ar,9')
Store the transition (s;||¢’, a¢, v, s¢v1l|g’) in R > HER
end for \
end for Usually as additional goal
fort =1, Ndo we pick the goal that this
Sample a minibatch B from the replay buffer R episode achieved, and the
Perform one step of optimization using A and minibatch B reward becomes non zero

end for
end for

HINAsIgnt Experience Replay

Reward shaping: instead of using binary rewards, use continuous rewards, e.g., by
considering Euclidean distances from goal configuration

HER does not require reward shaping! :-)

The burden goes from designing the reward to designing the goal encoding.. :-(

HINAsIgnt Experience Replay

- = DDPG - DDPG+count-based exploration — DDPG+HER - DDPG+HER (version from Sec. 4.5)
pushing sliding pick-and-place
100% 100% 100%
80% 80% 80%
2
C 60% 60% 60%
7
@
S 40% 40% 40%
7
20% 20% 20%
0% ——— 0% 0%
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

epoch number (every epoch = 800 episodes = 800x50 timesteps)

Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

MCTS with neural networks

Katerina Fragkiadaki

Simplest Monte-Carlo Search

« Given a model M, and a most of the times random policy 7
» For each action a € A

Simulate K episodes from current (real) state S:

k k k E1K
{St7 a, Rt+17 St+17At—|—17 o0y ST}k;:1 ™~ Mwﬂ-

Evaluate action value function of the root by mean return

K
1
Q(st,a) = %];Gt = Gr (5S¢, a)

e Select current (real) action with maximum value

a; = argmax ((s¢, a)
acA

Can we do better?

- Could we be improving our simulation policy the more simulations we
obtain?

- Yes we can! We can have two policies:

1.Internal to the tree: keep track of action values Q not only for the root
but also for nodes internal to a tree we are expanding, and (maybe)
use \epsilon-greedy(Q) to improve the simulation policy over time

2.External to the tree: we do not have Q estimates and thus we use a
random policy

In MCTS, the simulation policy improves

- Any better ideas for the simulation policy?

Monte-Carlo Tree Search

We will allocate samples more efficiently!

* In MCTS, the simulation policy improves

« Each simulation consists of two phases (in-tree, out-of-tree)
+ Tree policy (improves): pick actions to maximize ()(s, a)
Default policy (fixed): pick actions often randomly
 Repeat (each simulation)
Evaluate states Q(S, a) by Monte-Carlo evaluation
Improve there policy, e.g. by € — greedy(Q))

« Converges on the optimal search tree assuming each action in the tree is
tried infinitely often.

Monte-Carlo Tree Search

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++ o
1f all children of state expanded: The state is inside the tree
next state = UCB sample (state)
winner = MCTS sample (next state)
else: The state is in the frontier
1f some children of state expanded:
next state = expand(random unexpanded child) expanskn1
else:
next state = state
winner = random playout (next state)

update value (state, winner)

Monte-Carlo Tree Search

MCTS helper functions

function UCB_sample (state) : Sample actions based on UCB score
weights = []
for child of state:
w = child.value + C * sgrt(ln(state.visits) / child.visits)

welghts.append (w)
distribution = [w / sum(weights) for w in weights]
return child sampled according to distribution

function random playout (state): _
1f 1s terminal (state): lJﬂFO”HWg
return winner

else: return random playout (random move (state))

Monte-Carlo Tree Search

MCTS helper functions

function expand (state):
state.visits =1
state.value = 0

function update value(state, winner):

1f winner == state.turn:
state.value += 1
else:
state.value -= 1

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample(state)

winner = MCTS sample (next state)
else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)
Explored Tree

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséd

winner = MCTS sample (next state) Phase
else: Search Tree
1f some children of state expanded:
next state = expand(random unexpanded child)
else: New Node
next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample(state) Bandit—Baséd
winner = MCTS sample (next state)
else:

1f some children of state expanded:

next state = expand(random unexpanded child)
else: I
next state = state "\
winner = random playout (next state) Random ©
update value (state, winner) Phase
Explored Tree

function random playout (state):
if is terminal (state):
return winner
else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

child)

