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• Course website : all you need to know is there
• Homework assignments and a final project, 60%/40% for the final 

grade
• Homework assignments will be both implementation and question/

answering
• Final project: a choice between three different topics, e.g., object 

manipulation, maze navigation or Atari game playing
• Resources: AWS for those that do not have access to GPUs
• Prerequisites: We will assume comfort with deep neural network 

architectures, modeling and training, using tensorflow or another 
deep learning package

• People can audit the course, unless there are no seats left in class
• The readings on the schedule are required 

Course Logistics

https://www.dropbox.com/s/o4hqntxws24b2nq/indexSpring2019.html?dl=0


Goal of the Course: Learning behaviors

Building agents that learn 
to act and accomplish 
goals in dynamic 
environments



Goal of the Course: Learning behaviours

Building agents that learn 
to act and accomplish 
goals in dynamic 
environments

…as opposed to agents that 
execute preprogrammed 
behaviors in a static 
environment…



Motor control is Important

“The brain evolved, not to think or feel, but to 
control movement.”

Daniel Wolpert, nice TED talk



The brain evolved, not to think or feel, but to 
control movement.

Daniel Wolpert, nice TED talk

Sea squirts digest their own brain when they 
decide not to move anymore

Motor control is Important



Learning behaviours through reinforcement
Behavior is primarily shaped by reinforcement rather than 
free-will.
• behaviors that result in praise/pleasure tend to repeat,
• behaviors that result in punishment/pain tend to become 

extinct. 
B.F. Skinner  
1904-1990 

Harvard psychology

Wikipedia 

We will use similar shaping mechanism for learning behaviours in artificial 
agents

Video on RL of behaviors in pigeons

https://en.wikipedia.org/wiki/Reinforcement
https://www.youtube.com/watch?v=yhvaSEJtOV8


Reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .
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Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)
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R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt
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Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.
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Agent
An entity that is equipped with 
• sensors, in order to sense the environment,  
• end-effectors in order to act in the environment, and 
• goals that she wants to achieve 



Actions
They are used by the agent to interact with the world. They can have 
many different temporal granularities and abstractions.

At

Actions can be defined to be

• The instantaneous torques applied 
on the gripper

• The instantaneous gripper 
translation, rotation, opening

• Instantaneous forces applied to 
the objects

• Short sequences of the above



• An observation a.k.a. sensation: the (raw) input of the agent’s 
sensors, images, tactile signal, waveforms, etc. 

• A state captures whatever information is available to the agent at 
step t about its environment. The state can include immediate 
“sensations,” highly processed sensations, and structures built up 
over time from sequences of sensations, memories etc.

State estimation: from observations to states



A mapping function from states to actions of the end effectors. 

It can be a shallow or deep function mapping, 

  

or it can be as complicated as involving a tree look-ahead search 

Policy

Imitation Learning

Images: Bojarski et al. ‘16, NVIDIA

training
data

supervised
learning

⇡(a|s) = P[At = a|St = s]

π



Reinforcement learning
Learning policies that maximize a reward function by interacting with the world

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Note: Rewards can be intrinsic, i.e., generated 
by the agent and guided by its curiosity as 
opposed to an external task



Closed loop sensing and acting

Imagine an agent that wants to pick up an object and has a policy that predicts 
what the actions should be for the next 2 secs ahead. This means, for the next 
2 secs we switch off the sensors, and just execute the predicted actions. In the 
next second, due to imperfect sensing, the object is about to fall over!

Sensing is always imperfect. Our excellent motor skills are due to continuous 
sensing and updating of the actions. So this loop is in fact extremely short in 
time.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1



Rewards Rt

They are scalar values provided by the environment to the agent that 
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0 
otherwise, or -1 for overtime step the goal is not achieved

• Rewards specify what the agent needs to achieve, not how to achieve it.

