Carnegie Mellon
School of Computer Science

Markov Decision Processes

Lecture 3, CMU 10-403

Katerina Fragkiadaki

Supervision for learning goal-seeking behaviors

1. Learning from expert demonstrations (last lecture)

Instructive feedback: the expert directly suggests correct actions, e.g., your
(oracle) advisor directly suggests to you ideas that are worth pursuing

2. Learning from rewards while interacting with the environment
Evaluative feedback: the environment provides signal whether actions are
good or bad. E.g., your advisor tells you if your research ideas are worth
pursuing

Note: Evaluative feedback depends on the current policy the agent has: if you
never suggest good ideas, you will never have the chance to know they are
worthwhile. Instructive feedback is independent of the agent’s policy.

Reinforcement learning

Learning behaviours from rewards while interacting with the environment

reward

action
1'11:

environment
Agent and environment interact at discrete time steps: t=10,1,2,3,...

Agent observes state at step t: S, €S
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: S, , € 8§t

r+1

@ .RHIKS\

Rt+2
NST ARG

L; +

A concrete example: Playing Tetris

» states: the board configuration and the falling piece
(lots of states ~ 27200)

e actions: translations and rotations of the piece

e rewards: score of the game; how many lines are
cancelled

e Qur goalisto learn a policy (mapping from states to
actions) that maximizes the expected returns, i.e., the
score of the game

R TR

 IF the state space was small, we could have a table, Bl = ot == "‘:% i
every row would correspond to a state, and bookkeep Uil | EERad
the best action for each state. Tabular methods-> no Rdmanid WE e
sharing of information across states. il ** 3 “, — i |
T .

M oL PR PR PR PR PR RS S

A concrete example: Playing tetris

» states: the board configuration and the falling piece
(lots of states ~ 27200)

e actions: translations and rotations of the piece

e rewards: score of the game; how many lines are
cancelled

e Qur goalisto learn a policy (mapping from states to
actions) that maximizes the expected returns, i.e., the
score of the game

* We cannot do that thus we will use approximation:

&

n(als,0)

A « ¥ -
. - - O
O - (- -

What is the input to the policy network™

=
.

n(als,0)

diRdRaEaananaanEe
o-

An encoding for the state. Two choices:

1.The engineer will manually define a set of features to capture the
state (board configuration). Then the model will just map those
features (e.g., Bertsekas features) to a distribution over actions, e.g.,
learning a linear model.

2.The model will discover the features (representation) by playing the
game. Minh et al. 2014 first showed that this learning to play directly
from pixels is possible, of course it requires more interactions.

Q: How can we learn the weights”?

n(als,0)

A « -
5 - -
O (o] O

max J(0) = max [R(T) | 75, /40(50)]

0 -

No information regarding the structure of the reward

> E |R(@)]

Black box optimization

Estimate the returns
of those trajectories

run the policy and
sample trajectories

Sample policy
parameters \theta

- Sample policy parameters, sample trajectories, evaluate the trajectories,
keep the parameters that gave the largest improvement, repeat

- Black-box optimization: No information regarding the structure of the reward,
that it is additive over states, that states are interconnected in a particular

way, etc..

Evolutionary methods

mglx J(0) = In;lX = [R(T) | 75, //lo(So)]

General algorithm:
Initialize a population of parameter vectors (genotypes)
1. Make random perturbations (mutations) to each parameter
vector
2. Evaluate the perturbed parameter vector (fithess)
3. Keep the perturbed vector if the result improves (selection)
4.GOTO 1

Biologically plausible...

Cross-entropy method

Parameters to be sampled from a multivariate Gaussian with diagonal
covariance. We will evolve this Gaussian towards parameter samples
that have highest fithess

Input: parameter space €, number of parameter vectors n, proportion p < 1, noise 7
Initialize: Sel the parameler ;o = 0 and o° = 1007 ([is the identily malrix)
fork —1.2....do
Generate a random sample of n paramecter veetors {6, F—y ~ AN (g, o1)
For each @;, play 7, games and calculate the average number of rows removed (score) by the controller

Scleet | pn] parameters with the highest score €1, ..., 6,
Update pand o2 p(3) = |, Y 60(5) and () = |, SV 1050) — p(G)])* +

Works embarrassingly well in low-dimensions, e.g., in Gabillon et al.
we estimate the weight for the 22 Bertsekas features.

