
Introduction to Deep Reinforcement
Learning and Control

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2019, CMU 10-403

• Course website : all you need to know is there
• Homework assignments and a final project, 60%/40% for the final

grade
• Homework assignments will be both implementation and question/

answering
• Final project: a choice between three different topics, e.g., object

manipulation, maze navigation or Atari game playing
• Resources: AWS for those that do not have access to GPUs
• Prerequisites: We will assume comfort with deep neural network

architectures, modeling and training, using tensorflow or another
deep learning package

• People can audit the course, unless there are no seats left in class
• The readings on the schedule are required

Course Logistics

https://www.dropbox.com/s/o4hqntxws24b2nq/indexSpring2019.html?dl=0

Goal of the Course: Learning behaviors

Building agents that learn
to act and accomplish
goals in dynamic
environments

Goal of the Course: Learning behaviours

Building agents that learn
to act and accomplish
goals in dynamic
environments

…as opposed to agents that
execute preprogrammed
behaviors in a static
environment…

Motor control is Important

“The brain evolved, not to think or feel, but to
control movement.”

Daniel Wolpert, nice TED talk

The brain evolved, not to think or feel, but to
control movement.

Daniel Wolpert, nice TED talk

Sea squirts digest their own brain when they
decide not to move anymore

Motor control is Important

Learning behaviours through reinforcement
Behavior is primarily shaped by reinforcement rather than
free-will.
• behaviors that result in praise/pleasure tend to repeat,
• behaviors that result in punishment/pain tend to become

extinct.
B.F. Skinner
1904-1990

Harvard psychology

Wikipedia

We will use similar shaping mechanism for learning behaviours in artificial
agents

Video on RL of behaviors in pigeons

https://en.wikipedia.org/wiki/Reinforcement
https://www.youtube.com/watch?v=yhvaSEJtOV8

Reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Agent
An entity that is equipped with
• sensors, in order to sense the environment,
• end-effectors in order to act in the environment, and
• goals that she wants to achieve

Actions
They are used by the agent to interact with the world. They can have
many different temporal granularities and abstractions.

At

Actions can be defined to be

• The instantaneous torques applied
on the gripper

• The instantaneous gripper
translation, rotation, opening

• Instantaneous forces applied to
the objects

• Short sequences of the above

• An observation a.k.a. sensation: the (raw) input of the agent’s
sensors, images, tactile signal, waveforms, etc.

• A state captures whatever information is available to the agent at
step t about its environment. The state can include immediate
“sensations,” highly processed sensations, and structures built up
over time from sequences of sensations, memories etc.

State estimation: from observations to states

A mapping function from states to actions of the end effectors.

It can be a shallow or deep function mapping,

or it can be as complicated as involving a tree look-ahead search

Policy

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

⇡(a|s) = P[At = a|St = s]

π

Reinforcement learning
Learning policies that maximize a reward function by interacting with the world

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Note: Rewards can be intrinsic, i.e., generated
by the agent and guided by its curiosity as
opposed to an external task

Closed loop sensing and acting

Imagine an agent that wants to pick up an object and has a policy that predicts
what the actions should be for the next 2 secs ahead. This means, for the next
2 secs we switch off the sensors, and just execute the predicted actions. In the
next second, due to imperfect sensing, the object is about to fall over!

Sensing is always imperfect. Our excellent motor skills are due to continuous
sensing and updating of the actions. So this loop is in fact extremely short in
time.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Rewards Rt

They are scalar values provided by the environment to the agent that
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0
otherwise, or -1 for overtime step the goal is not achieved

• Rewards specify what the agent needs to achieve, not how to achieve it.

• The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as the
maximization of the cumulative sum of a received scalar signal (reward)

Backgammon
• States: Configurations of the playing board (≈1020)

• Actions: Moves

• Rewards:

• win: +1

• lose: –1

• else: 0

• States: Road traffic, weather, time of day

• Actions: steering wheel, break

• Rewards:

• +1 reaching goal not over-tired

• -1: honking from surrounding drivers

• -100: collision

Learning to Drive

Cart Pole

• States: Pole angle and angular velocity

• Actions: Move left right

• Rewards:

• 0 while balancing

• -1 for imbalance

Peg in Hole Insertion Task

• States: Joint configurations (7DOF)

• Actions: Torques on joints

• Rewards: Penalize jerky motions, inversely proportional to distance
from target pose

Returns

Goal-seeking behavior of an agent can be formalized as the behavior
that seeks maximization of the expected value of the cumulative sum
of (potentially time discounted) rewards, we call it return.