• The simplest and cheapest form of supervision, and surprisingly general: 
All of what we mean by goals and purposes can be well thought of as the 
maximization of the cumulative sum of a received scalar signal (reward)



Backgammon
• States:  Configurations of the playing board (≈1020)

• Actions:  Moves

• Rewards:   

• win:  +1 

• lose:  –1

• else:  0       



• States: Road traffic, weather, time of day

• Actions: steering wheel, break

• Rewards: 

• +1 reaching goal not over-tired

• -1: honking from surrounding drivers

• -100: collision 

Learning to Drive



Cart Pole

• States: Pole angle and angular velocity

• Actions: Move left right

• Rewards: 

• 0 while balancing

• -1 for imbalance



Peg in Hole Insertion Task

• States: Joint configurations (7DOF)

• Actions: Torques on joints

• Rewards: Penalize jerky motions, inversely proportional to distance 
from target pose



Returns 

Goal-seeking behavior of an agent can be formalized as the behavior 
that seeks maximization of the expected value of the cumulative sum 
of (potentially time discounted) rewards, we call it return. 

We want to maximize returns.

Gt

Gt = Rt+1 + Rt+2 + ⋯ + RT



Dynamics     a.k.a. the Model

• How the states and rewards change given the actions of the agent

p

p(s′�, r |s, a) = ℙ{St = s′�, Rt = r |St−1 = s, At−1 = a}

T(s′�|s, a) = p(s′�|s, a) = ℙ{St = s′ �|St−1 = s, At−1 = a} = ∑
r∈ℝ

p(s′�, r |s, a)

• Transition function or next step function:



Prediction

slide borrowed from Sergey Levine

The Model



Planning

Planning: unrolling (querying) a model forward in time and selecting the 
best action sequence that satisfies a specific goal 

Plan: a sequence of actions

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1 The Model



The state-value function            of an MDP is the expected return 
starting from state s, and then following policy

The action-value function               is the expected return starting from 
state s, taking action a, and then following policy

Value Functions are Expected Returns

v⇡(s) = E⇡[Gt|St = s]

q⇡(s, a)

q⇡(s, a) = E⇡[Gt|St = s,At = a]

⇡
v⇡(s)



Reinforcement learning-and why we like it
Learning policies that maximize a reward function by interacting with the world

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

• It is considered the most biologically plausible 
form of learning

• It addresses the full problem of making artificial 
agents that act in the world end-to-end, so it is 
driven by the right loss function

…in contrast to, for example, pixel 
labelling



Learning to Act

Learning to map sequences of observations to actions

observations: inputs from our sensor



Learning to map sequences of observations to actions, for a 
particular goal

goal
gt

Learning to Act



Learning to map sequences of observations to actions, for a 
particular goal

goal
gt

Learning to Act



Learning to map sequences of observations to actions, for a 
particular goal

goal
gt

Learning to Act

The mapping from sensory input to actions can be quite complex, much beyond a feedforward 
mapping of ~30 layers! It may involve mental evaluation of alternatives, unrolling of a model, model 
updates, closed loop feedback, retrieval  of relevant memories, hypothesis generation, etc. .



Limitations of Learning by Interaction

• Can we think of goal directed behavior learning problems that 
cannot be modeled or are not meaningful using the MDP 
framework and a trial-and-error Reinforcement learning 
framework?

• The agent should have the chance to try (and fail) enough times

• This is impossible if episode takes too long, e.g., reward=“obtain a 
great Ph.D.”

• This is impossible when safety is a concern: we can’t learn to drive 
via reinforcement learning in the real world, failure cannot be 
tolerated 

Q: what other ways humans use to learn to act in the world?



Value Functions reflect our knowledge about the world 

“don’t play video games 
else your social skills will 
be impacted”

We are social animals and learn from one another: We imitate and we 
communicate our value functions to one another through natural 
language

Value functions capture the knowledge of the agent regarding how 
good is each state for the goal he is trying to achieve.



Other forms of supervision for learning behaviours?

1. Learning from rewards

2. Learning from demonstrations

3. Learning from specifications of optimal behavior

In this course, we will also visit the first two forms of supervision.



Behavior: High Jump
scissors Fosbury flop 

1. Learning from rewards
Reward: jump as high as possible: It took years for athletes to find the right behavior to achieve this

2. Learning from demonstrations
It was way easier for athletes  to perfection the jump, once someone showed the right general trajectory

3. Learning from specifications of optimal behavior
For novices, it is much easier to replicate this behavior if additional guidance is provided based on specifications: where 
to place the foot, how to time yourself etc.



How learning to act is different than other machine learning paradigms, e.g., 
object detection?

RL Versus ML



How learning to act is different than other machine learning 
paradigms?

