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Course Logistics

Course website : all you need to know is there

Homework assignments and a final project, 609%/40% for the final
grade

Homework assignments will be both implementation and question/
answering

Final project: a choice between three different topics, e.g., object
manipulation, maze navigation or Atari game playing

* Resources: AWS for those that do not have access to GPUs

Prerequisites: We will assume comfort with deep neural network
architectures, modeling and training, using tensorflow or another
deep learning package

People can audit the course, unless there are no seats left in class

* The readings on the schedule are required


https://www.dropbox.com/s/o4hqntxws24b2nq/indexSpring2019.html?dl=0

Goal of the Course: Learning behaviors

Building agents that
to act and accomplish
goals in dynamic
environments




Goal of the Course: Learning behaviours

Building agents that
to act and accomplish
goals in dynamic
environments

...as opposed to agents that
execute

behaviors in a static
environment...




Motor control Is Important

“The brain evolved, not to think or feel, but to
control movement.”
Daniel Wolpert, nice TED talk

Daniel Wolpert: The real reason for brains | TED Talk | TED.com
https:/www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains ~



Motor control Is Important

The brain evolved, not to think or feel, but to
control movement,
Daniel Wolpert, nice TED talk

Sea squirts digest their own brain when they
decide not to move anymore



Learning behaviours through reinforcement

Behavior is primarily shaped by reinforcement rather than
free-will.

* behaviors that result in praise/pleasure tend to repeat,

 behaviors that result in punishment/pain tend to become
extinct.

B.F. Skinner
Operant Conditioning 1904-1990

Harvard psychology

Reinforcement Punishment

Increase Behawor Decrease Behavior

Video on RL of behaviors in pigeons

We will use similar shaping mechanism for learning behaviours in artificial
agents

Wikipedia



https://en.wikipedia.org/wiki/Reinforcement
https://www.youtube.com/watch?v=yhvaSEJtOV8

Reinforcement learning
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An entity that is equipped with
* sensors, in order to sense the environment,
- end-effectors in order to act in the environment, and

- goals that she wants to achieve




Actions A,

They are used by the agent to interact with the world. They can have
many different temporal granularities and abstractions.

Actions can be defined to be

- The instantaneous torques applied
on the gripper

Fiber optic / piezoelectric
sensing + procesasing

Sensorfusion electrorics

Gripper pose measurements ’ The InStantaneous grlpper
Force-torque sensing + processing tranSIat|On, rOta“On, Open|ng

Actuation module

Instantaneous forces applied to
Actuation control th e Obj eCtS

Raseboard electronics

- Short sequences of the above



State estimation: from observations to states

* An observation a.k.a. sensation: the (raw) input of the agent’s
sensors, images, tactile signal, waveforms, etc.

e A state captures whatever information is available to the agent at
step t about its environment. The state can include immediate
“sensations,” highly processed sensations, and structures built up
over time from sequences of sensations, memories etc.



A mapping function from states to actions of the end eftectors.

m(als) = P|A; = a|S; = s

It can be a shallow or deep function mapping,

Max
llllllllllllll

\ [ stride\ g6 | Pooling  pooling
224

or it can be as complicated as involving a tree look-ahead search



Reinforcement learning

Learning policies that maximize a reward function by interacting with the world

reward
R,

action

environment

Note: Rewards can be intrinsic, i.e., generated
by the agent and guided by its curiosity as
opposed to an external task




Closed loop sensing and acting

Imagine an agent that wants to pick up an object and has a policy that predicts
what the actions should be for the next 2 secs ahead. This means, for the next
2 secs we switch off the sensors, and just execute the predicted actions. In the
next second, due to imperfect sensing, the object is about to fall over!

Sensing is always imperfect. Our excellent motor skills are due to continuous
sensing and updating of the actions. So this loop is in fact extremely short in
time.

’_l Agent }
state reward action

St Rt At

E¢Rt+1 ( .
I |St+1| Environment \4




Rewards R,

They are scalar values provided by the environment to the agent that
indicate whether goals have been achieved, e.qg., 1 if goal is achieved, 0
otherwise, or -1 for overtime step the goal is not achieved

 Rewards specify what the agent needs to achieve, not how to achieve it.