Bandit—Based

Search Tree

New Node

l“
Random b

Phase

Explored Tree

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

Bandit—Based

1“
Random b

Phase (\

Explored Tree

Search Tree

New Node

°

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

Bandit—Based

1“
Random b

Phase (\

Search Tree

New Node

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample(state)
winner = MCTS sample (next state)

else:
1f some children of state expanded:
next state = expand(random unexpanded
else:
next state = state
winner = random playout (next state)

update value (state, winner)

child)

Bandit—Based

l“
Random b

Phase (\

e
Explored Tree

Search Tree

New Node

S

Can we do better?

Can we inject prior knowledge into value functions to be estimated and
actions to be tried, instead of initializing uniformly?

Monte-Carlo Tree Search

1. Selection
-+ Used for nodes we have seen before
- Pick according to UCB
2. Expansion
- Used when we reach the frontier
-+ Add one node per playout
3. Simulation
-+ Used beyond the search frontier
 Don’t bother with UCB, just play randomly
4. Backpropagation
- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Case Study: the Game of Go

 The ancient oriental game
of Go is 2500 years old

 (Considered to be the
hardest classic board
game

 Considered a grand
challenge task for Al
(John McCarthy)

* Traditional game-tree
search has failed in Go

Rules of Go

e Usually played on 19x19, also 13x13 or 9x9 board

« Simple rules, complex strategy

* Black and white place down stones alternately
e Surrounded stones are captured and removed

* The player with more territory wins the game

AlphaGo: Learning-guided MCTS

- Value neural net to evaluate board positions
- Policy neural net to select moves
- Combine those networks with MCTS

Policy network Value network

P, (@ |s) vy (S))
<o

ks

00

AlphaGo: Learning-guided search

1. Train two action policies, one cheap (rollout) policy = and one expensive policy by
mimicking expert moves (standard supervised learning).

2. Then, train a new policy pp with RL and self-play initialized from SL policy.
3. Train a value network that predicts the winner of games played by pp against itself.

Rollout policy SL policy network RL policy network Value network
pa
p..'z p(;’ p/) lrb 8
g
-
o
=
X m S
x
O
]
QL

Human expert positions Self-play positions

Supervised learning of policy networks

- Objective: predicting expert moves
- Input: randomly sampled state-action pairs (s, a) from expert games
- Output: a probability distribution over all legal moves a.

Policy network

SL policy network: 13-layer policy
network trained from 30 million Py fls)
positions. The network predicted

expert moves on a held out test

W
set with an accuracy of 57.0% L 's
using all input features, and 55.7% :
using only raw board position and -

move history as inputs, compared
to the state-of-the-art from other
research groups of 44.4%.

Reinforcement learning of policy networks

- Objective: improve over SL policy

- Weight initialization from SL network

- Input: Sampled states during self-play

- Qutput: a probability distribution over all legal moves a.

Rewards are provided only at the end of
the game, +1 for winning, -1 for loosing

Policy network

pp (als)

dlog p (a;|s;)
Apox g[f, (| Ss .
dp

The RL policy network won more than 80%
of games against the SL policy network.

Reinforcement learning of value networks

- Obijective: Estimating a value function v.(s) that predicts the outcome from
position s of games played by using RL policy p for both players (in
contrast to min-max search)

- Input: Sampled states during self-play, 30 million distinct positions, each
sampled from a separate game, played by the RL policy against itself.

* Output: a scalar value

Value network

v (8)
<>

Trained by regression on state-outcome pairs (s, z) to
minimize the mean squared error between the predicted
value v(s), and the corresponding outcome z.

