Carnegie Mellon
School of Computer Science

Monte Carlo Learning

Lecture 4, CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Rich Sutton’s class and David Silver’s class on
Reinforcement Learning.

Summary so far

* So far, to estimate value functions we have been using dynamic programming
with known rewards and dynamics functions

Q: was our agent interacting with the world? Was our agent learning
something?

Virs1)(8) = Z m(al S)<”(S, a) + }/Zp(s’l S, a)v[k](s’)>, Vs

Vg 1)(8) = max (”(S, a)+y Z p(s’|s, Cl)V[k](S’)>, Vs

e
¢ ses

Coming up

* So far, to estimate value functions we have been using dynamic programming
with known rewards and dynamics functions

- Next: estimate value functions and policies from interaction experience,
without known rewards or dynamics

How? With sampling all the way. Instead of probabilities distributions p(s’,7|s, a)
to compute expectations, we will use empirical expectations by averaging
sampled returns!

Virs1)(8) = Z m(al S)(”(S, a) + }/Zp(s’l S, a)v[k](s’)), Vs

Vg 1)(8) = max (”(S, a)+y Z p(s’|s, Cl)V[k](S’)>, Vs

Ro/4
ac ses

Monte Carlo (MC) Methods

» Monte Carlo methods are learning methods

- Experience — values, policy

» Monte Carlo uses the simplest possible idea: value = mean return

» Monte Carlo methods learn from complete sampled trajectories
and their returns

- Only defined for episodic tasks
- All episodes must terminate

Monte-Carlo Policy Evaluation

» Goal: learn UW(S) from episodes of experience under policy 1T

51,A1, RQ, oy Sk ~ Tr
» Remember that the return is the total discounted reward:
Gt = Res1 +YRiso + .. + 4T 7IR
t — MRl ™Y RE42 T oee T T

» Remember that the value function is the expected return:

Vﬂ-(S) — ":ﬂ- [Gt I St — 5]

» Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Monte-Carlo Policy Evaluation

» Goal: learn v (8) from episodes of experience under policy

» ldea: Average returns observed after visits to s:

7\ - AN N\
:\ 1) \) ”‘\3/' "\4/ '@

» Every-Visit MC: average returns for every time s is visited in an
episode

» First-visit MC: average returns only for first time s is visited in an
episode

» Both converge asymptotically

First-Visit MC Policy Evaluation

To evaluate state s

The first time-step t that state s is visited in an episode,

Increment counter: N(s) < N(s)+ 1
Increment total return: 5(5) — 5(5) + G;

Value is estimated by mean return ~ V/(s) = S(s)/N(s)

By law of large numbers V/(s) — v,(s) as N(s) — o

Law of large numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers

v

v

Every-Visit MC Policy Evaluation

To evaluate state s

Every time-step t that state s is visited in an episode,

Increment counter: N(s) < N(s)+ 1
Increment total return: 5(5) — 5(5) + G;

Value is estimated by mean return ~ V/(s) = S(s)/N(s)

By law of large numbers V/(s) — v,(s) as N(s) — o

Blackjack Example

Objective: Have your card sum be greater than the dealer’s without
exceeding 21.

States (200 of them):
- current sum (12-21)

- dealer’s showing card (ace-10)

- do | have a useable ace?

Reward: +1 for winning, 0 for a draw, -1 for losing

Actions: stick (stop receiving cards), hit (receive another card)

Policy: Stick if my sum is 20 or 21, else hit

No discounting (y=1)

Learned Blackjack State-Value Functions

After 10,000 episodes After 500,000 episodes

Usable s> N +1
ace W N N

No ALK T AT A7 S A ATL AT F]~
usable ZZ L ST AT~ LT A A TN
ace R A, A SRS

Backup Diagram for Monte Carlo

» Entire rest of episode included Q
» Only one choice considered at each state ¢
(unlike DP) C)

- thus, there will be an explore/exploit
dilemma ¢

» Does not bootstrap from successor state’s values
(unlike DP) o

/

» Value is estimated by mean return X

» State value estimates are independent, no bootstrapping |L terminal state

Incremental Mean

» The mean y4, Uy, ... of a sequence X4, X,, ... can be computed

iIncrementally:)
23
— X.
k &=
J=1

ke =
. k—1
K <
1
=7 (Xk + (k — 1)pk—1)
1
= pik—1 + — (Xk — fk—1)

Incremental Monte Carlo Updates

Update V(s) incrementally after episode S;, A1, R», ST

For each state S; with return G;

V(S:) + V(S¢) A (G: — V(St))

N(S.)

In non-stationary problems, it can be useful to track a running mean,
l.e. forget old episodes.

V(S:) « V(S:) + a(Gr — V(St))

MC Estimation of Action Values (Q)

» Monte Carlo (MC) is most useful when a model is not available

- We want to learn g*(s,a)

» Qq(S,a) - average return starting from state s and action a following 1

4'ir[lzt—l—l +’7’U7r(St+1) | St:‘saAt:a']
— Zp(s', r|s,a) {r t 7%(8')] .

s',r

q-(s,a)

» Converges asymptotically if every state-action pair is visited

Q:ls this possible if we are using a deterministic policy?