* The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as the
maximization of the cumulative sum of a received scalar signal (reward)



- States: Configurations of the playing board (=1020)

« Actions: Moves

- Rewards: [
- win: +1 -
- lose: —1

- else: O




L earning to Drive

- States: Road traffic, weather, time of day
- Actions: steering wheel, break
- Rewards:

-+ +1 reaching goal not over-tired

- -1: honking from surrounding drivers

- -100: collision




Cart Pole

- States: Pole angle and angular velocity
- Actions: Move left right
- Rewards:
- 0 while balancing -

- -1 for imbalance

Single Pole Balancing



Peg In Hole Insertion Task

- States: Joint configurations (7DOF)
- Actions: Torques on joints

- Rewards: Penalize jerky motions, inversely proportional to distance
from target pose




Returns G,

Goal-seeking behavior of an agent can be formalized as the behavior
that seeks maximization of the expected value of the cumulative sum
of (potentially time discounted) rewards, we call it return.

We want to maximize returns.

Gt — Rt+1 + Rt+2 + -+ Ry



Dynamics p a.k.a. the Model

 How the states and rewards change given the actions of the agent

p(s,rl|s,a)=P{S, =sR =r|S,_;=s,A,_, =a}

« Transition function or next step function:

T(s'|s,a) =p(s'|s,a) = P{S, =5'|S,_; =5, tl—a}—Zp(S r|s,a)

relR



The Model

“the idea that we predict the consequences of our motor
commands has emerged as an important theoretical
concept in all aspects of sensorimotor control”

Prediction Precedes Control in Motor Learning

J. Randall Flanagan,'" Philipg Vetter,” Procedures for detaile). Figure 1 shows, for a single
Roland 5. Johsnsaon,' and Denkel M. Wolpert! subjoct, tho hand path {top trace) and the grip (middio)

Predicting the Consequences of Our Own Actions: The Role of
Sensorimotor Context Estimation

Sarah J. Blakemore, Susan J. Goodbody, and Danbel M. Waolpert
Sobal Dapartment of Neurnphysiology, hstiiute of Newralogy, Unherslly College London, Landon WCTN 3806,

Predictive coding in the visual cortex:
a functional interpretation of some
extra-classical receptive-field effects

Rajesh P. N, Rao' and Dana H, Ballard®

slide borrowed from Sergey Levine



Planning

Planning: unrolling (querying) a model forward in time and selecting the
best action sequence that satisfies a specific goal

Plan: a sequence of actions

reward action

A,

The Model




Value Functions are expected Returns

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

VW(S) — *ﬂw[Gt\St — S]

The action-value function g (s, a) is the expected return starting from
state s, taking action a, and then following policy

QW(SyaJ) — ‘EW[Gt‘St — SaAt — CL]




Reinforcement learning-and why we like it

Learning policies that maximize a reward function by interacting with the world

It is considered the most biologically plausible
form of learning

state

It addresses the full problem of making artificial
agents that act in the world end-to-end, so it is
driven by the right loss function

...In contrast to, for example, pixel
labelling




Learning to Act

Learning to map sequences of observations to actions

observation
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observations: inputs from our sensor



L earning to Act

Learning to map sequences of observations to actions, for a
particular goal
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L earning to Act

Learning to map sequences of observations to actions, for a
particular goal
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Learning to Act

Learning to map sequences of observations to actions, for a
particular goal
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Limitations of Learning by Interaction

- Can we think of goal directed behavior learning problems that
cannot be modeled or are not meaningful using the MDP
framework and a trial-and-error Reinforcement learning
framework?

- The agent should have the chance to try (and fail) enough times

 This is impossible if episode takes too long, e.g., reward="obtain a
great Ph.D.”

 This is impossible when safety is a concern: we can’t learn to drive
via reinforcement learning in the real world, failure cannot be
tolerated

Q: what other ways humans use to learn to act in the world?