We want to maximize returns.

Gt

Gt = Rt+1 + Rt+2 + ⋯ + RT

Dynamics a.k.a. the Model

• How the states and rewards change given the actions of the agent

p

p(s′�, r |s, a) = ℙ{St = s′�, Rt = r |St−1 = s, At−1 = a}

T(s′�|s, a) = p(s′�|s, a) = ℙ{St = s′ �|St−1 = s, At−1 = a} = ∑
r∈ℝ

p(s′�, r |s, a)

• Transition function or next step function:

Prediction

slide borrowed from Sergey Levine

The Model

Planning

Planning: unrolling (querying) a model forward in time and selecting the
best action sequence that satisfies a specific goal

Plan: a sequence of actions

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1 The Model

The state-value function of an MDP is the expected return
starting from state s, and then following policy

The action-value function is the expected return starting from
state s, taking action a, and then following policy

Value Functions are Expected Returns

v⇡(s) = E⇡[Gt|St = s]

q⇡(s, a)

q⇡(s, a) = E⇡[Gt|St = s,At = a]

⇡
v⇡(s)

Reinforcement learning-and why we like it
Learning policies that maximize a reward function by interacting with the world

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

• It is considered the most biologically plausible
form of learning

• It addresses the full problem of making artificial
agents that act in the world end-to-end, so it is
driven by the right loss function

…in contrast to, for example, pixel
labelling

Learning to Act

Learning to map sequences of observations to actions

observations: inputs from our sensor

Learning to map sequences of observations to actions, for a
particular goal

goal
gt

Learning to Act

Learning to map sequences of observations to actions, for a
particular goal

goal
gt

Learning to Act

Learning to map sequences of observations to actions, for a
particular goal

goal
gt

Learning to Act

The mapping from sensory input to actions can be quite complex, much beyond a feedforward
mapping of ~30 layers! It may involve mental evaluation of alternatives, unrolling of a model, model
updates, closed loop feedback, retrieval of relevant memories, hypothesis generation, etc. .

Limitations of Learning by Interaction

• Can we think of goal directed behavior learning problems that
cannot be modeled or are not meaningful using the MDP
framework and a trial-and-error Reinforcement learning
framework?

• The agent should have the chance to try (and fail) enough times

• This is impossible if episode takes too long, e.g., reward=“obtain a
great Ph.D.”

• This is impossible when safety is a concern: we can’t learn to drive
via reinforcement learning in the real world, failure cannot be
tolerated

Q: what other ways humans use to learn to act in the world?

Value Functions reflect our knowledge about the world

“don’t play video games
else your social skills will
be impacted”

We are social animals and learn from one another: We imitate and we
communicate our value functions to one another through natural
language

Value functions capture the knowledge of the agent regarding how
good is each state for the goal he is trying to achieve.

Other forms of supervision for learning behaviours?

1. Learning from rewards

2. Learning from demonstrations

3. Learning from specifications of optimal behavior

In this course, we will also visit the first two forms of supervision.

Behavior: High Jump
scissors Fosbury flop

1. Learning from rewards
Reward: jump as high as possible: It took years for athletes to find the right behavior to achieve this

2. Learning from demonstrations
It was way easier for athletes to perfection the jump, once someone showed the right general trajectory

3. Learning from specifications of optimal behavior
For novices, it is much easier to replicate this behavior if additional guidance is provided based on specifications: where
to place the foot, how to time yourself etc.

How learning to act is different than other machine learning paradigms, e.g.,
object detection?

RL Versus ML

How learning to act is different than other machine learning
paradigms?

• The agent’s actions affect the data she will receive in the future

Learning to ActRL Versus ML

How learning behaviors is different than other
machine learning paradigms?

• The agent’s actions affect the data she will
receive in the future:
• The data the agent receives are sequential in nature, not i.i.d.

(independent and identically distributed)
• Bad policies will never lead you to collect better data.

