Carnegie Mellon School of Computer Science

Monte Carlo Learning

Lecture 4, CMU 10-403

Katerina Fragkiadaki

Used Materials

• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Rich Sutton's class and David Silver's class on Reinforcement Learning.

Summary so far

 So far, to estimate value functions we have been using dynamic programming with known rewards and dynamics functions

Q: was our agent interacting with the world? Was our agent *learning* something?

$$v_{[k+1]}(s) = \sum_{a} \pi(a \mid s) \left(r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) v_{[k]}(s') \right), \forall s$$
$$v_{[k+1]}(s) = \max_{a \in \mathscr{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathscr{S}} p(s' \mid s, a) v_{[k]}(s') \right), \forall s$$

Coming up

- So far, to estimate value functions we have been using dynamic programming with known rewards and dynamics functions
- Next: estimate value functions and policies from interaction experience, without known rewards or dynamics

How? With sampling all the way. Instead of probabilities distributions p(s', r | s, a) to compute expectations, we will use empirical expectations by averaging sampled returns!

$$v_{[k+1]}(s) = \sum_{a} \pi(a \mid s) \left(r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) v_{[k]}(s') \right), \forall s$$
$$v_{[k+1]}(s) = \max_{a \in \mathscr{A}} \left(r(s, a) + \gamma \sum_{s' \in \mathscr{S}} p(s' \mid s, a) v_{[k]}(s') \right), \forall s$$

Monte Carlo (MC) Methods

- Monte Carlo methods are learning methods
 - Experience \rightarrow values, policy
- Monte Carlo uses the simplest possible idea: value = mean return
- Monte Carlo methods learn from complete sampled trajectories and their returns
 - Only defined for episodic tasks
 - All episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Remember that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

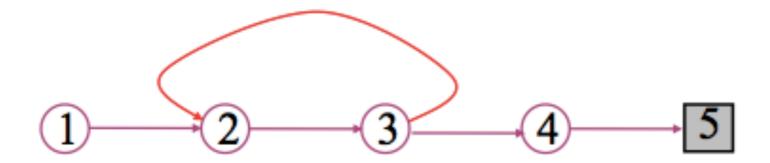
Remember that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}\left[G_t \mid S_t = s\right]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Policy Evaluation

- Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π
- Idea: Average returns observed after visits to s:



- Every-Visit MC: average returns for every time s is visited in an episode
- First-visit MC: average returns only for first time s is visited in an episode
- Both converge asymptotically

First-Visit MC Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in an episode,
- Increment counter: $N(s) \leftarrow N(s) + 1$
- Increment total return: $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers $V(s)
 ightarrow v_{\pi}(s)$ as $N(s)
 ightarrow \infty$

