
Markov Decision Processes

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Lecture 3, CMU 10-403

Katerina Fragkiadaki 



Supervision for learning goal-seeking behaviors

1. Learning from expert demonstrations (last lecture) 
Instructive feedback: the expert directly suggests correct actions, e.g., your 
(oracle) advisor directly suggests to you ideas that are worth pursuing

2. Learning from rewards while interacting with the environment
Evaluative feedback: the environment provides signal whether actions are 
good or bad. E.g., your advisor tells you if your research ideas are worth 
pursuing

Note: Evaluative feedback depends on the current policy the agent has: if you 
never suggest good ideas, you will never have the chance to know they are 
worthwhile. Instructive feedback is independent of the agent’s policy.



Reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Learning behaviours  from rewards while interacting with the environment



A concrete example: Playing Tetris
• states: the board configuration and the falling piece 

(lots of states ~ 2^200)
• actions: translations and rotations of the piece
• rewards: score of the game; how many lines are 

cancelled
• Our goal is to learn a policy (mapping from states to 

actions) that maximizes the expected returns, i.e., the 
score of the game

• IF the state space was small, we could have a table, 
every row would correspond to a state, and bookkeep 
the best action for each state. Tabular methods-> no 
sharing of information across states.



• states: the board configuration and the falling piece 
(lots of states ~ 2^200)

• actions: translations and rotations of the piece
• rewards: score of the game; how many lines are 

cancelled
• Our goal is to learn a policy (mapping from states to 

actions) that maximizes the expected returns, i.e., the 
score of the game

• We cannot do that thus we will use approximation:

π(a |s, θ)

A concrete example: Playing tetris



What is the input to the policy network?

An encoding for the state. Two choices:
1.The engineer will manually define a set of features to capture the 

state (board configuration). Then the model will just map those 
features (e.g., Bertsekas features)  to a distribution over actions, e.g., 
learning a linear model.

2.The model will discover the features (representation) by playing the 
game. Minh et al. 2014 first showed that this learning to play directly 
from pixels is possible, of course it requires more interactions.

π(a |s, θ)



Q: How can we learn the weights?

π(a |s, θ)

max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)]

θ 𝔼 [R(τ)]
No information regarding the structure of the reward



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

Black box optimization

Sample policy 
parameters \theta

run the policy and 
sample trajectories

Estimate the returns 
of those trajectories

• Sample policy parameters,  sample trajectories, evaluate the trajectories, 
keep the parameters that gave the largest improvement, repeat

• Black-box optimization: No information regarding the structure of the reward, 
that it is additive over states, that states are interconnected in a particular 
way, etc.. 



General algorithm:
Initialize a population of parameter vectors (genotypes) 
1.Make random perturbations (mutations) to each parameter 

vector
2.Evaluate the perturbed parameter vector (fitness)
3.Keep the perturbed vector if the result improves (selection)
4.GOTO 1

max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)]

Evolutionary methods

Biologically plausible…



Cross-entropy method
Parameters to be sampled from a multivariate Gaussian with diagonal 
covariance. We will evolve this Gaussian towards parameter samples 
that have highest fitness

Approximate Dynamic Programming Finally Performs Well in the Game of Tetris, Gabillon et al. 2013

• Works embarrassingly well in low-dimensions, e.g., in Gabillon et al. 
we estimate the weight for the 22 Bertsekas features.

• In a later lecture we will see how to use evolutionary methods to 
search over high dimensional neural network policies….



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖, 𝐶𝑖 

Covariance Matrix Adaptation 

μi, Ci

We can also consider a full covariance matrix



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adaptation 



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adaptation 



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adaptation 



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adaptation 



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

Covariance Matrix Adaptation 



Covariance Matrix Adaptation 

• Sample 
• Select elites 
• Update mean 
• Update covariance 
• iterate 

𝑚𝑖+1, 𝐶𝑖+1 

Covariance Matrix Adaptation 

μi+1, Ci+1



Value function based algorithms

generate samples 
(i.e. run the policy)

fit a model/ 
estimate the return

improve the policy

Black box optimization

Sample policy 
parameters \theta

run the policy and 
sample trajectories

Estimate the returns 
of those trajectories

• Q: In such black-box optimization, would knowledge of the model 9dynamics 
of the domain) help you?