Learning to Act

Learning Behaviors

How learning behaviors is different than other
machine learning paradigms?
1) The agent’s actions affect the data she will receive

in the future
2) The reward (whether the goal of the behavior is

achieved) is far in the future:
▪ Temporal credit assignment: which actions were important and which were

not, is hard to know

Learning to Act

Learning Behaviors

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in

the future:
3) Actions take time to carry out in the real world, we want to

minimize the amount of interaction

Learning to Act

Learning Behaviors

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in

the future:
3) Actions take time to carry out in the real world, we want to

minimize the amount of interaction

Learning to Act

Reminds of active learning! we want to ask humans for labels and we want to
choose the queries carefully to minimize human involvement
A lecture by Marc Toussaint that shows how those problems are interrelated

Learning Behaviors

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in

the future:
3) Actions take time to carry out in the real world, we want to

minimize the amount of interaction
1) We can use simulated experience and tackle the sim2real

transfer

Learning to Act

Learning Behaviors

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in

the future:
3) Actions take time to carry out in the real world, and thus this may

limit the amount of experience
• We can use simulated experience and tackle the sim2real

transfer
• We can have robots working 24/7

Learning to Act

Supersizing Self-Supervision

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot
Hours, Pinto and Gupta

Learning Behaviors

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in

the future:
3) Actions take time to carry out in the real world, and thus this may

limit the amount of experience
• We can use simulated experience and tackle the sim2real

transfer
• We can have robots working 24/7
• We can buy many robots

Learning to Act

Google’s Robot Farm

Successes so far

Deep Blue

• Q1: Is this a machine learning achievement?
• Q2: What is machine learning / artificial intelligence?
• A2: The discipline that develops agents that learn and improve with experience (Tom Mitchell)
• A1: No, it is not. Brute-force manual development of a board evaluation function

Backgammon

Backgammon

How is it different than chess?

Backgammon

High branching factor due to dice roll prohibits brute force
deep searches such as in chess

Neuro-Gammon

• Developed by Gerald Tesauro in
1989 in IBM’s research center

• Trained to mimic expert
demonstrations using
supervised learning

• Achieved intermediate-level
human player

TD-Gammon

• Developed by Gerald Tesauro in
1992 in IBM’s research center

• A neural network that trains itself to
be an evaluation function by
playing against itself starting from
random weights

• Achieved performance close to top
human players of its time

Neuro-Gammon

• Developed by Gerald Tesauro in
1989 in IBM’s research center

• Trained to mimic expert
demonstrations using
supervised learning

• Achieved intermediate-level
human player

Evaluation function
TD-Gammon

Self-Driving Cars

Policy network :
mapping of
observations to actions

Self-Driving Cars

Self-Driving Cars

• behavior cloning- learning from the human driver
• data augmentation to deal with compounding errors

ALVINN (Autonomous Land Vehicle In a Neural Network), Efficient Training of Artificial Neural Networks for Autonomous Navigation,
Pomerleau 1991

• ALVINN video

https://www.youtube.com/watch?v=ilP4aPDTBPE

Self-Driving Cars

• Currently: much better computer vision front end: object detection,
trajectory forecasting etc.

• Open problem: learning reward functions from humans on how to
behave on intersections, crowds, traffic jams, etc. .

Atari

Deep Q learning
Deep Mind 2014+

Atari

Idea: arXiv your successes

Montezuma’s Revenge with Go-Explore

https://www.youtube.com/watch?time_continue=59&v=L_E3w_gHBOY

GO

AlphaGo

• Monte Carlo Tree Search with neural nets
• expert demonstrations
• self play

AlphaGo

Policy net trained to
mimic expert moves, and
then fine-tuned using self-
play

AlphaGo

Policy net trained to
mimic expert moves, and
then fine-tuned using self-
play
Value network trained
with regression to predict
the outcome, using self
play data of the best
policy.

AlphaGo

Policy net trained to
mimic expert moves, and
then fine-tuned using self-
play
Value network trained
with regression to predict
the outcome, using self
play data of the best
policy.
At test time, policy and
value nets guide a MCTS
to select stronger moves
by deep look ahead.

AlphaGo

Tensor Processing Unit from Google

AlphaGoZero

• No human supervision!
• MCTS to select great moves during training and testing!

AlphaGoZero

Search Tree

AlphaGoZero

AlphaGoZero

Go Versus the real world

How the world of Alpha Go is different than the real world?
1. Known environment (known entities and dynamics) Vs

Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

3. Discrete Vs Continuous actions
4. One goal Vs many goals
5. Rewards automatic VS rewards need themselves to

be detected

Alpha Go Versus the real world

How the world of Alpha Go is different than the real
world?
1. Known environment (known entities and dynamics)

Vs Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

Go Versus the real world

How the world of Alpha Go is different than the real
world?
1. Known environment (known entities and dynamics)

Vs Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

State estimation: To be able to act you need first to be
able to see, detect the objects that you interact with,
detect whether you achieved your goal

State estimation

Most works are between two extremes:

• Assuming the world model known (object locations,
shapes, physical properties obtain via AR tags or manual
tuning), they use planners to search for the action
sequence to achieve a desired goal.