Value Functions retlect our knowledge about the world

We are social animals and learn from one another: We imitate and we
communicate our value functions to one another through natural
language

“don’t play video games
else your social skills will
be impacted”

Value functions capture the knowledge of the agent regarding how
good is each state for the goal he is trying to achieve.



Other forms of supervision for learning behaviours”

In this course, we will also visit the first two forms of supervision.

1. Learning from rewards
2. Learning from demonstrations

3. Learning from specifications of optimal behavior



Behavior: High Jump

SCISSOrs Fosbury flop

1. Learning from rewardS

Reward: jump as high as possible: It took years for athletes to find the right behavior to achieve this

2. Learning from de mOnStrathnS

It was way easier for athletes to perfection the jump, once someone showed the right general trajectory

3. Leaming from SPECIfications of optimal behavior

For novices, it is much easier to replicate this behavior if additional guidance is provided based on specifications: where
to place the foot, how to time yourself etc.



RL Versus ML

How learning to act is different than other machine learning paradigms, e.g.,
object detection?




RL Versus ML

How learning to act is different than other machine learning
paradigms?
» The agent’s actions affect the data she will receive in the future



observation action

A,




L earning to Act

How learning behaviors is different than other
machine learning paradigms?

* The agent’s actions affect the data she will

receive in the future:

- The data the agent receives are sequential in nature, not i.i.d.
(independent and identically distributed)

- Bad policies will never lead you to collect better data.



L earning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
In the future

2) The reward (whether the goal of the behavior is

achieved) is far in the future:

= Temporal credit assignment: which actions were important and which were
not, is hard to know



L earning to Act

How learning behaviors is different than other machine learning

paradigms?

1) The agent’s actions affect the data she will receive in the future

2) The reward (whether the goal of the behavior is achieved) is far in
the future:

3) Actions take time to carry out in the real world, we want to
minimize the amount of interaction



L earning to Act

How learning behaviors is different than other machine learning

paradigms?

1) The agent’s actions affect the data she will receive in the future

2) The reward (whether the goal of the behavior is achieved) is far in
the future:

3) Actions take time to carry out in the real world, we want to
minimize the amount of interaction

Reminds of active learning! we want to ask humans for labels and we want to

choose the queries carefully to minimize human involvement
A lecture by Marc Toussaint that shows how those problems are interrelated




L earning to Act

How learning behaviors is different than other machine learning

paradigms?

1) The agent’s actions affect the data she will receive in the future

2) The reward (whether the goal of the behavior is achieved) is far in
the future:

3) Actions take time to carry out in the real world, we want to
minimize the amount of interaction

1) We can use simulated experience and tackle the sim2real
transfer



L earning to Act

How learning behaviors is different than other machine learning

paradigms?

1) The agent’s actions affect the data she will receive in the future

2) The reward (whether the goal of the behavior is achieved) is far in
the future:

3) Actions take time to carry out in the real world, and thus this may
limit the amount of experience

- We can use simulated experience and tackle the sim2real
transfer

- We can have robots working 24/7



Supersizing Self-Supervision

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot
Hours, Pinto and Gupta




L earning to Act

How learning behaviors is different than other machine learning
paradigms?
1) The agent’s actions affect the data she will receive in the future

2) The reward (whether the goal of the behavior is achieved) is far in
the future:

3) Actions take time to carry out in the real world, and thus this may
limit the amount of experience

- We can use simulated experience and tackle the sim2real
transfer

- We can have robots working 24/7
» We can buy many robots



Google’s Robot Farm
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Successes so far



Deep Blue

Q1: Is this a machine learning achievement?

Q2: What is machine learning / artificial intelligence?

A2: The discipline that develops agents that learn and improve with experience (Tom Mitchell)
A1: No, it is not. Brute-force manual development of a board evaluation function



Backgammon




Backgammon

How is it different than chess?