In a later lecture we will see how to use evolutionary methods to
search over high dimensional neural network policies....

Covariance Matrix Adaptation

We can also consider a full covariance matrix

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

0
o
0 © °
ox ©
o
0
0

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

 Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Covariance Matrix Adaptation

« Sample
e Select elites

L » Update mean
» Update covariance

e |terate

Covariance Matrix Adaptation

« Sample

» Select elites

« Update mean

» Update covariance
* Iterate

Black box optimization

Estimate the returns
of those trajectories

run the policy and
sample trajectories

—

Sample policy
parameters \theta

* Q: In such black-box optimization, would knowledge of the model 9dynamics
of the domain) help you?

Q: How can we learn the weights”?

n(als,0)

A «) B
O O Of0

- Use Markov Design Process (MDP) formulation!

- Intuitively, the world is structured, it is comprised of states, reward is
decomposed over states, states transition to one another with some
transition probabilities (dynamics), etc..

Reinforcement learning

Learning behaviours from rewards while interacting with the environment

reward

action
1'11:

environment
Agent and environment interact at discrete time steps: t=10,1,2,3,...

Agent observes state at step t: S, €S
produces action at step 7 : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: S, , € 8§t

r+1

@ .RHIKS\

Rt+2
NST ARG

L; +

Finite Markov Decision Process

A Finite Markov Decision Process is a tuple (S, A,T,r,)
S is a finite set of states
- A is a finite set of actions

* p is one step dynamics function
* 7" is a reward function

7 is a discount factor v € [0, 1]

Dynamics a.k.a. the Model

 How the states and rewards change given the actions of the agent

p(s,rls,a)=Pr{S, . =s.R_ =r|S=5A =a}

o State transition function:

T(s'|s,a) =p(s’|s,a) =Pr{S, ., =5'|S,=5,A, =a} = Zp(s’,rls,a)

reR

Model-free VS model-based RL

* An estimated (learned) model is never perfect.

~All models are wrong but some models are useful”

George Box

 Due to model error model-free methods often achieve better policies
though are more time consuming. Later in the course, we will examine
use of (inaccurate) learned models and ways not to hinder the final
policy while still accelerating learning

Markovian States

« A state captures whatever information is available to the agent at
step t about its environment.

« The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations, memories etc.

« A state should summarize past sensations so as to retain all
“essential” information, i.e., it should have the Markov Property:

IP)[}%t—l—l =T, St—l—l — S/|S()7AO7 R17 ceey St—laAt—la Rt7 St7 At] — IPD[}zt—l—l =T, St—l—l — S,|St7At]
forall s € S,r € R, and all histories

« We should be able to throw away the history once state is known

Actions

They are used by the agent to interact with the world. They can have
many different temporal granularities and abstractions.

Actions can be defined to be

- The instantaneous torques applied
on the gripper

Fiber optic / piezoelectric
sensing + procesasing

Sensorfusion electrorics

Gripper pose measurements ’ The InStantaneous grlpper
Force-torque sensing + processing tranSIat|On, rOta“On, Open|ng

Actuation module

Instantaneous forces applied to
Actuation control th e Obj eCtS

Raseboard electronics

- Short sequences of the above

T'he agent learns a Policy

Definition: A policy is a distribution over actions given states,
w(als) =Pr(A,=alSs, =s),Vt

A policy fully defines the behavior of an agent
The policy is stationary (time-independent)

During learning, the agent changes his policy as a result of
experience

Special case: deterministic policies:

n(s) = the action taken with prob =1 when S, = s

Definitions

Agent: an entity that is equipped with sensors, in order to sense the
environment, and end-effectors in order to act in the environment, and
goals that he wants to achieve

Policy: a mapping function from observations (sensations, inputs of the
sensors) to actions of the end effectors.