MCTS + Policy/ Value networks

Selection: selecting actions within the expanded tree

T&l Tree policy
max Q + ulP) a; = argmax,(Q(s¢, a) + u(st, a))
+- ®
148 o P(s, a)
‘ u(s, @) o 1+ N(s,a)

+:¢

1

a, - action selected at time step ¢ from board s,

Q(s, a) - average reward collected so far from MC simulations

P(s, a) - prior expert probability of playing moving a provided by SL policy
N(s, a) - number of times we have visited parent node

u acts as a bonus value
o Decays with repeated visits

MCTS + Policy/ Value networks

EXpansion: when reaching a leaf, play the action with highest score from &,

|
R e =

.*_.H

1
= B -
= ®

()
N\

e When leaf node is reached, it has a chance to be expanded
e Processed once by (p,) and stored as prior probs P(s, a)
e Pick child node with highest prior prob

MCTS + Policy/ Value networks

Simulation/Evaluation: use the rollout policy to reach to the end of the game

—— —p—

.?_}_

|

- From the selected leaf node, run
multiple simulations in parallel
using the rollout policy

- Evaluate the leaf node as:

|
|
]
!
s

%_

(38) 8¢
' — - —e -
"\ “?'—F V(sp) = (1 = Avg(sp) + Azg,

p1 i e v, -value from value function of board position s,

e z - Reward from P,

i A
o Played until terminal step
r e A - mixing parameter
 Empirical

MCTS + Policy/ Value networks

Backup: update visitation counts and recorded rewards for the chosen path
inside the tree:

M’\

i

% 4 n
j.ﬁ Bt Q(s,a) = N(i, 2 Zl 1(s, a, ")V(Sz[,)

N(s,a) = Z (s, a,1)
2=1

]
) ((88) (38

e Extraindex i is to denote the " simulation, n total simulations
e Update visit count and mean reward of simulations passing through node

e Once search completes:
Algorithm chooses the most visited move from the root position

AlphaGoZero: Lookahead search during training!

- So far, look-ahead search was used for online planning at test time!

- AlphaGoZero uses it during training instead, for improved exploration
during self-play

- AlphaGo trained the RL policy using the current policy network poand a

randomly selected previous iteration of the policy network as opponent
(for exploration).

- The intelligent exploration in AlphaGoZero gets rid of human supervision.

AlphaGoZero: Lookahead search during training!

- Given any policy, a MCTS guided by this policy will produce
an improved policy (policy improvement operator)

- Train to mimic such improved policy

MCTS as policy improvement operator

- Train so that the policy network
mimics this improved policy
- Train so that the position

evaluation network output

matches the outcome (same as
in AlphaGo)

MCTS: no MC rollouts till termination

e
Q+U Aa}% U jﬁpl/ \/;m Q /' \Q TANWAN VAW AN
on=f, (1 °4 , e
o ())

MCTS: using always value net evaluations of leaf nodes, no rollouts!

Architectures

o

- Resnets help

- Jointly training the
policy and value
function using the
same main feature

0.50

0.49

Elo Rating
w
(4]
o
o

0.48

3000 - 0.47 -

Prediction accuracy on professional moves (%)
Mean squared error on professional game outcomes ©

N extractor helps

5000

4000 -

- - Lookahead
5 tremendously
£ 2000 improves the basic

policy
1000
0

Architectures

a. 4500 b. os3 C. 020 -
= o - Resnets help
- Jointly training the
£ 050 = .
policy and value
g 3500 S 049 ° .)
: function using the
same main feature
o o 0.16
£ o extractor helps
2500 0.45 0.15
dual-res sep‘-res dual-conv sep-conv duaIT-res sep;res dual-conv sep-éonv dual-res sep‘-res dual-lconv sep-‘conv
Separate policy/value nets Joint policy/value nets
Policy network Value network
Pojy (@ |S) vy (8)
<&
e
b, ‘

Elo rating

== Reinforcement learning
== Supervised learning
=== AlphaGo Lee

T T T T T

20 30 40 50 60
Training time (h)

T

70

Prediction accuracy
on professional moves (%)

707

60

501

40 1

301

20

10 1

- Reinforcement learning
== Supervised learning

T

10

T

20

T T

30 40
Training time (h)

T

50

T

60

T

70

MSE of professional

game outcomes

0.35

0.30 1

0.25

0.20 -

0.15 -

== Reinforcement learning
== Supervised learning

0

10

20

30 40 50
Training time (h)

60

70