Every-Visit MC Policy Evaluation

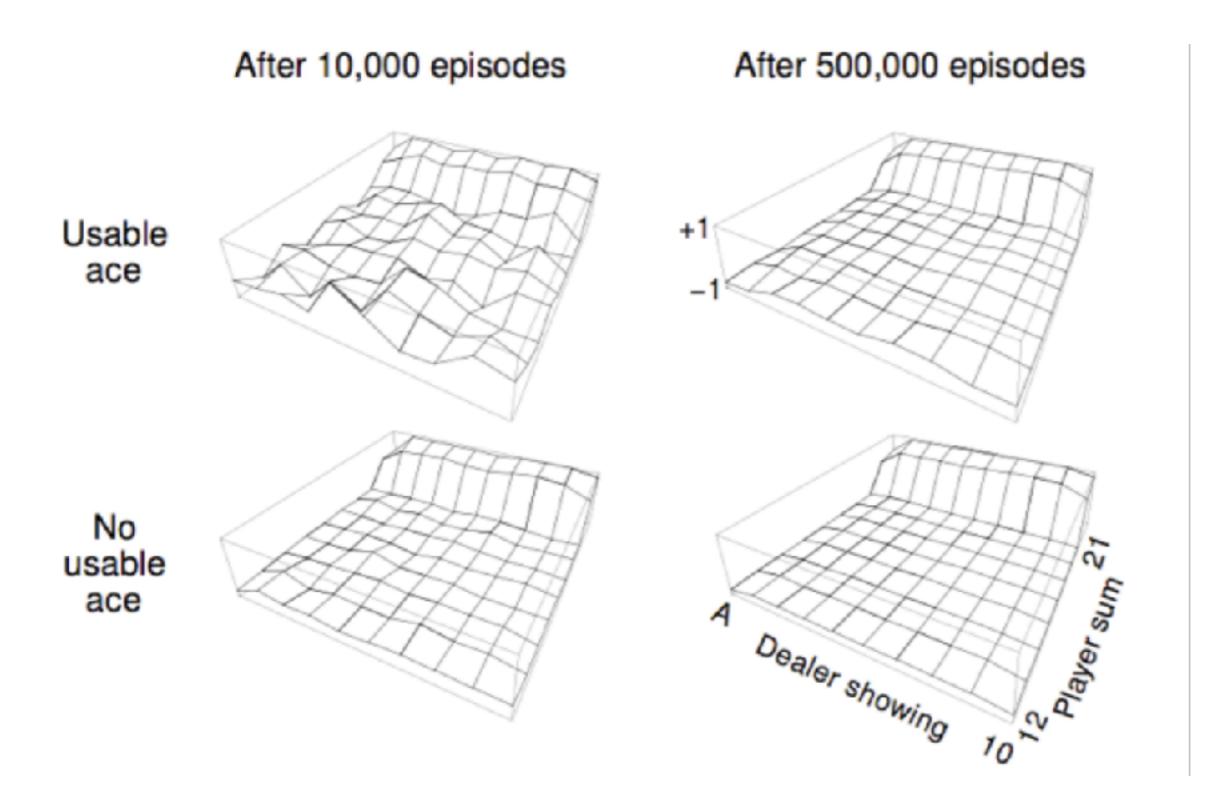
- To evaluate state s
- Every time-step t that state s is visited in an episode,
- Increment counter: $N(s) \leftarrow N(s) + 1$
- Increment total return: $S(s) \leftarrow S(s) + G_t$
- Value is estimated by mean return V(s) = S(s)/N(s)
- By law of large numbers $V(s) o v_{\pi}(s)$ as $N(s) o \infty$

Blackjack Example

- Objective: Have your card sum be greater than the dealer's without exceeding 21.
- States (200 of them):
 - current sum (12-21)
 - dealer's showing card (ace-10)
 - do I have a useable ace?

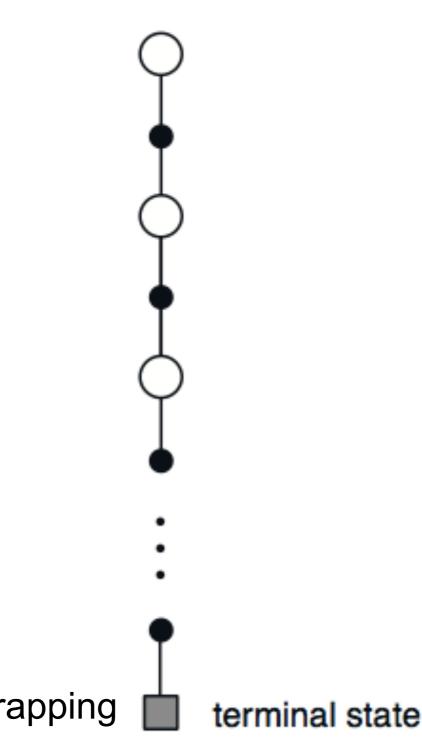
- Reward: +1 for winning, 0 for a draw, -1 for losing
- Actions: stick (stop receiving cards), hit (receive another card)
- Policy: Stick if my sum is 20 or 21, else hit
- No discounting (γ =1)

Learned Blackjack State-Value Functions



Backup Diagram for Monte Carlo

- Entire rest of episode included
- Only one choice considered at each state (unlike DP)
 - thus, there will be an explore/exploit dilemma
- Does not bootstrap from successor state's values (unlike DP)
- Value is estimated by mean return
- State value estimates are independent, no bootstrapping