• The agent’s actions affect the data she will receive in the future

Learning to ActRL Versus ML





How learning behaviors is different than other 
machine learning paradigms?

• The agent’s actions affect the data she will 
receive in the future:
• The data the agent receives are sequential in nature, not i.i.d. 

(independent and identically distributed)
• Bad policies will never lead you to collect better data. 

Learning to Act



Learning Behaviors

How learning behaviors is different than other 
machine learning paradigms?
1) The agent’s actions affect the data she will receive 

in the future
2) The reward (whether the goal of the behavior is 

achieved) is far in the future:
▪ Temporal credit assignment: which actions were important and which were 

not, is hard to know

Learning to Act



Learning Behaviors

How learning behaviors is different than other machine learning 
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in 

the future:
3) Actions take time to carry out in the real world, we want to 

minimize the amount of interaction

Learning to Act



Learning Behaviors

How learning behaviors is different than other machine learning 
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in 

the future:
3) Actions take time to carry out in the real world, we want to 

minimize the amount of interaction

Learning to Act

Reminds of active learning! we want to ask humans for labels and we want to 
choose the queries carefully to minimize human involvement
A lecture by Marc Toussaint that shows how those problems are interrelated 



Learning Behaviors

How learning behaviors is different than other machine learning 
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in 

the future:
3) Actions take time to carry out in the real world, we want to 

minimize the amount of interaction
1) We can use simulated experience and tackle the sim2real 

transfer 

Learning to Act



Learning Behaviors

How learning behaviors is different than other machine learning 
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in 

the future:
3) Actions take time to carry out in the real world, and thus this may 

limit the amount of experience
• We can use simulated experience and tackle the sim2real 

transfer 
• We can have robots working 24/7

Learning to Act



Supersizing Self-Supervision 

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot 
Hours, Pinto and Gupta



Learning Behaviors

How learning behaviors is different than other machine learning 
paradigms?
1) The agent’s actions affect the data she will receive in the future
2) The reward (whether the goal of the behavior is achieved) is far in 

the future:
3) Actions take time to carry out in the real world, and thus this may 

limit the amount of experience
• We can use simulated experience and tackle the sim2real 

transfer 
• We can have robots working 24/7
• We can buy many robots

Learning to Act



Google’s Robot Farm



Successes so far



Deep Blue

• Q1: Is this a machine learning achievement?
• Q2: What is machine learning / artificial intelligence?
• A2: The discipline that develops agents that learn and improve with experience (Tom Mitchell)
• A1: No, it is not. Brute-force manual development of a board evaluation function



Backgammon



Backgammon

How is it different than chess?



Backgammon

High branching factor due to dice roll prohibits brute force 
deep searches such as in chess



Neuro-Gammon

• Developed by Gerald Tesauro in 
1989 in IBM’s research center

• Trained to mimic expert 
demonstrations using 
supervised learning

• Achieved intermediate-level 
human player



TD-Gammon

• Developed by Gerald Tesauro in 
1992 in IBM’s research center

• A neural network that trains itself to 
be an evaluation function by 
playing against itself starting from 
random weights

• Achieved performance close to top 
human players of its time 

Neuro-Gammon

• Developed by Gerald Tesauro in 
1989 in IBM’s research center

• Trained to mimic expert 
demonstrations using 
supervised learning

• Achieved intermediate-level 
human player



Evaluation function
TD-Gammon



Self-Driving Cars



Policy network    : 
mapping of 
observations to actions

Self-Driving Cars



Self-Driving Cars

• behavior cloning- learning from the human driver
• data augmentation to deal with compounding errors 

ALVINN (Autonomous Land Vehicle In a Neural Network), Efficient Training of Artificial Neural Networks for Autonomous Navigation, 
Pomerleau 1991

• ALVINN video

https://www.youtube.com/watch?v=ilP4aPDTBPE


Self-Driving Cars

• Currently: much better computer vision front end: object detection, 
trajectory forecasting etc.

• Open problem: learning reward functions from humans on how to 
behave on intersections, crowds, traffic jams, etc. .



