
Monte Carlo Learning

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Lecture 4, CMU 10-403

Katerina Fragkiadaki

Used Materials
• Disclaimer: Much of the material and slides for this lecture were
borrowed from Rich Sutton’s class and David Silver’s class on
Reinforcement Learning.

Summary so far
• So far, to estimate value functions we have been using dynamic programming

with known rewards and dynamics functions

Q: was our agent interacting with the world? Was our agent learning
something?

v[k+1](s) = ∑
a

π(a |s)(r(s, a) + γ∑
s′�

p(s′�|s, a)v[k](s′�)), ∀s

v[k+1](s) = max
a∈𝒜 (r(s, a) + γ ∑

s′ �∈𝒮

p(s′�|s, a)v[k](s′�)), ∀s

Coming up
• So far, to estimate value functions we have been using dynamic programming

with known rewards and dynamics functions

• Next: estimate value functions and policies from interaction experience,
without known rewards or dynamics

How? With sampling all the way. Instead of probabilities distributions
to compute expectations, we will use empirical expectations by averaging
sampled returns!

p(s′�, r |s, a)

v[k+1](s) = ∑
a

π(a |s)(r(s, a) + γ∑
s′�

p(s′�|s, a)v[k](s′�)), ∀s

v[k+1](s) = max
a∈𝒜 (r(s, a) + γ ∑

s′ �∈𝒮

p(s′�|s, a)v[k](s′�)), ∀s

Monte Carlo (MC) Methods

‣ Monte Carlo methods are learning methods
- Experience → values, policy

‣ Monte Carlo methods learn from complete sampled trajectories
and their returns
- Only defined for episodic tasks
- All episodes must terminate

‣ Monte Carlo uses the simplest possible idea: value = mean return

Monte-Carlo Policy Evaluation

‣ Goal: learn from episodes of experience under policy π

‣ Remember that the return is the total discounted reward:

‣ Remember that the value function is the expected return:

‣ Monte-Carlo policy evaluation uses empirical mean return
instead of expected return

Monte-Carlo Policy Evaluation

‣ Goal: learn from episodes of experience under policy π

‣ Idea: Average returns observed after visits to s:

‣ Every-Visit MC: average returns for every time s is visited in an
episode

‣ First-visit MC: average returns only for first time s is visited in an
episode

‣ Both converge asymptotically

First-Visit MC Policy Evaluation

‣ To evaluate state s 

‣ The first time-step t that state s is visited in an episode,

‣ Increment counter:  

‣ Increment total return: 

‣ Value is estimated by mean return

‣ By law of large numbers

Law of large numbers

https://en.wikipedia.org/wiki/Law_of_large_numbers

Every-Visit MC Policy Evaluation

‣ To evaluate state s 

‣ Every time-step t that state s is visited in an episode,

‣ Increment counter:  

‣ Increment total return: 

‣ By law of large numbers

‣ Value is estimated by mean return

Blackjack Example

‣ Objective: Have your card sum be greater than the dealer’s without
exceeding 21.

‣ States (200 of them):
- current sum (12-21)
- dealer’s showing card (ace-10)
- do I have a useable ace?

‣ Reward: +1 for winning, 0 for a draw, -1 for losing 

‣ Actions: stick (stop receiving cards), hit (receive another card) 

‣ Policy: Stick if my sum is 20 or 21, else hit

‣ No discounting (γ=1)

Learned Blackjack State-Value Functions

Backup Diagram for Monte Carlo

‣ Entire rest of episode included

‣ Only one choice considered at each state
(unlike DP)
- thus, there will be an explore/exploit

dilemma

‣ Does not bootstrap from successor state’s values
(unlike DP)

‣ Value is estimated by mean return

‣ State value estimates are independent, no bootstrapping

Incremental Mean

‣ The mean µ1, µ2, ... of a sequence x1, x2, ... can be computed
incrementally:

Incremental Monte Carlo Updates

‣ Update V(s) incrementally after episode

‣ For each state St with return Gt

‣ In non-stationary problems, it can be useful to track a running mean,
i.e. forget old episodes.

MC Estimation of Action Values (Q)

‣ Monte Carlo (MC) is most useful when a model is not available
- We want to learn q*(s,a) 

‣ qπ(s,a) - average return starting from state s and action a following π 

‣ Converges asymptotically if every state-action pair is visited

Q:Is this possible if we are using a deterministic policy?