Q: How can we learn the weights?

π(a |s, θ)

• Use Markov Design Process (MDP) formulation! 
• Intuitively, the world is structured, it is comprised of states,  reward is 

decomposed over states, states transition to one another with some 
transition probabilities (dynamics), etc..

max
θ

J(θ) = max
θ

𝔼 [R(τ) |πθ, μ0(s0)]



Reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3. . . . . .

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Learning behaviours  from rewards while interacting with the environment



A Finite Markov Decision Process is a tuple

•    is a finite set of states

•    is a finite set of actions

•    is one step dynamics function  

•   is a reward function  

•   is a discount factor

Finite Markov Decision Process

�

r

A

S

(S,A, T, r, �)

� 2 [0, 1]

p



Dynamics a.k.a. the Model

• How the states and rewards change given the actions of the agent

p(s′�, r |s, a) = Pr{St+1 = s′�, Rt+1 = r |St = s, At = a}

T(s′ �|s, a) = p(s′�|s, a) = Pr{St+1 = s′�|St = s, At = a} = ∑
r∈ℝ

p(s′ �, r |s, a)

• State transition function:



Since in practice the dynamics are unknown, the state representation should be such that is 

Model-free VS model-based RL

• An estimated (learned) model is never perfect. 

George Box

``All models are wrong but some models are useful”

• Due to model error model-free methods often achieve better policies 
though are more time consuming. Later in the course, we will examine 
use of (inaccurate) learned models and ways not to hinder the final 
policy while still accelerating learning



Markovian States

• A state captures whatever information is available to the agent at 
step t about its environment. 

• The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations, memories etc.

• A state should summarize past sensations so as to retain all 
“essential” information, i.e., it should have the Markov Property:

    for all                       , and all histories

• We should be able to throw away the history once state is known

P[Rt+1 = r, St+1 = s0|S0, A0, R1, ..., St�1, At�1, Rt, St, At] = P[Rt+1 = r, St+1 = s0|St, At]

s0 2 S, r 2 R



Actions
They are used by the agent to interact with the world. They can have 
many different temporal granularities and abstractions.

Actions can be defined to be

• The instantaneous torques applied 
on the gripper

• The instantaneous gripper 
translation, rotation, opening

• Instantaneous forces applied to 
the objects

• Short sequences of the above



Definition: A policy is a distribution over actions given states,

• A policy fully defines the behavior of an agent
• The policy is stationary (time-independent)
• During learning, the agent changes his policy as a result of 

experience

Special case: deterministic policies:

The agent learns a Policy

π(a |s) = Pr(At = a |St = s), ∀t

π(s) = the action taken with prob = 1 when St = s



Definitions

Agent: an entity that is equipped with sensors, in order to sense the 
environment,  and end-effectors in order to act in the environment, and 
goals that he wants to achieve 
Policy: a mapping function from observations (sensations, inputs of the 
sensors) to actions of the end effectors.
Model: the mapping function from states/observations and actions to future 
states/observations
Planning: unrolling a model forward in time and selecting the best action 
sequence that satisfies a specific goal
Plan: a sequence of actions



The recycling robot MDP

• At each step, robot has to decide whether it should (1) actively search for 
a can, (2) wait for someone to bring it a can, or (3) go to home base and 
recharge. 

• Searching is better but runs down the battery; if runs out of power while 
searching, has to be rescued (which is bad).

• Decisions made on basis of current energy level: high, low.

• Reward = number of cans collected



The recycling robot MDP
= high,low{ }
(high) = search, wait{ }
(low) = search, wait,recharge{ }

rsearch =  expected no. of cans while searching
rwait =  expected no. of cans while waiting
                     rsearch > rwait

search

high low
1,  0

 1–! ,   –3

search

recharge

wait

wait

search1–" ,  R

! ,  R  search

", R search

1,  R wait

1,  R wait

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

3.6. MARKOV DECISION PROCESSES 59

s s0 a p(s0|s, a) r(s, a, s0)
high high search ↵ rsearch
high low search 1� ↵ rsearch
low high search 1� � �3
low low search � rsearch
high high wait 1 rwait
high low wait 0 rwait
low high wait 0 rwait
low low wait 1 rwait
low high recharge 1 0
low low recharge 0 0.