Rearrangement Planning via Heuristic Search, Jennifer E. King, Siddhartha S. Srinivasa

State estimation

Most works are between two extremes:

• Assuming the world model known (object locations,
shapes, physical properties obtain via AR tags or manual
tuning), they use planners to search for the action
sequence to achieve a desired goal.

• Do not attempt to detect any objects and learn to map
RGB images directly to actions

End-to-End Learning for Self-Driving Cars, NVIDIA

Go Versus the real world

How the world of Go is different than the real world?
1. Known environment (known entities and dynamics)

Vs Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

3. Discrete Vs Continuous actions
4. One goal Vs many goals
5. Rewards automatic VS rewards need themselves

to be detected

Go Versus the real world

How the world of Go is different than the real world?
1. Known environment (known entities and dynamics) Vs

Unknown environment (unknown entities and dynamics).
2. Need for behaviors to transfer across environmental

variations since the real world is very diverse
3. Discrete Vs Continuous actions (curriculum learning,

progressively add degrees of freedom)
4. One goal Vs many goals
5. Rewards automatic VS rewards need themselves to be

detected

Go Versus the real world

How the world of Go is different than the real world?
1. Known environment (known entities and dynamics) Vs

Unknown environment (unknown entities and dynamics).
2. Need for behaviors to transfer across environmental

variations since the real world is very diverse
3. Discrete Vs Continuous actions (curriculum learning,

progressively add degrees of freedom)
4. One goal Vs many goals (generalized policies

parametrized by the goal, Hindsight Experience Replay)
5. Rewards automatic VS rewards need themselves to be

detected

Alpha Go Versus the real world

How the world of Go is different than the real world?
1. Known environment (known entities and dynamics) Vs

Unknown environment (unknown entities and dynamics).
2. Need for behaviors to transfer across environmental

variations since the real world is very diverse
3. Discrete Vs Continuous actions (curriculum learning,

progressively add degrees of freedom)
4. One goal Vs many goals (generalized policies

parametrized by the goal, Hindsight Experience Replay)
5. Rewards automatic VS rewards need themselves to be

detected (learning perceptual rewards, use Computer Vision
to detect success)

What we will cover in this course

AI’s paradox

Go Versus the real world

Beating the world champion is easier than moving the Go stones.

"it is comparatively easy to make computers exhibit adult
level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skills of a one-
year-old when it comes to perception and mobility"

Hans Moravec

AI’s paradox

"we're more aware of simple processes that don't work well
than of complex ones that work flawlessly"

Marvin Minsky

AI’s paradox

We should expect the difficulty of reverse-engineering any
human skill to be roughly proportional to the amount of time that
skill has been evolving in animals.
The oldest human skills are largely unconscious and so appear
to us to be effortless.
Therefore, we should expect skills that appear effortless to be
difficult to reverse-engineer, but skills that require effort may not
necessarily be difficult to engineer at all.

Hans Moravec

Evolutionary explanation

What is AI?

 intelligence was "best characterized as the
things that highly educated male scientists
found challenging", such as chess, symbolic
integration,
proving mathematical theorems and solving
complicated word algebra problems.

Rodney Brooks

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

What is AI?

 intelligence was "best characterized as the
things that highly educated male scientists
found challenging", such as chess, symbolic
integration,
proving mathematical theorems and solving
complicated word algebra problems.
"The things that children of four or five
years could do effortlessly, such as visually
distinguishing between a coffee cup and a
chair, or walking around on two legs, or
finding their way from their bedroom to the
living room were not thought of as activities
requiring intelligence.

Rodney Brooks

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

What is AI?

 intelligence was "best characterized as the
things that highly educated male scientists
found challenging", such as chess, symbolic
integration,
proving mathematical theorems and solving
complicated word algebra problems.
"The things that children of four or five
years could do effortlessly, such as visually
distinguishing between a coffee cup and a
chair, or walking around on two legs, or
finding their way from their bedroom to the
living room were not thought of as activities
requiring intelligence.

Rodney Brooks

No cognition. Just sensing and action

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

Learning from Babies

• Be multi-modal

• Be incremental

• Be physical

• Explore

• Be social

• Learn a language

The Development of Embodied Cognition: Six Lessons from Babies
Linda Smith, Michael Gasser