Model: the mapping function from states/observations and actions to future
states/observations

Planning: unrolling a model forward in time and selecting the best action
sequence that satisfies a specific goal

Plan: a sequence of actions

The recycling robot MDP

- At each step, robot has to decide whether it should (1) actively search for

a can, (2) wait for someone to bring it a can, or (3) go to home base and
recharge.

-+ Searching is better but runs down the battery; if runs out of power while
searching, has to be rescued (which is bad).

- Decisions made on basis of current energy level: high, low.

- Reward = number of cans collected

The recycling robot MDP

S = {high,low} r

search

A(high) = {search, wa it} r._.. = expected no. of cans while waiting

= expected no. of cans while searching

I,

search

>"/;/vait

HA(low) = {search, wait, recharge}

jl,rwait jL—B) -3

ﬁ, T"search
search

1, 0 recharge
o low

search

1 Twait
a’ /’nsearch]‘_a 5 TsearCh ’

Q: what the robot will do does it depend on the number of cans he has
collected thus far?

Rewards reflect goals

Rewards are scalar values provided by the environment to the agent that
iIndicate whether goals have been achieved, e.g., 1 if goal is achieved, 0
otherwise, or -1 for overtime step the goal is not achieved

» (Goals specify what the agent needs to achieve, not how to achieve it.

* The simplest and cheapest form of supervision, and surprisingly general:
All of what we mean by goals and purposes can be well thought of as the
maximization of the cumulative sum of a received scalar signal (reward)

r(s,a) =E[R |5, =s,A, =a] = Z er(s’,rls, a)
reR s'eS

» (Goal seeking behaviour, achieving purposes and expectations can be formulated
mathematically as maximizing expected cumulative sum of scalar values...

Returns G, - episodic tasks

Episodic tasks: interaction breaks naturally into episodes, e.g., plays
of a game, trips through a maze.

There iIs no memory across episodes.

In episodic tasks, we almost always use simple total reward.

G, = Rt+1 T Rt+2 + -+ Ry

where T is a final time step at which a terminal state is reached, ending
an episode.

Returns G, - Continuing tasks

Continuing tasks: interaction does not have natural episodes, but just
goes on and on...just like real life

In continuing tasks, we often use simple total discounted reward:

Gt = Rip1 +7Repo + ... = ZVthJrkﬂ
k=0

Why temporal discounting? A sequence of interactions based on which the
reward will be judged at the end is called episode. Episodes can have
finite or infinite length. For infinite length, the undercounted sum blows up,
thus we add discounting y < 1 to prevent this, and treat both cases in a
similar manner.

Mountain car

Get to the top of the hill
as quickly as possible.

reward = —1 for each step where not at top of hill

= return = - number of steps before reaching top of hill

Return 1s maximized by minimizing
number of steps to reach the top of the hill.

Value Functions are expected Returns

Definition: The state-value function v.(s) of an MDP is the expected
return starting from state s, and then following policy ™

vi(s) = E |G| Sy = 5]

The action-value function qx (s, a) is the expected return starting from
state s, taking action a, and then following policy

g (s,a) = E |G| S: = s, Ay = a

Optimal Value Functions are Best Achievable Expected

Returns

* Definition: The optimal state-value function V*(S) IS the maximum
value function over all policies

Vi(s) = Max Vr (s)

» The optimal action-value function q.(s, a) is the maximum action-
value function over all policies

g« (S,a) = max q,(s,a)

Value Functions

Value functions measure the goodness of a particular state or state/action
pair: how good is for the agent to be in a particular state or execute a
particular action at a particular state, for a given policy.

Optimal value functions measure the best possible goodness of states or
state/action pairs under all possible policies.

state | action
_______________________________ values | values
prediction V g

control V>|< q*

Solving MDPs

 Prediction: Given an MDP (S, .A, T, r,v) and a policy
m(als) = PlA; = alS; = s
find the state and action value functions.

« Optimal control: given an MDP (S, A, T, r,), find the optimal
policy (aka the planning problem). Compare with the learning
problem with missing information about rewards/dynamics.