Atari

Deep Q learning
Deep Mind 2014+ 



Atari

Idea: arXiv your successes

Montezuma’s Revenge with Go-Explore

https://www.youtube.com/watch?time_continue=59&v=L_E3w_gHBOY


GO



AlphaGo

• Monte Carlo Tree Search with neural nets
• expert demonstrations 
• self play
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then fine-tuned using self-
play
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AlphaGo

Policy net trained to 
mimic expert moves, and 
then fine-tuned using self-
play
Value network trained 
with regression to predict 
the outcome, using self 
play data of the best 
policy.
At test time, policy and 
value nets guide a MCTS 
to select stronger moves 
by deep look ahead.



AlphaGo

Tensor Processing Unit from Google



AlphaGoZero

• No human supervision!
• MCTS to select great moves during training and testing!



AlphaGoZero

Search Tree



AlphaGoZero



AlphaGoZero



Go Versus the real world

How the world of Alpha Go is different than the real world?
1. Known environment (known entities and dynamics) Vs 

Unknown environment (unknown entities and 
dynamics). 

2. Need for behaviors to transfer across environmental 
variations since the real world is very diverse

3. Discrete Vs Continuous actions
4. One goal Vs many goals
5. Rewards automatic VS rewards need themselves to 

be detected
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Go Versus the real world

How the world of Alpha Go is different than the real 
world?
1. Known environment (known entities and dynamics) 

Vs Unknown environment (unknown entities and 
dynamics). 

2. Need for behaviors to transfer across environmental 
variations since the real world is very diverse

State estimation: To be able to act you need first to be 
able to see, detect the objects that you  interact with, 
detect whether you achieved your goal



State estimation

Most works are between two extremes:

• Assuming the world model known (object locations, 
shapes, physical properties obtain via AR tags or manual 
tuning), they use planners to search for the action 
sequence to achieve a desired goal.

Rearrangement Planning via Heuristic Search, Jennifer E. King, Siddhartha S. Srinivasa



State estimation

Most works are between two extremes:

• Assuming the world model known (object locations, 
shapes, physical properties obtain via AR tags or manual 
tuning), they use planners to search for the action 
sequence to achieve a desired goal.

• Do not attempt to detect any objects and learn to map 
RGB images directly to actions

End-to-End Learning for Self-Driving Cars, NVIDIA
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Alpha Go Versus the real world

How the world of Go is different than the real world?
1. Known environment (known entities and dynamics) Vs 

Unknown environment (unknown entities and dynamics). 
2. Need for behaviors to transfer across environmental 

variations since the real world is very diverse
3. Discrete Vs Continuous actions (curriculum learning, 

progressively add degrees of freedom)
4. One goal Vs many goals (generalized policies 

parametrized by the goal, Hindsight Experience Replay)
5. Rewards automatic VS rewards need themselves to be 

detected (learning perceptual rewards, use Computer Vision 
to detect success)



What we will cover in this course



AI’s paradox



Go Versus the real world

Beating the world champion is easier than moving the Go stones.



"it is comparatively easy to make computers exhibit adult 
level performance on intelligence tests or playing checkers, 
and difficult or impossible to give them the skills of a one-
year-old when it comes to perception and mobility"

Hans Moravec

AI’s paradox



"we're more aware of simple processes that don't work well 
than of complex ones that work flawlessly"

Marvin Minsky

AI’s paradox



We should expect the difficulty of reverse-engineering any 
human skill to be roughly proportional to the amount of time that 
skill has been evolving in animals.
The oldest human skills are largely unconscious and so appear 
to us to be effortless.
Therefore, we should expect skills that appear effortless to be 
difficult to reverse-engineer, but skills that require effort may not 
necessarily be difficult to engineer at all.

Hans Moravec

Evolutionary explanation



What is AI?

 intelligence was "best characterized as the 
things that highly educated male scientists 
found challenging", such as chess, symbolic 
integration, 
proving mathematical theorems and solving 
complicated word algebra problems. 

Rodney Brooks

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem
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integration, 
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years could do effortlessly, such as visually 
distinguishing between a coffee cup and a 
chair, or walking around on two legs, or 
finding their way from their bedroom to the 
living room were not thought of as activities 
requiring intelligence.

Rodney Brooks

No cognition. Just sensing and action

https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem


Learning from Babies

• Be multi-modal

• Be incremental

• Be physical

• Explore

• Be social

• Learn a language

The Development of Embodied Cognition: Six Lessons from Babies
Linda Smith, Michael Gasser