Table 3.1: Transition probabilities and expected rewards for the finite MDP
of the recycling robot example. There is a row for each possible combination
of current state, s, next state, s0, and action possible in the current state,
a 2 A(s).

is S = {high, low}. Let us call the possible decisions—the agent’s actions—
wait, search, and recharge. When the energy level is high, recharging would
always be foolish, so we do not include it in the action set for this state. The
agent’s action sets are

A(high) = {search, wait}
A(low) = {search, wait, recharge}.

If the energy level is high, then a period of active search can always be
completed without risk of depleting the battery. A period of searching that
begins with a high energy level leaves the energy level high with probability
↵ and reduces it to low with probability 1�↵. On the other hand, a period of
searching undertaken when the energy level is low leaves it low with probability
� and depletes the battery with probability 1��. In the latter case, the robot
must be rescued, and the battery is then recharged back to high. Each can
collected by the robot counts as a unit reward, whereas a reward of �3 results
whenever the robot has to be rescued. Let rsearch and rwait, with rsearch > rwait,
respectively denote the expected number of cans the robot will collect (and
hence the expected reward) while searching and while waiting. Finally, to keep
things simple, suppose that no cans can be collected during a run home for
recharging, and that no cans can be collected on a step in which the battery
is depleted. This system is then a finite MDP, and we can write down the
transition probabilities and the expected rewards, as in Table 3.1.

A transition graph is a useful way to summarize the dynamics of a finite

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

Q: what the robot will do does it depend on the number of cans he has 
collected thus far?



Rewards reflect goals
Rewards are scalar values provided by the environment to the agent that 
indicate whether goals have been achieved, e.g., 1 if goal is achieved, 0 
otherwise, or -1 for overtime step the goal is not achieved

• Goals specify what the agent needs to achieve, not how to achieve it.

• The simplest and cheapest form of supervision, and surprisingly general: 
All of what we mean by goals and purposes can be well thought of as the 
maximization of the cumulative sum of a received scalar signal (reward)

r(s, a) = 𝔼[Rt+1 |St = s, At = a] = ∑
r∈ℝ

r∑
s′�∈S

p(s′�, r |s, a)

• Goal seeking behaviour, achieving purposes and expectations can be formulated 
mathematically as maximizing expected cumulative sum of scalar values…



Returns       - Episodic tasks
Episodic tasks: interaction breaks naturally into episodes, e.g., plays 
of a game, trips through a maze.

There is no memory across episodes.

In episodic tasks, we almost always use simple total reward:

Gt

where T is a final time step at which a terminal state is reached, ending 
an episode.

Gt = Rt+1 + Rt+2 + ⋯ + RT



Returns       - Continuing tasks

Continuing tasks: interaction does not have natural episodes, but just 
goes on and on…just like real life  

In continuing tasks, we often use simple total discounted reward:

Gt

Gt = Rt+1 + �Rt+2 + ... =
1X

k=0

�kRt+k+1

Why temporal discounting? A sequence of interactions based on which the 
reward will be judged at the end is called episode. Episodes can have 
finite or infinite length. For infinite length, the undercounted sum blows up, 
thus we add discounting            to prevent this, and treat both cases in a 
similar manner.

γ < 1



Get to the top of the hill
as quickly as possible. 

reward  = −1 for each step where not at top of hill
⇒   return =  − number of steps before reaching top of hill

Return is maximized by minimizing 
number of steps to reach the top of the hill. 