Why Value Functions are useful

Value functions capture the knowledge of the agent regarding how
good is each state for the goal he is trying to achieve.

We communicate our value functions to one another.

“don’t play video games else your
social skills will be impacted”

“...knowledge is represented as a large number of approximate value functions
learned in parallel...”

Horde: A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor Interaction, Sutton et al.

Why Value Functions are useful

An optimal policy can be found by maximizing over g.(s,a):

@ls) {1, if a = argmax_ . q *(s,a)
T«\(ad|S) =
0, otherwise

An optimal policy can be found from v« (s) and the model dynamics
using one step look ahead:

1, if a =argmax < 2., pGs,rls,a)r+ yw(s’)))
0, otherwise

w(als) =

- If we know g*(s,a) we immediately have the optimal policy, we do not need
the dynamics!

- If we know v*(s), we need the dynamics to do one step lookahead, to
choose the optical action

Value Functions are expected Returns

- The value of a state, given a policy:
ve(s) =E{G; | St = s, At.co~7} Vr S — R
- The value of a state-action pair, given a policy:
qr(s,a) =E{G¢ | St = s, Ay = a, At11.00~T} gr : S XA >R
- The optimal value of a state:
Ve(S) = mngw(s) Ve : & = R
- The optimal value of a state-action pair:
q*(s,a,):mgxqﬁ(s,a) g« : S XA =R
- Optimal policy: . is an optimal policy if and only if
m«(als) > 0 only where ¢.(s,a) = max q+(s,b) Vse€S

- in other words, . is optimal iff it is greedy wrt g.

Q: What are the expectations over (what is stochastic)?

Bellman Expectation Equation

Gt = Rt+1 + }/ Rt+2 t /}/ 2I€t+3 T }/ 3I€t+4 L
=Rt+1+y(Rt+2+th+3+y2R L)

t+4

= Rt+1 T y Gt+1

Bellman Expectation Equation

v°’R L

t+3 t+4

+yR_,+7°R L)

t+4

Gt= t+1
=K, +V(R

r+2

+YR ., +7°R

=R, +7G,,
So by taking expectations:
v.(s) = EIG,|S, =s] =E_[R | +yv, (S,)|S, =]
q,(s,a) =E_IG,|S,=s,A, =a]l =E_ IR 1 +79,(S: 1A D]S, = 5,4, = 5]

Or, without the expectation operator:

= wlals) Y p(ss 715, 0) [+ yue(s))
q,(s,a) = Zp(s, r'|s, a)<r + }/Z r(a’| s")q, (s, a’))

This is a set of linear equations, one for each state.
The value function for &t Is its unique solution.

Back-up diagram for value functions

The probabilities of landing on each of the leaves sum to 1

Gr(S,0) <4 s, a

\\,\ qr(s',a") < 1 d ¢ ° / \

UW(S) = Z 7T(a]8) Zp(s/, ?“|S, CL) {7‘ -+ WUW(S’)} q,(s,a) = Zp(s’, r|s, a)(r + yz n(a’| s’)qﬂ(s’,a’)>

/

Relating state and state/action value functions

va(s) = 3 wlals)an(s,a)

ac A

Bellman Optimality Equations for Vs

The value of a state under an optimal policy must equal the expected return
for the best action from that state

For the Bellman
expectation

equations we
\ / \ sum over all the

r/ \ /

, b \Q leaves, here we
' choose only the
best action
branch!

vi($) = max 2 p(s’,r|s,a)(r + yv«(s’))
acd o

v* is the unique solution of this system of nonlinear equations

Bellman Optimality Equations for g«

Q*(Sa Cl) — |E[Rl‘+1 + y maélf Q*(SH-la a,) | St = 3, At — a]
a'e

= Z p(s’,r|s,a)[r +y max g«(s’, a’)
g

s'eS,r

g” is the unique solution of this system of nonlinear equations

Relating Optimal State and Action Value Functions

max

Vi(S) = max q.(s,a)
a

Relating Optimal State and Action Value Functions

qu(s.@) =) p(s's r| s, @)(r + yvu(s))

Gridworld-value function

- Actions: north, south, east, west; deterministic.
If would take agent off the grid: no move but reward = —1

- Other actions produce reward = 0, except actions that move agent
out of special states A and B as shown.