Backgammon

High branching factor due to dice roll prohibits brute force
deep searches such as in chess




Neuro-Gammon

» Developed by Gerald Tesauro in
1989 in IBM’s research center

 Trained to mimic expert
demonstrations using
supervised learning

* Achieved intermediate-level
human player



TD-Gammon Neuro Gammon

« Developed by Gerald Tesauro in » Developed by Gerald Tesauro in
1992 in IBM’s research center 1989 In IBM’s research center
A neural network that trains itself to  Trained to mimic expert
be an evaluation function by demonstrations using
playing against itself starting from supervised learning
random weights - Achieved intermediate-level
* Achieved performance close to top human player

human players of its time



Evaluation function

Action selection
by a shallow search

bbb dbdbdbdt



Self-Driving Cars
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Selt-Driving Cars

/lt
30 Output
Units
Policy network 7T:
mapping of
observations to actions
30x32 Sensor
Input Retina
C)t

1989

ALVINN, an autonomous land vehicle in a neural
network

Dean A. Pomerleau
Carnegie Mellon University



Self-Driving Cars

« ALVINN video

* behavior cloning- learning from the human driver
 data augmentation to deal with compounding errors

ALVINN (Autonomous Land Vehicle In a Neural Network), Efficient Training of Artificial Neural Networks for Autonomous Navigation,
Pomerleau 1991


https://www.youtube.com/watch?v=ilP4aPDTBPE

Selt-Driving Cars

Videocore
HDMI

. LPCM
Videc . 1080p Z24HZ

A

 Currently: much better computer vision front end: object detection,
trajectory forecasting etc.

« Open problem: learning reward functions from humans on how to
behave on intersections, crowds, traffic jams, etc. .




Deep Mind 2014+

Deep Q learning



Montezuma’s Revenge with Go-Explore

ldea: arXiv your successes


https://www.youtube.com/watch?time_continue=59&v=L_E3w_gHBOY




AlphaGo

 Monte Carlo Tree Search with neural nets
+ expert demonstrations
- self play



AlphaGo

Policy net trained to
mimic expert moves, and

Policy network Value network _ _
then fine-tuned using self-
p.,, (@ls) v (5) play

e




AlphaGo

Policy network Value network

P, (als)

Policy net trained to
mimic expert moves, and
then fine-tuned using self-
play

Value network trained
with regression to predict
the outcome, using self
play data of the best

policy.



AlphaGo

Policy network Value network

P, (als)

... e X

Policy net trained to
mimic expert moves, and
then fine-tuned using self-
play

Value network trained
with regression to predict
the outcome, using self
play data of the best

policy.

At test time, policy and
value nets guide a MCTS
to select stronger moves
by deep look ahead.



Tensor Processing Unit from Google



AlphaGoZero

* No human supervision!
« MCTS to select great moves during training and testing!



AlphaGoZero
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AlphaGoZero
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AlphaGoZero

Elo rating

5,000 1
4,000 4
3,000 A
2,000 4

1,000 1

-1,000 A1
-2,000 1

-3,000 1

-4,000~

== Reinfcrcement learning
- Supervised learing
=== AlphaGo Lee

T L) 1 Ll 1 T

20 30 40 50 60 70
Training time (h)

Prediction accuracy
on prfessional moves (%)

701

60 1

50 4

40 4

30 1

20 1

104

== Reinforcement learning
== Supervised learning

L I ] | L] L]

20 30 40 50 60 70
Training time (h)

MSE of professional

game outcomes

0.35 4

0.30 4

0.25 4

0.20 4

0154

- Reinforcement learning
== Suparvised learning

0

L L 1 1

10 20 30 40 50
Training time (h)

Ll L

60 70



Go Versus the real world

How the world of Alpha Go is different than the real world?

1. Known environment (known entities and dynamics) Vs
Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

3. Discrete Vs Continuous actions

. One goal Vs many goals

5. Rewards automatic VS rewards need themselves to
be detected

N



Alpha Go Versus the real world

How the world of Alpha Go is different than the real
world?

1. Known environment (known entities and dynamics)
Vs Unknown environment (unknown entities and

dynamics).
2. Need for behaviors to transfer across environmental
variations since the real world is very diverse



Go Versus the real world

How the world of Alpha Go is different than the real

world?