Incremental Mean

• The mean μ_1 , μ_2 , ... of a sequence x_1 , x_2 , ... can be computed incrementally:

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$
$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$
$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$
$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Incremental Monte Carlo Updates

- Update V(s) incrementally after episode
 - $S_1, A_1, R_2, ..., S_T$

For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$
$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

MC Estimation of Action Values (Q)

- Monte Carlo (MC) is most useful when a model is not available
 - We want to learn q*(s,a)
- $q_{\pi}(s,a)$ average return starting from state s and action a following π

$$egin{aligned} q_{\pi}(s,a) &= & \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = a] \ &= & \sum_{s',r} p(s',r|s,a) \Big[r + \gamma v_{\pi}(s')\Big]. \end{aligned}$$

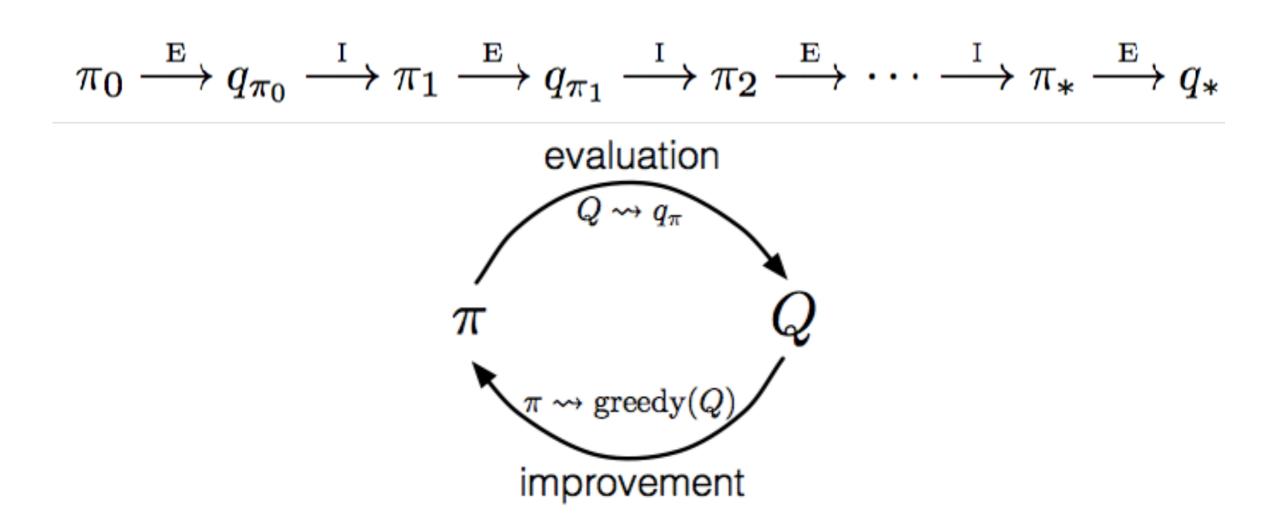
Converges asymptotically if every state-action pair is visited

Q:Is this possible if we are using a deterministic policy?

The Exploration problem

- If we always follow the deterministic policy we care about to collect experience, we will never have the opportunity to see and evaluate (estimate q) of alternative actions...
- Solutions:
 - 1. exploring starts: Every state-action pair has a non-zero probability of being the starting pair
 - 2. Give up on deterministic policies and only search over \espilon-soft policies
 - 3. Off policy: use a different policy to collect experience than the one you care to evaluate

Monte-Carlo Control



- MC policy iteration step: Policy evaluation using MC methods followed by policy improvement
- Policy improvement step: greedify with respect to value (or actionvalue) function

Greedy Policy

- For any action-value function q, the corresponding greedy policy is the one that:
 - For each s, deterministically chooses an action with maximal action-value:

$$\pi(s) \doteq rg\max_a q(s, a).$$

• Policy improvement then can be done by constructing each π_{k+1} as the greedy policy with respect to $q_{\pi k}$.