8.83 =10+ 0.9*(—1.3)

\ | + 1 slaol 231005 State-value function

440) B’ <—I—> 0.10.7|0.7[0.4]-04 fOr equiprobable
-1.0/-0.4/-0.4|-0.6/-1.2 random policy;

1.9-1.3-1.214-20) v = (.9

Actions
A"(

(@) (b)

Gridworld-value function

- Actions: north, south, east, west; deterministic.
If would take agent off the grid: no move but reward = —1

- Other actions produce reward = 0, except actions that move agent
out of special states A and B as shown.

4.43 = 0.25* (0+0.9 * 5.3+

0+0.9 * 2.3+
0+0.9 * 8.8+
—140.9%4.4)

Al |B 3.3/8.8/4.4/5.3|1.5

\ | + 1 slaol 231005 State-value function
440) B’ <—I—> 0.10.7|0.7[0.4]-04 fOr equiprobable
-1.0/-0.4/-0.4|-0.6/-1.2 random policy;

1913121420 vy =(0.9

(@) (b)

Actions
A"(

Gridworld - optimal value function

Any policy that is greedy with respect to v. is an optimal policy.

Therefore, given V«, one-step-ahead search produces the
long-term optimal actions.

244 =10+ 0.9 *(16.0)

Al |By 22.0/24.4/22.0[19.4{17.5 — || ||
+5 19.8/22.019.8(17.8/16.0 R P R

0| | B 17.8(19.817.8/16.0/ 14.4 L A O
16.0[17.8/16.0/14.4/ 13.0 L P o O O

A'f 14.4(16.0{14.4/13.0{11.7 Lt

a) gridworld b) Vi c)

=
+*

Gridworld - optimal value function

Any policy that is greedy with respect to v. is an optimal policy.

Therefore, given V«, one-step-ahead search produces the

long-term optimal actions.
22.0 = max(0+0.9* 194,

0+0.9 *19.8,
0+0.9*24.4,
—140.9*22.0)
A\ B\ 22.0/24.4/22.0[19.4{17.5 — <—I—> 4 <—I—> «—
+5 19.8/22.0{19.8/17.8/16.0 Lt | J|e— |«
A0l | B! 17.8/19.817.8/16.014.4 L O s
16.0/17.8]16.0{14.4/13.0 L P o O O
A"f 14.4/16.0114.413.0/11.7 Lt
a) gridworld b) Vi c) T,

Optimal Policy

Define a partial ordering over policies

7>7 i vi(s) > ve(s),Vs

Theorem: For any Markov Decision Process

- There exists an optimal policy 7T« that is better than or equal to
all other policies, Ty > T,V

- All optimal policies achieve the optimal value function, v, (S) = v« (s)

- All optimal policies achieve the optimal action-value function,
Gr, (8,0) = qi(5,a)

Solving the Bellman Equations

MDPs to MRPS

MDP under a fixed policy becomes Markov Reward Process (MRP)

= Z m(als) (T(S,a) Y Z T(Slsaa)vw(sl))

acA s'€S
= w(als)r(s,a) +v Y w(als) Y T(s|s,a)vx(s)
acA acA s'eS
= T + 7y Z TW V7T
s’'eS

where r7 = > cam(als)r(s,a) and T7, = >_,c 4 m(als)T(s[s, a)

The Bellman expectation equation can be written concisely using the
induced MRP as

Ve =1" +~T"v,
with direct solution
Ve = (I —~T™) " 1p"

of complexity O(N?)
|
here I'™ is an ISIXISI matrix, whose (j,k) entry gives P(s, | s;, a=r(s))
r ™ is an ISIl-dim vector whose j* entry gives EJr | S, a=TUS))]

v_ is an ISI-dim vector whose jh entry gives Vi(s)

where ISl Is the number of distinct states

iterative Methods: Recall the Bellman Equation

ve(s) =) mals) Y p(s',r]s,a)(r + yvy(s)