The Exploration problem

• If we always follow the deterministic policy we care about to collect
experience, we will never have the opportunity to see and evaluate
(estimate q) of alternative actions…

• Solutions:

1. exploring starts: Every state-action pair has a non-zero
probability of being the starting pair

2. Give up on deterministic policies and only search over
\espilon-soft policies

3. Off policy: use a different policy to collect experience than the
one you care to evaluate

Monte-Carlo Control

‣ MC policy iteration step: Policy evaluation using MC methods
followed by policy improvement

‣ Policy improvement step: greedify with respect to value (or action-
value) function

Greedy Policy

‣ Policy improvement then can be done by constructing each πk+1 as
the greedy policy with respect to qπk .

‣ For any action-value function q, the corresponding greedy policy is
the one that:
- For each s, deterministically chooses an action with maximal

action-value:

Convergence of MC Control

‣ And thus must be ≥ πk.

‣ Greedified policy meets the conditions for policy improvement:

‣ This assumes exploring starts and infinite number of episodes for
MC policy evaluation

Monte Carlo Exploring Starts

Blackjack example continued

‣ With exploring starts

On-policy Monte Carlo Control

‣ How do we get rid of exploring starts?
- The policy must be eternally soft: π(a|s) > 0 for all s and a.

‣ On-policy: learn about policy currently executing

‣ Similar to GPI: move policy towards greedy policy

‣ Converges to the best ε-soft policy.

‣ For example, for ε-soft policy, probability of an action, π(a|s),

On-policy Monte Carlo Control

‣ Idea: Importance Sampling:
- Weight each return by the ratio of the probabilities of the trajectory

under the two policies.

Off-policy methods

‣ For example, π is the greedy policy (and ultimately the optimal
policy) while µ is exploratory (e.g., ε-soft) policy

‣ Learn the value of the target policy π from experience due to
behavior policy µ.

‣ In general, we only require coverage, i.e., that µ generates behavior that
covers, or includes, π

Simple Monte Carlo
• General Idea: Draw independent samples {z1,..,zn} from distribution p(z) to
approximate expectation:

 so the estimator has correct mean (unbiased).

• Remark: The accuracy of the estimator does not depend on dimensionality of z.

Note that:

• The variance:

• Variance decreases as 1/N.

%25

Importance Sampling
• Suppose we have an easy-to-sample proposal distribution q(z), such that

are known as importance weights.

• The quantities

%26
This is useful when we can evaluate the probability p but is hard to sample from it

Importance Sampling Ratio

‣ Probability of the rest of the trajectory, after St, under policy π

‣ Importance Sampling: Each return is weighted by he relative
probability of the trajectory under the target and behavior policies

‣ This is called the Importance Sampling Ratio

Importance Sampling

‣ Ordinary importance sampling forms estimate  

Every time: the set of all time
steps in which state s is visited

First time of termination
following time t

return after t up through
T(t)

Importance Sampling

‣ Ordinary importance sampling forms estimate  

‣ New notation: time steps increase across episode boundaries: 

Importance Sampling

‣ Ordinary importance sampling forms estimate  

‣ Weighted importance sampling forms estimate:

Example of Infinite Variance under Ordinary
Importance Sampling

Example: Off-policy Estimation of the Value of a
Single Blackjack State

‣ Target policy is stick only on 20 or 21

‣ State is player-sum 13, dealer-showing 2, useable ace

‣ True value ≈ −0.27726

‣ Behavior policy is equiprobable 

Summary

‣ MC methods provide an alternate policy evaluation process

‣ MC has several advantages over DP:
- Can learn directly from interaction with environment
- No need for full models
- Less harmed by violating Markov property (later in class)

‣ Looked at distinction between on-policy and off-policy methods

‣ One issue to watch for: maintaining sufficient exploration
- Can learn directly from interaction with environment

‣ Looked at importance sampling for off-policy learning 
‣ Looked at distinction between ordinary and weighted IS

Coming up next

• MC methods are different than Dynamic Programming in that they:

1. use experience in place of known dynamics and reward
functions

2. do not bootrap

• Next lecture we will see temporal difference learning which

3. use experience in place of known dynamics and reward
functions

4. bootrap!