Convergence of MC Control

Greedified policy meets the conditions for policy improvement:

$$egin{array}{rl} q_{\pi_k}(s,\pi_{k+1}(s)) &=& q_{\pi_k}(s,rgmax_a q_{\pi_k}(s,a)) \ &=& \max_a q_{\pi_k}(s,a) \ &\geq& q_{\pi_k}(s,\pi_k(s)) \ &\geq& v_{\pi_k}(s). \end{array}$$

- And thus must be $\geq \pi_{k}$.
- This assumes exploring starts and infinite number of episodes for MC policy evaluation

Monte Carlo Exploring Starts

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow 	ext{arbitrary}

\pi(s) \leftarrow 	ext{arbitrary}

Returns(s, a) \leftarrow 	ext{empty list}
```

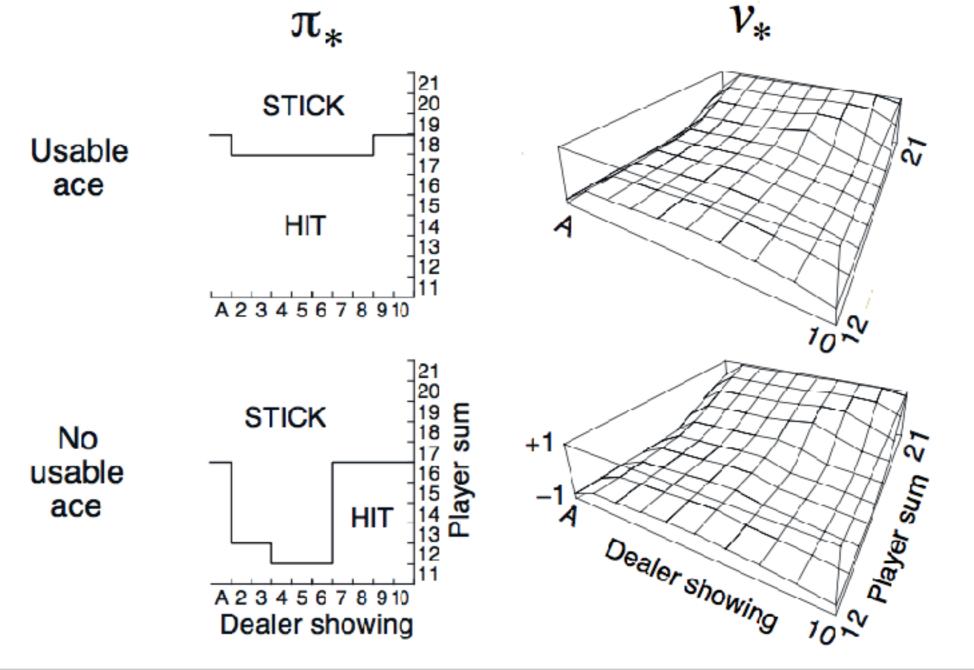
Fixed point is optimal policy π^*

Repeat forever:

Choose $S_0 \in S$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) For each s in the episode: $\pi(s) \leftarrow \arg\max_a Q(s, a)$

Blackjack example continued

With exploring starts



On-policy Monte Carlo Control

- On-policy: learn about policy currently executing
- How do we get rid of exploring starts?
 - The policy must be eternally soft: $\pi(a|s) > 0$ for all s and a.
- For example, for ϵ -soft policy, probability of an action, $\pi(a|s)$,

$$= \frac{\epsilon}{|\mathcal{A}(s)|} \text{ or } 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(s)|}$$