Mountain car



Definition: The state-value function            of an MDP is the expected 
return starting from state s, and then following policy

The action-value function               is the expected return starting from 
state s, taking action a, and then following policy

Value Functions are Expected Returns

v⇡(s) = E⇡[Gt|St = s]

q⇡(s, a)

q⇡(s, a) = E⇡[Gt|St = s,At = a]

⇡
v⇡(s)



Optimal Value Functions are Best Achievable Expected 
Returns

• Definition: The optimal state-value function            is the maximum 
value function over all policies

• The optimal action-value function                is the maximum action-
value function over all policies

q⇤(s, a) = max
⇡

q⇡(s, a)

q⇤(s, a)

v⇤(s) = max
⇡

v⇡(s)

v⇤(s)



 Value Functions
• Value functions measure the goodness of a particular state or state/action 

pair: how good is for the agent to be in a particular state or execute a 
particular action at a particular state, for a given policy.

• Optimal value functions measure the best possible goodness of states or 
state/action pairs under all possible policies.

state 
values

action 
values

prediction

control q⇤v⇤

v⇡ q⇡v⇡

v⇤



• Prediction: Given an MDP                       and a policy 
 
 
find the state and action value functions.

• Optimal control: given an MDP                      , find the optimal 
policy (aka the planning problem). Compare with the learning 
problem with missing information about rewards/dynamics.

Solving MDPs

⇡(a|s) = P[At = a|St = s]

(S,A, T, r, �)

(S,A, T, r, �)



Why Value Functions are useful

“…knowledge is represented as a large number of approximate value functions 
learned in parallel…”

Horde: A Scalable Real-time Architecture for Learning Knowledge from Unsupervised Sensorimotor Interaction, Sutton et al.

“don’t play video games else your 
social skills will be impacted”

We communicate our value functions to one another.

Value functions capture the knowledge of the agent regarding how 
good is each state for the goal he is trying to achieve.



An optimal policy can be found by maximizing over                :

v⇤(s)

π*(a |s) =
1, if  a = argmaxa∈𝒜 (∑s′�,r p(s′�, r |s, a)(r + γv*(s′�)))
0, otherwise

An optimal policy can be found from           and the model dynamics 
using one step look ahead:

q⇤(s, a)

Why Value Functions are useful

• If we know q*(s,a) we immediately have the optimal policy, we do not need 
the dynamics!

• If we know v*(s), we need the dynamics to do one step lookahead, to 
choose the optical action

π*(a |s) = {1, if  a = argmaxa∈𝒜q * (s, a)
0, otherwise



Value Functions are Expected Returns

• The value of a state, given a policy:

• The value of a state-action pair, given a policy:

• The optimal value of a state:

• The optimal value of a state-action pair:

• Optimal policy:       is an optimal policy if and only if

• in other words,      is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max
⇡

v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max
b

q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max
⇡

q⇡(s, a) q⇤ : S⇥A ! <

Q: What are the expectations over (what is stochastic)?



Bellman Expectation Equation

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L( )
= Rt+1 + γGt+1



Bellman Expectation Equation
Gt = Rt+1 + γ Rt+2 + γ

2Rt+3 + γ
3Rt+4L

= Rt+1 + γ Rt+2 + γ Rt+3 + γ
2Rt+4L( )

= Rt+1 + γGt+1

So by taking expectations: 

Or, without the expectation operator: 
v⇡(s) =

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

This is a set of linear equations, one for each state.
The value function for π  is its unique solution.

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[Rt+1 + γvπ(St+1) |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[Rt+1 + γqπ(St+1, At+1) |St = s, At = s]

qπ(s, a) = ∑
r,s′�

p(s, r′�|s, a)(r + γ∑
a′ �

π(a′�|s′�)qπ(s′�, a′�))

qπ(s, a) = ∑
r,s′�

p(r, s′�|s, a)(r + γ∑
a′�

π(a′�|s′�)qπ(s′�, a′�))



Looking Inside the Expectations

r

v⇡(s)

v⇡(s
0)

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i

Back-up diagram for value functions
The probabilities of landing on each of the leaves  sum to 1

qπ(s, a) = ∑
r,s′�

p(s′�, r |s, a)(r + γ∑
a′�

π(a′�|s′�)qπ(s′�, a′�))



Relating state and state/action value functions

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

v⇡(s)



Bellman Optimality Equations for

r

v⇤(s)

v⇤(s
0)

v*(s) = max
a∈𝒜 ∑

s′�,r

p(s′�, r |s, a)(r + γv*(s′�))

For the Bellman 
expectation 
equations we 
sum over all the 
leaves, here we 
choose only the 
best action 
branch!