1. Known environment (known entities and dynamics)
Vs Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

State estimation: To be able to act you need first to be
able to see, detect the objects that you interact with,
detect whether you achieved your goal



State estimation

Most works are between two extremes:

- Assuming the world model known (object locations,
shapes, physical properties obtain via AR tags or manual
tuning), they use planners to search for the action
sequence to achieve a desired goal.

Rearrangement Planning via Heuristic Search, Jennifer E. King, Siddhartha S. Srinivasa



State estimation

Most works are between two extremes:

- Assuming the world model known (object locations,
shapes, physical properties obtain via AR tags or manual

tuning), they use planners to search for the action
sequence to achieve a desired goal.

* Do not attempt to detect any objects and learn to map
RGB images directly to actions
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End-to-End Learning for Self-Driving Cars, NVIDIA



Go Versus the real world

How the world of Go is different than the real world?

3. Discrete Vs Continuous actions

4. One goal Vs many goals

5. Rewards automatic VS rewards need themselves
to be detected



Go Versus the real world

How the world of Go is different than the real world?

3. Discrete Vs Continuous actions (curriculum learning,
progressively add degrees of freedom)

4. One goal Vs many goals

5. Rewards automatic VS rewards need themselves to be
detected



Go Versus the real world

How the world of Go is different than the real world?

3. Discrete Vs Continuous actions (curriculum learning,
progressively add degrees of freedom)

4. One goal Vs many goals (generalized policies
parametrized by the goal, Hindsight Experience Replay)

5. Rewards automatic VS rewards need themselves to be
detected



Alpha Go Versus the real world

How the world of Go is different than the real world?

3. Discrete Vs Continuous actions (curriculum learning,
progressively add degrees of freedom)

4. One goal Vs many goals (generalized policies
parametrized by the goal, Hindsight Experience Replay)

5. Rewards automatic VS rewards need themselves to be
detected (learning perceptual rewards, use Computer Vision

to detect success)



What we will cover In this course
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Al's paradox



Go Versus the real world

Beating the world champion is easier than moving the Go stones.



Al's paradox

Hans Moravec

"It Is comparatively easy to make computers exhibit adult
level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skKills of a one-
year-old when it comes to perception and mobility”



Al's paradox

Marvin Minsky

"we're more aware of simple processes that don't work well
than of complex ones that work flawlessly"



Evolutionary explanation

Hans Moravec

We should expect the difficulty of reverse-engineering any
human skill to be roughly proportional to the amount of time that
Skill has been evolving in animals.

The oldest human skills are largely unconscious and so appear
to us to be effortless.

Therefore, we should expect skKills that appear effortless to be
difficult to reverse-engineer, but skills that require effort may not
necessarily be difficult to engineer at all.




What is Al?

intelligence was "best characterized as the
things that highly educated male scientists

found challenging”, such as chess, symbolic
integration,

proving mathematical theorems and solving
complicated word algebra problems.

Rodney Brooks


https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

What is Al?

intelligence was "best characterized as the
things that highly educated male scientists
found challenging”, such as chess, symbolic o
integration’ Rodney Brooks
proving mathematical theorems and solving

complicated word algebra problems.

"The things that children of four or five

years could do effortlessly, such as visually

distinguishing between a coffee cup and a

chair, or walking around on two legs, or

finding their way from their bedroom to the

living room were not thought of as activities

requiring intelligence.



https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

What is Al?

intelligence was "best characterized as the
things that highly educated male scientists
found challenging”, such as chess, symbolic o
integration Rodney Brooks
proving mathemat/ca/ theorems and solving

complicl,

The thill No cognition. Just sensing and action

years could do effortlessly, such as visually

distinguishing between a coffee cup and a

chair, or walking around on two legs, or

finding their way from their bedroom to the

living room were not thought of as activities

requiring intelligence.


https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

L earning from Babies

e Be multi-modal
* Be incremental
* Be physical

e Explore

* Be social

* [ earn a language

The Development of Embodied Cognition: Six Lessons from Babies
Linda Smith, Michael Gasser