non-max max (greedy)

- Similar to GPI: move policy towards greedy policy
- Converges to the best ε-soft policy.

On-policy Monte Carlo Control

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

(a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) (c) For each s in the episode: $A^* \leftarrow$ arg max_a Q(s, a)For all $a \in \mathcal{A}(s)$: $\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$

Off-policy methods

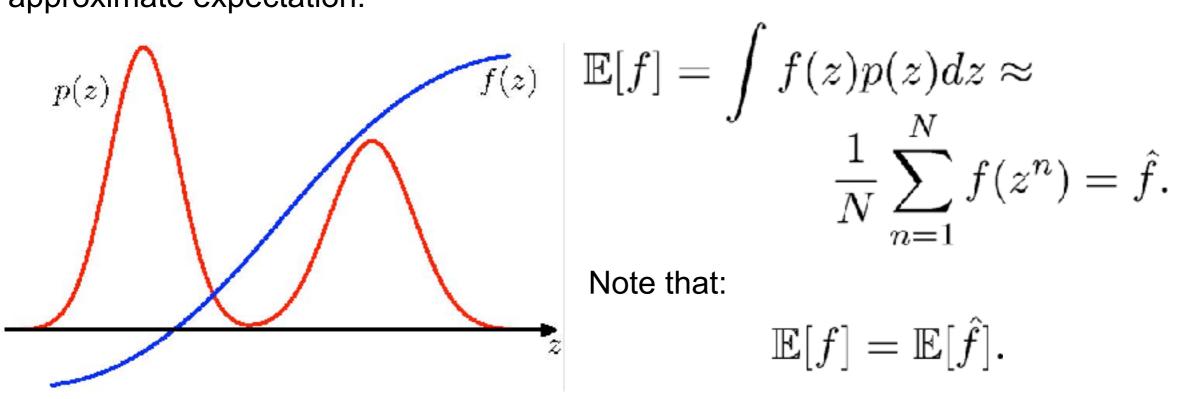
- Learn the value of the target policy π from experience due to behavior policy μ .
- For example, π is the greedy policy (and ultimately the optimal policy) while µ is exploratory (e.g., ε-soft) policy
- In general, we only require coverage, i.e., that μ generates behavior that covers, or includes, π

 $\mu(a|s) > 0$ for every *s*,*a* at which $\pi(a|s) > 0$

- Idea: Importance Sampling:
 - Weight each return by the ratio of the probabilities of the trajectory under the two policies.

Simple Monte Carlo

 General Idea: Draw independent samples {z¹,..,zⁿ} from distribution p(z) to approximate expectation:



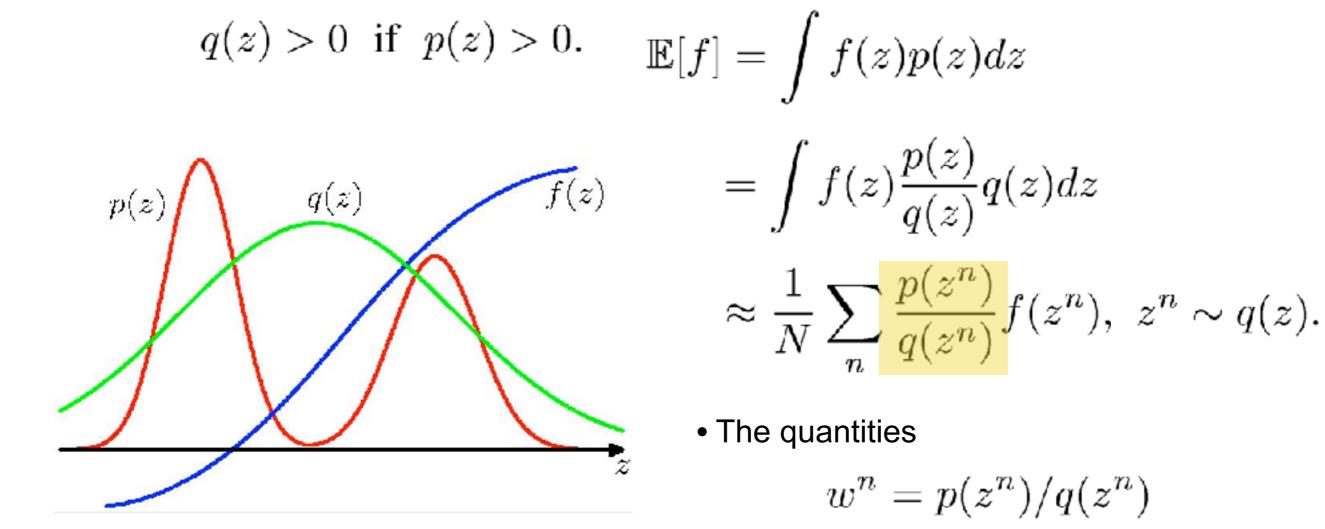
so the estimator has correct mean (unbiased).

• The variance:

$$\operatorname{var}[\hat{f}] = \frac{1}{N} \mathbb{E}[(f - \mathbb{E}[f])^2].$$

- Variance decreases as 1/N.
- **Remark**: The accuracy of the estimator does not depend on dimensionality of z.

• Suppose we have an easy-to-sample proposal distribution q(z), such that



are known as importance weights.

This is useful when we can evaluate the probability p but is hard to sample from it

Importance Sampling Ratio

• Probability of the rest of the trajectory, after S_t , under policy π

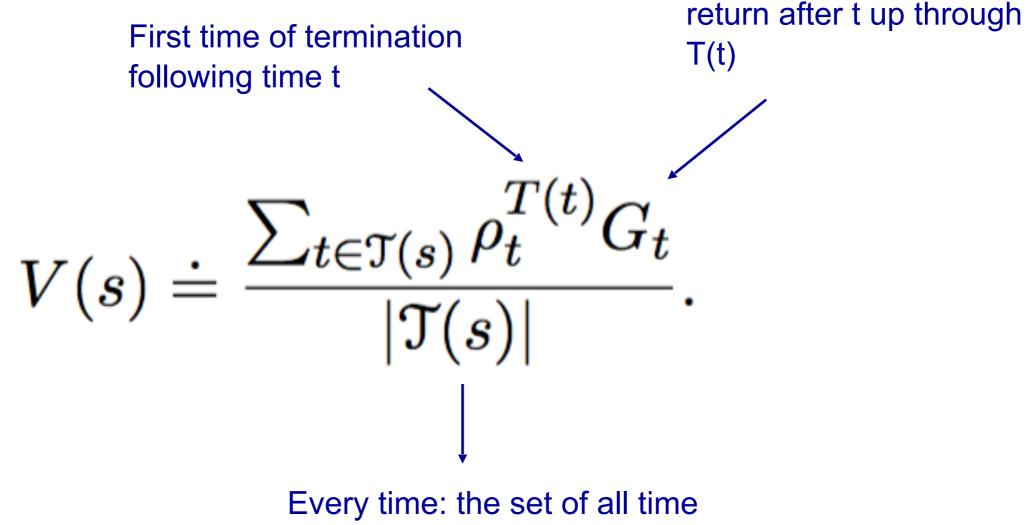
$$\begin{aligned} \Pr\{A_t, S_{t+1}, A_{t+1}, \dots, S_T \mid S_t, A_{t:T-1} \sim \pi\} \\ &= \pi(A_t | S_t) p(S_{t+1} | S_t, A_t) \pi(A_{t+1} | S_{t+1}) \cdots p(S_T | S_{T-1}, A_{T-1}) \\ &= \prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k), \end{aligned}$$

Importance Sampling: Each return is weighted by he relative probability of the trajectory under the target and behavior policies

$$\rho_t^T = \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k | S_k) p(S_{k+1} | S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k | S_k)}{\mu(A_k | S_k)}$$

This is called the Importance Sampling Ratio

Ordinary importance sampling forms estimate

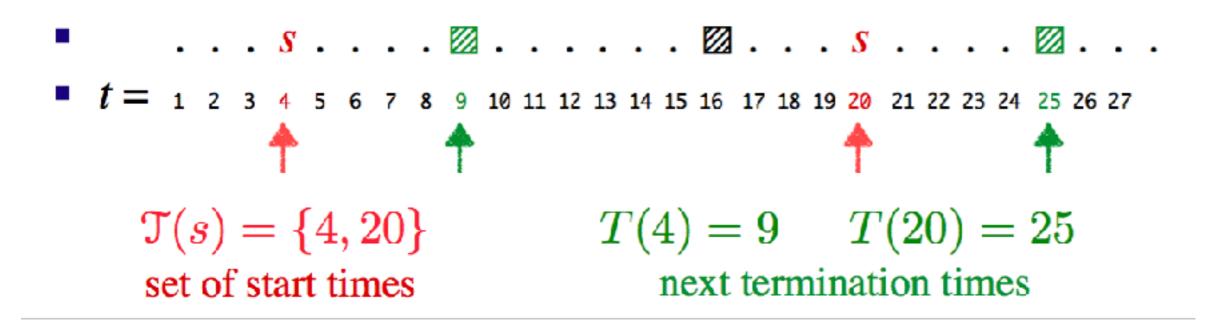


steps in which state s is visited