The Exploration problem

* |If we always follow the deterministic policy we care about to collect
experience, we will never have the opportunity to see and evaluate
(estimate q) of alternative actions...

e Solutions:

1. exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

2. Give up on deterministic policies and only search over
\espilon-soft policies

3. Off policy: use a different policy to collect experience than the
one you care to evaluate

Monte-Carlo Control

E I E I E I E
7T0—>q7r0—>7T1 —>qm—>7r2—>---—>7r*—>q*

evaluation

m

g Q

m ~ greedy(Q)

improvement

» MC policy iteration step: Policy evaluation using MC methods
followed by policy improvement

» Policy improvement step: greedify with respect to value (or action-
value) function

Greedy Policy

» For any action-value function q, the corresponding greedy policy is
the one that:

- For each s, deterministically chooses an action with maximal
action-value:

w(s) = argmaxq(s, a).
a

» Policy improvement then can be done by constructing each 1,4 as
the greedy policy with respect to g .

Convergence of MC Control

Greedified policy meets the conditions for policy improvement:

Iry, (8, ArGMAX gr (S, @))
a

47y (3: Tk+1 (8))

MAax gr, (s,a)

'V

q’"k(svﬂ-k(s))

U, (8).

AV

And thus must be =

This assumes exploring starts and infinite number of episodes for
MC policy evaluation

Monte Carlo Exploring Starts

Initialize, for all s € 8, a € A(s): Fixed point is optimal
)(s,a) < arbitrary

7(s) < arbitrary
Returns(s, a) < empty list

policy &*

Repeat forever:
Choose Sp € 8 and Ag € A(Sy) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ap, following
For each pair s, a appearing in the episode:
(G < return following the first occurrence of s,a
Append G to Returns(s, a)
Q(s,a) + average(Returns(s,a))
For each s in the episode:
m(s) ¢+ argmax, Q(s,a)

Blackjack example continued

» With exploring starts

Usable
ace

No
usable
ace

| Sho,,.. '/"a
A2345678091 Oy \\‘/
Dealer showing g T~

On-policy Monte Carlo Control

» On-policy: learn about policy currently executing

» How do we get rid of exploring starts?

- The policy must be eternally soft: r(al|s) > 0 for all s and a.

» For example, for g-soft policy, probability of an action, 1r(als),
° r 1 + -
— — €
As)] O As)

non-max max (greedy)

» Similar to GPI: move policy towards greedy policy

» Converges to the best g-soft policy.

On-policy Monte Carlo Control

Initialize, for all s € S, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(a|s) < an arbitrary e-soft policy

Repeat forever:
(a) Gencerate an cpisode using 7
(b) For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) FFor each s in the episode:
A* + arg max, Q(s, a)
For all a € A(s):
r(als) { 1—e+¢e/lA(s)] ifa=A"
e/|A(s) if a £ A*

Off-policy methods

Learn the value of the target policy 11 from experience due to
behavior policy w.

For example, 11 is the greedy policy (and ultimately the optimal
policy) while u is exploratory (e.g., €-soft) policy

In general, we only require coverage, i.e., that u generates behavior that
covers, or includes,

u(als) > 0 forevery s,a at which =(als) > 0

ldea: Importance Sampling:

- Weight each return by the ratio of the probabilities of the trajectory
under the two policies.

Simple Monte Carlo

e General ldea: Draw independent samples {z1,..,zn} from distribution p(z) to
approximate expectation:

Note that:

so the estimator has correct mean (unbiased).

e The variance: " 1

varl f] = ~

e Variance decreases as 1/N.

[(- ELf1)?]

 Remark: The accuracy of the estimator does not depend on dimensionality of z.

25

Importance Sampling

e Suppose we have an easy-to-sample proposal distribution q(z), such that

a(z) > 0 if p(2) > 0. s _ / £)p(2)dz

p z)
p— f q 2
/ q z) 2)d
]3 n) " g |
*N @ "~ az)

e The quantities

w" = p(z")/q(z")

are known as importance weights.