(\

v(s) = Y m(al | r(s.a)+7) ps'] s, a)y(s’)

\ /

terative Methods: Backup Operation

Given an expected value function at iteration k, we back up the
expected value function at iteration k+1:

V() = Y mals)| r(s.a) + 7 Y p(s’| s, a)vy(s”)

terative Methods: Sweep

A sweep consists of applying the backup operation v.— v/ for all the
states in §

Applying the back up operator iteratively
V0] — V1] — V2] — ...V

A full policy evaluation backup:

Vike1)(8) = Z w(als)| r(s,a) + }/Zp(s’l s, a)vi;(s) |, Vs

A Small-Grid World

4 |5 |6 |7 R = -1
on all transitions

actions

* An undiscounted episodic task

 Nonterminal states: 1, 2, ..., 14

« Terminal state: one, shown in shaded square

* Actions that would take the agent off the grid leave the state unchanged

* Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 000 01 0.0
0.0 .0 0.0 0.0

k=0
O (O 0] O
0.0 G0 0.0 00
Policy 7T, an equiprobable random action
k=1
1 2 3
‘ 4 |5 |6 |7 k=2
8 9 10 |11
actions 12 hs |a
k=3
* An undiscounted episodic task
* Nonterminal states: 1, 2, ..., 14
« Terminal state: one, shown in shaded square 10

* Actions that would take the agent off the grid leave the state unchanged

 Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 .0 0] 0.0
L= 0.0 0f 0] 0.0
O (O 0] O
0.0 G0 0.0 00
Policy 7T, an equiprobable random action
00-1.0{-1.0(-1.0
k=1 -LOf-1.00-1.00-1.0
1.O[-1.0)-1.0(-1.0
-1.0)-1.0-1.0] 0.0
1 2 3
‘ 4 |5 |6 |7 k=2
8 9 10 |11
actions 12 hs |a
k=3
* An undiscounted episodic task
* Nonterminal states: 1, 2, ..., 14
« Terminal state: one, shown in shaded square 10

* Actions that would take the agent off the grid leave the state unchanged

 Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 .0 0] 0.0
0.0 00001 0.0
04 O o) O
0.0 G0 0.0 00

Policy 7T, an equiprobable random action

ool-1.00-1.0]-1.0
-1.0-1.00-1.0-1.0

k=1

1.O[-1.0[-1.0/-1.0

-1.0]-1.00-1.0] 0.0

1 o |3 0.0[-1.7]-2.0[-2.0
-1.7-2.0(-2.0]-2.0
‘P—%—" 4 |5 16 17 k=2 20[-20[-20]-1.7
8 |9 |10 [20[-2.0[-17 00
actions 12 hs |a
k=3

* An undiscounted episodic task

* Nonterminal states: 1, 2, ..., 14

« Terminal state: one, shown in shaded square 10
* Actions that would take the agent off the grid leave the state unchanged

 Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 .0 0] 0.0
L= 0.0 0f 0] 0.0
O (O 0] O
0.0 G0 0.0 00
Policy 7T, an equiprobable random action
00-1.0{-1.0(-1.0
k=1 -LOf-1.00-1.00-1.0
1.O[-1.0)-1.0(-1.0
-1.0)-1.0-1.0] 0.0
1 2 3 0.0|-1.7(-2.0]-2.0
k=2 -1.7(-2.0(-2.00-2.0
4 > 6 ! 20|-200-20]-1.7
8 9 10 |11 2.00-2.00-1.71 0.0
actions 12 hs |a
DO|-2.4-29]-3.0
=3 -2.4|-2.9(-3.0]-2.9
* An undiscounted episodic task 2.9]-3.0/-29|-24
300 -2.91-2.4] 040
* Nonterminal states: 1, 2, ..., 14
« Terminal state: one, shown in shaded square 10

* Actions that would take the agent off the grid leave the state unchanged

 Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 .0 0] 0.0
L= 0.0 00001 0.0
04 O o) O
0.0 G0 0.0 00