Ordinary importance sampling forms estimate

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)} G_t}{|\mathfrak{T}(s)|}.$$

New notation: time steps increase across episode boundaries:



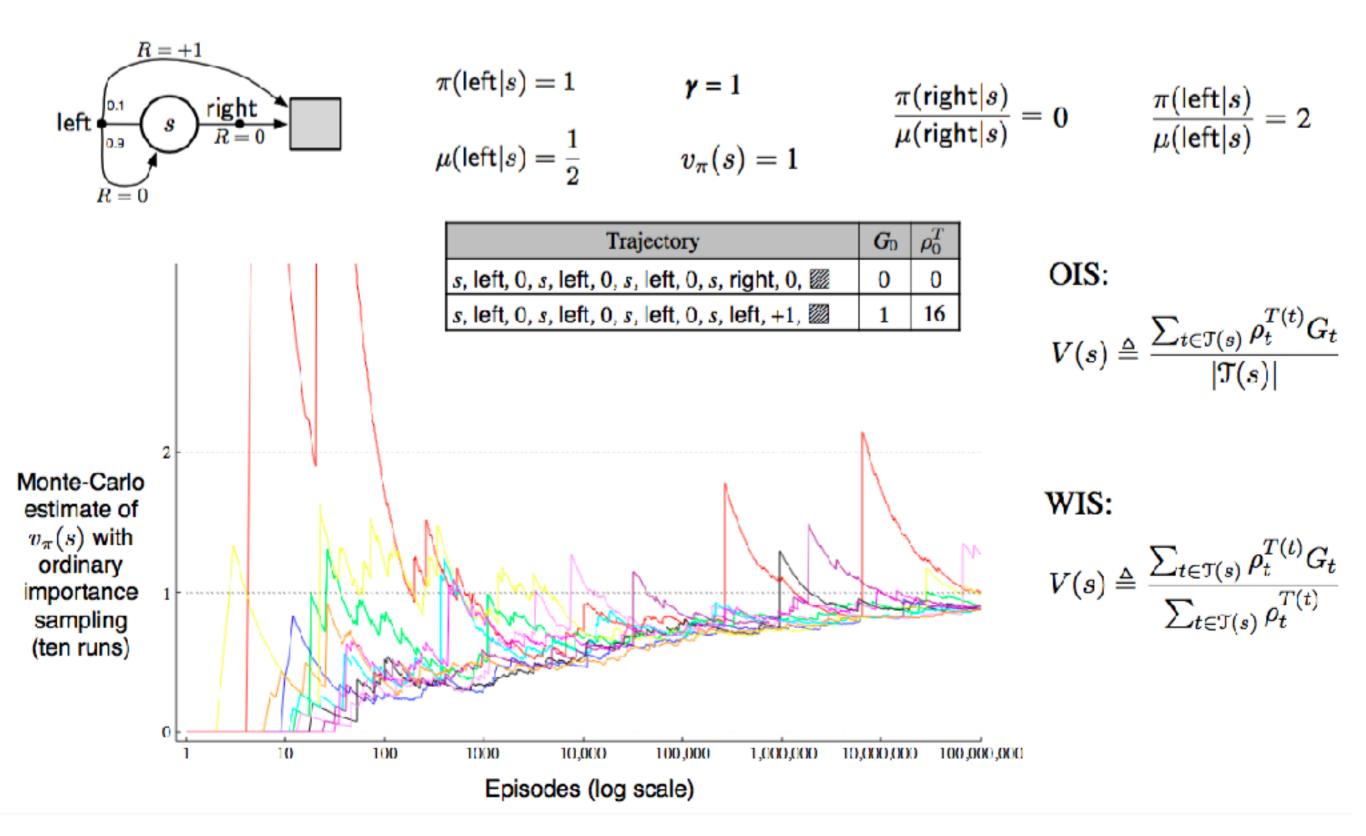
Ordinary importance sampling forms estimate

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)} G_t}{|\mathfrak{T}(s)|}.$$

• Weighted importance sampling forms estimate:

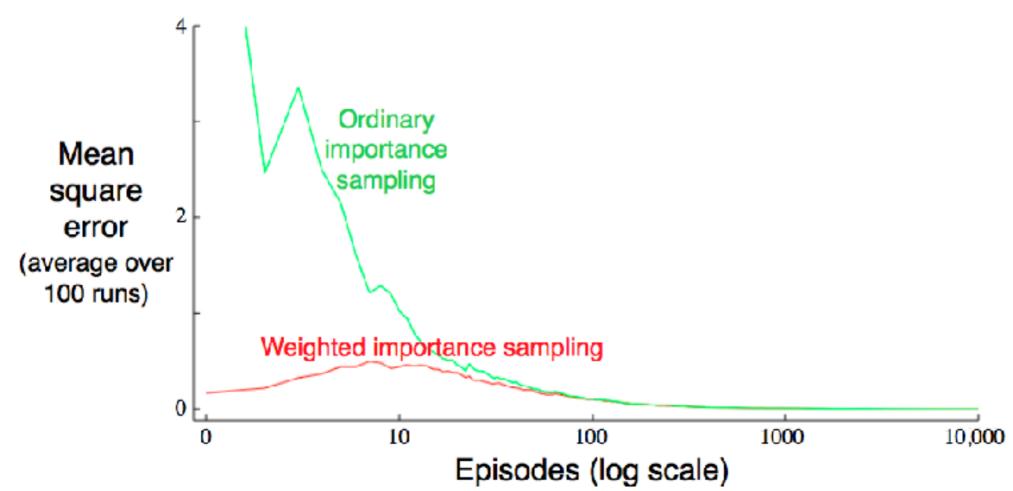
$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)} G_t}{\sum_{t \in \mathfrak{T}(s)} \rho_t^{T(t)}}$$

Example of Infinite Variance under Ordinary Importance Sampling



Example: Off-policy Estimation of the Value of a Single Blackjack State

- State is player-sum 13, dealer-showing 2, useable ace
- Target policy is stick only on 20 or 21
- Behavior policy is equiprobable
- ► True value ≈ -0.27726



Incremental off-policy every-visit MC policy evaluation (returns $Q \approx q_{\pi}$

Input: an arbitrary target policy π

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

C(s, a) \leftarrow 0
```

```