The value of a state under an optimal policy must equal the expected return 
for the best action from that state

max

v*

v* is the unique solution of this system of nonlinear equations



Bellman Optimality Equations for q*

q*(s, a) = 𝔼[Rt+1 + γ max
a′�∈𝒜

q*(St+1, a′�) |St = s, At = a]

= ∑
s′�∈S,r

p(s′�, r |s, a)[r + γ max
a′ �

q*(s′�, a′�)

max max

q* is the unique solution of this system of nonlinear equations



Relating Optimal State and Action Value Functions

v⇤(s) = max
a

q⇤(s, a)

v⇤(s)

max



Relating Optimal State and Action Value Functions

v⇤(s
0)

q*(s, a) = ∑
s′�,r

p(s′�, r |s, a)(r + γv*(s′�))



Gridworld-value function
• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent 
out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9

8.83 = 10 + 0.9 * (−1.3)



Gridworld-value function
• Actions: north, south, east, west; deterministic.

• If would take agent off the grid: no move but reward = –1

• Other actions produce reward = 0, except actions that move agent 
out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9

4.43 = 0.25 * (0+0.9 * 5.3+
0+0.9 * 2.3+
0+0.9 * 8.8+

−1+0.9 * 4.4)



Any policy that is greedy with respect to      is an optimal policy.

Therefore, given    , one-step-ahead search produces the 
long-term optimal actions.

Gridworld - optimal value function

v*

v*

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

24.4 = 10 + 0.9 * (16.0)



Any policy that is greedy with respect to      is an optimal policy.

Therefore, given    , one-step-ahead search produces the 
long-term optimal actions.

Gridworld - optimal value function

v*

v*

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*

22.0 = max(0+0.9 * 19.4,
0+0.9 * 19.8,
0+0.9 * 24.4,

−1+0.9 * 22.0)



Optimal Policy

Define a partial ordering over policies

Theorem: For any Markov Decision Process

• There exists an optimal policy       that is better than or equal to 
all other policies,

• All optimal policies achieve the optimal value function,

• All optimal policies achieve the optimal action-value function,

⇡ � ⇡0 if v⇡(s) � v⇡0(s), 8s

⇡⇤ � ⇡, 8⇡
⇡⇤

v⇡⇤(s) = v⇤(s)

q⇡⇤(s, a) = q⇤(s, a)



Solving the Bellman Equations



MDPs to MRPs

MDP under a fixed policy becomes Markov Reward Process (MRP)

where                                   and r⇡s =
P

a2A ⇡(a|s)r(s, a) T⇡
s0s =

P
a2A ⇡(a|s)T (s0|s, a)

v⇡(s) =
X

a2A
⇡(a|s)

 
r(s, a) + �

X

s02S
T (s0|s, a)v⇡(s0)

!

=
X

a2A
⇡(a|s)r(s, a) + �

X

a2A
⇡(a|s)

X

s02S
T (s0|s, a)v⇡(s0)

= r⇡s + �
X

s02S
T⇡
s0sv⇡(s

0)



Matrix Form

The Bellman expectation equation can be written concisely using the 
induced MRP as

with direct solution

of complexity O(N3)

v⇡ = (I � �T⇡)�1r⇡

v⇡ = r⇡ + �T⇡v⇡



Iterative Methods: Recall the Bellman Equation

Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

 
Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

v⇡(s) s

v⇡(s0) s0
r

vπ(s) = ∑
a

π(a |s)∑
r,s′ �

p(s′�, r |s, a)(r + γvπ(s′�))

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′�

p(s′�|s, a)vπ(s′�)



Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation

Iterative Policy Evaluation (2)

a

r

vk+1(s) � s

vk(s0) � s0

vk+1(s) =
X

a2A
⇡(a|s)