Policy 7T, an equiprobable random action
0.0-1.0[-1.0-1.0
k=1 -1.0-1.0[-1.00-1.0
1.01-1.01-1.0]-1.0
-10f-1.0(-1.00 0.0
1 2 3 0.0[-1.7(-2.0(-2.0
k=2 -1.7]-2.0(-2.0/-2.0
4 2 © ! 20[-2.01-2.0]-1.7
8 9 10 |11 -2.0[-2.00-1.7] 0.0

actions 12 ha lia
DO|-2.4[-29(-3.0
k=3 -2.4(-2.9(-3.0/-2.9
* An undiscounted episodic task 2.9]-3.0[-2.9|-2.4
300 -2.91-2.4] 040
* Nonterminal states: 1, 2, ..., 14

. . D.0]-6.1[-8.4[-9.0
» Terminal state: one, shown in shaded square ot 7l al 84
k=10 A1 REEHI LU Lk
. . B4-8.4-7.7]-6.1
* Actions that would take the agent off the grid leave the state unchanged ool salotloo

 Reward is -1 until the terminal state is reached

iterative Policy Evaluation

V[k] for the
random policy

0.0 .0 0] 0.0
L= 0.0 00001 0.0
O (O 0] O
0.0 G0 0.0 00
Policy 7T, an equiprobable random action
00-1.0{-1.0(-1.0
k=1 -LOf-1.00-1.00-1.0
1.O[-1.0)-1.0(-1.0
-10f-1.0(-1.00 0.0
1 2 3 0.0]-1.7-2.0]-2.0
k=2 I.7]-2.0]-2.0(-2.0
4 : 6 7 2 2.00-2.0(-1.7
8 9 10 |11 0]-2.0(-1.7] 0.0
actions 12 ha lia
DO|-2.4[-29(-3.0
k=3 -2.4(-2.9(-3.0/-2.9
* An undiscounted episodic task 2.9]-3.0[-2.9|-2.4
300 -2.91-2.4] 040
* Nonterminal states: 1, 2, ..., 14
. . D.0]-6.1[-8.4[-9.0
» Terminal state: one, shown in shaded square ot 7l al 84
k=10 A1 REEHI LU Lk
. . B4-8.4-7.7]-6.1
* Actions that would take the agent off the grid leave the state unchanged ool salotloo
* Reward is -1 until the terminal state is reached
0.0[-14.[-20.[-22.
L= 00 I4.[-18.]-20.]-20
200[-20.-18.|-14.
22.[-20.(-14.| OO

iterative Policy Evaluation

Input 7, the policy to be evaluated
Initialize an array V(s) =0, for all s € 8§
Repeat
A 0
For each s € 3:
v < V(s)
V(s) 3, wlals) Sy, vl s, @) [1 + 7V ()]
A +— max(A, |[v — (3)|)
until A < @ (a small positive number)
Output V ~ v,

Contraction Mapping Theorem

An operator F' on a normed vector space X is a 7Y-contraction,
for 0 < v < 1, provided for all z,y € X

|T(x) =TIl <~z =yl

Theorem (Contraction mapping)
For a”Y-contraction £'in a complete normed vector space X

F’ converges to a unique fixed point in X
at a linear convergence rate Y

Remark. In general we only need metric (vs normed) space

Value Function Space

« Consider the vector space V' over value functions

» There are |S| dimensions

» Each point in this space fully specifies a value function v(s)
* Bellman backup brings value functions closer in this space

* And therefore the backup must converge to a unique solution

Value Function co-Norm

« We will measure distance between state-value functions U and v
by the ©O-norm

* I.e. the largest difference between state values,

[u—vloo = max|u(s) —v(s)|

Bellman Expectation Backup is a Contraction

* Define the Bellman expectation backup operator
FT(v)=r"+~T"v

e This operator is a “Y-contraction, i.e. it makes value functions closer
by at least 7,

1 F*(U) = F* (V)|

(r"+yT"u) — (r" + yT"™V)||
yT™(U — V)| &

yT"(A[[(U = V[l
y(T"DI||U — V[]l

Y1 U — V|l

=7llu— V|4

IA