26

Importance Sampling Ratio

Probability of the rest of the trajectory, after S;, under policy 1

Pr{A¢, St+1, At+1,...,571 | St, Ap.7—1 ~ T}

— W(Atlst)p(st—l—llsta At)’/T(AtH ISt+1) " 'P(ST|ST—1, AT—l)
T—1

[(Ax|Sk)p(Sk+1]Sk, Ak).
k=t

Importance Sampling: Each return is weighted by he relative
probability of the trajectory under the target and behavior policies

T — Hf_tl’” (Ak|Sk)P(Sk+1|Sk, Ar) _ l:[m(Ag|Sk)
© o TIRs) m(ARISk)P(Skr1|Sk, A) iy H(AkISK)

This is called the Importance Sampling Ratio

Importance Sampling

» Ordinary importance sampling forms estimate

t fter t up th h
Flrsttlme oftermlnatlon re urna ertup throug

\ /
1
ZtE‘T(s) Pt o G
T(s)|
|

Every time: the set of all time
steps in which state s is visited

Vis) =

Importance Sampling

» Ordinary importance sampling forms estimate

T
. ZtE‘T(s) Pt (t)Gt
T

» New notation: time steps increase across episode boundaries:

V(s)

" f= 123456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27

to4 t 4

T(s) = {4, 20} T(4)=9 T(20) =25

set of start times next termination times

Importance Sampling

» Ordinary importance sampling forms estimate

» Weighted importance sampling forms estimate:

T
Zte‘J’(s) Pt (t)G

ZtE‘T (s) Mt e

Vs) =

Example of Infinite Variance under Ordinary
Importance Sampling

R=+1
™
r(left|s) =1 = : \
- right\‘ (left]s) y=1 w(right|s) m(left|s)
e . — —
. R=0 1 p(right|s) u(left|s)
plleft]s) = Ua(s) = 1
R=0
Trajectory Gh | pd
| s, left, 0, s, left, 0, s, left, 0, s, right, 0, | 0 | 0 OIS:
| s, left, 0, s, left, 0, 5, left, 0, s, left, +1, 1 |16 T'(t) G
70\ A ZtC'J(s) Pt t
| V(s) = \
c |"T(S) |
Monte-Carlo \ .
estimate of \ WIS:
1. (8) with " - . (L)
- ordinary \ .~ .Y‘. ' ‘ \V.\' \ ‘l J‘.\..'\'\ v-\“ N, p’(s\ A Z’tET(S) pt Gt
imporiance 1f | N TTINS T e | N e ;}—*}Pﬂt‘;’**e-— . P (1)
sampling \ RSN Ry Ty 22 2 e t<(s) Pt
&) \"9-'.__:-\\""‘: ::“ o5 gt
(ten runs) ‘ \. ST AN RMWW
U sy
| ~i)
1) 100 10 10,00¢) 100,000 1,000,000 TELCRO 0N TOO O (K

Episodes (log scale)

Example: Off-policy Estimation of the Value of a
Single Blackjack State

State is player-sum 13, dealer-showing 2, useable ace

Target policy is stick only on 20 or 21
Behavior policy is equiprobable

True value = -0.27726

4 ~
4

[Ordinary
Mean impartance
square sampling
2 v
error
(average over
100 runs)
Weighted imporiance sampling
0+

E) lb l(;O 10&!) 10,600
Episaodes (log scale)

Incremental off-policy every-visit MC policy evaluation (returns QQ ~ ¢,

Input: an arbitrary target policy =

Initialize, for all s € 8, a € A(s):
Q(s,a) « arbitrary
C(s,a) « 0

Repeat forever:
14— any policy with coverage of w
Generate an episode using pu:
So, Ao, R1,...,87-1,Ar—1, Ry, ST

G+ 0

W<+1

Fort=T1T—-1,17—2,... downto 0:
G‘(—’}’G+Rt+1

C(St,At) «— C(St,At) + W

Q(StaAt) — Q(St>At) + C(S‘f/,’At) [G o Q(St:At)]
r m(A¢|St)

W Woatais,)

If W =0 then ExitForLoop

1

pk = Pk—1+ (Xk — Hk—1)

Off-policy every-visit MC control (returns 7 ~)

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
C(s,a) + 0
m(s) + argmax, Q(S;,a) (with ties broken consistently)

Repeat forever:
1L < any soft policy
(Generate an episode using wu:
So, Aoy Ryy...yST—1, AT -1, R, ST

Target policy 1s greedy
and deterministic

G0 Behavior policy is soft,
W] typically e-greed
Fort =T —1,T —2,... downto 0: ypically e-greedy

(G « ’)’G + Rt-l—l — ——

C(St,At) — C(St,At) + W

Q(Sy, Ay) +— Q(S, Ar) + C)(;ZAt) |G — Q(S:, Ar)]

7(S;) ¢ argmax, Q(S;,a) (with ties broken consistently)
If A; # w(S;) then ExitForLoop

7 1
W W w(Az|St)

Summary

MC has several advantages over DP:
- Can learn directly from interaction with environment

- No need for full models

- Less harmed by violating Markov property (later in class)

MC methods provide an alternate policy evaluation process

One issue to watch for: maintaining sufficient exploration

- Can learn directly from interaction with environment

Looked at distinction between on-policy and off-policy methods
Looked at importance sampling for off-policy learning

Looked at distinction between ordinary and weighted |S

 MC methods are different than Dynamic Programming in that they:

1. use experience in place of known dynamics and reward
functions

2. do not bootrap
* Next lecture we will see temporal difference learning which

3. use experience in place of known dynamics and reward
functions

4. bootrap!