 
Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = R⇡R⇡R⇡ + �P⇡P⇡P⇡vk

r

Iterative Methods: Backup Operation
Given an expected value function at iteration k, we back up the 
expected value function at iteration k+1: 

v[k+1]  sv[k+1](s) s

v[k](s
0) s0

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′ �

p(s′�|s, a)v[k](s′ �)



A sweep consists of applying the backup operation               for all the 
states in 

 

Applying the back up operator iteratively 

Iterative Methods: Sweep

v[0] ! v[1] ! v[2] ! . . . v⇡

v ! v0

S

v[k+1](s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′�

p(s′�|s, a)v[k](s′ �) , ∀s

A full policy evaluation backup:



A Small-Grid World

• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

R

γ = 1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



• An undiscounted episodic task

• Nonterminal states: 1, 2, … , 14

• Terminal state: one, shown in shaded square

• Actions that would take the agent off the grid leave the state unchanged

• Reward is -1 until the terminal state is reached

Policy    , an equiprobable random action

Iterative Policy Evaluation

⇡

           for the
random policy
v[k]

1



Iterative Policy Evaluation
86 CHAPTER 4. DYNAMIC PROGRAMMING

Input ⇡, the policy to be evaluated
Initialize an array V (s) = 0, for all s 2 S+

Repeat
� 0
For each s 2 S:

v  V (s)
V (s) 

P
a
⇡(a|s)

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)
Output V ⇡ v⇡

Figure 4.1: Iterative policy evaluation.

Another implementation point concerns the termination of the algorithm.
Formally, iterative policy evaluation converges only in the limit, but in practice
it must be halted short of this. A typical stopping condition for iterative policy
evaluation is to test the quantity maxs2S |vk+1(s)�vk(s)| after each sweep and
stop when it is su�ciently small. Figure 4.1 gives a complete algorithm for
iterative policy evaluation with this stopping criterion.

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

R

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions pos-
sible in each state, A = {up, down, right, left}, which deterministically
cause the corresponding state transitions, except that actions that would take
the agent o↵ the grid in fact leave the state unchanged. Thus, for instance,
p(6|5, right) = 1, p(10|5, right) = 0, and p(7|7, right) = 1. This is an undis-
counted, episodic task. The reward is �1 on all transitions until the terminal
state is reached. The terminal state is shaded in the figure (although it is
shown in two places, it is formally one state). The expected reward function is
thus r(s, a, s

0) = �1 for all states s, s
0 and actions a. Suppose the agent follows

the equiprobable random policy (all actions equally likely). The left side of
Figure 4.2 shows the sequence of value functions {vk} computed by iterative
policy evaluation. The final estimate is in fact v⇡, which in this case gives for
each state the negation of the expected number of steps from that state until



An operator      on a normed vector space      is a    -contraction,  
for                  , provided for all 

 
Theorem (Contraction mapping) 
For a   -contraction     in a complete normed vector space 

•     converges to a unique fixed point in 

• at a linear convergence rate 

Remark. In general we only need metric (vs normed) space

Contraction Mapping Theorem

F X �

||T (x)� T (y)||  �||x� y||

x, y 2 X0 < � < 1

� F X

F X
�



Value Function Space

• Consider the vector space      over value functions

• There are        dimensions

• Each point in this space fully specifies a value function 

• Bellman backup brings value functions closer in this space

• And therefore the backup must converge to a unique solution

|S|
v(s)

V



Value Function    -Norm 

• We will measure distance between state-value functions     and     
by the      -norm 

• i.e. the largest difference between state values,

1

u v
1

||u� v||1 = max
s2S

|u(s)� v(s)|



Bellman Expectation Backup is a Contraction

• Define the Bellman expectation backup operator

• This operator is a   -contraction, i.e. it makes value functions closer 
by at least    , �

�

F⇡(v) = r⇡ + �T⇡v

∥Fπ(u) − Fπ(v)∥∞ = ∥(rπ + γTπu) − (rπ + γTπv)∥∞

= ∥γTπ(u − v)∥∞

≤ ∥γTπ(1∥(u − v)∥∞)∥∞

= ∥γ(Tπ1)∥u − v∥∞∥∞

= ∥γ1∥u − v∥∞∥∞

= γ∥u − v∥∞