 \begin{array}{l} \text{Repeat forever:} \\ \mu \leftarrow \text{any policy with coverage of } \pi \\ \text{Generate an episode using } \mu \text{:} \\ S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, S_T \\ G \leftarrow 0 \\ W \leftarrow 1 \\ \text{For } t = T - 1, T - 2, \dots \text{ downto } 0 \text{:} \\ G \leftarrow \gamma G + R_{t+1} \\ C(S_t, A_t) \leftarrow C(S_t, A_t) + W \\ Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[ G - Q(S_t, A_t) \right] \\ W \leftarrow W \frac{\pi(A_t | S_t)}{\mu(A_t | S_t)} \\ \text{If } W = 0 \text{ then ExitForLoop} \end{array}
```

$$\mu_{k} = \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Off-policy every-visit MC control (returns $\pi \approx \pi_*$)

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

C(s, a) \leftarrow 0

\pi(s) \leftarrow \operatorname{argmax}_{a} Q(S_{t}, a) (with ties broken consistently)
```

```
Repeat forever:
     \mu \leftarrow \text{any soft policy}
     Generate an episode using \mu:
           S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T, S_T
     G \leftarrow 0
     W \leftarrow 1
     For t = T - 1, T - 2, ... downto 0:
          G \leftarrow \gamma G + R_{t+1}
           C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
           \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a) (with ties broken consistently)
           If A_t \neq \pi(S_t) then ExitForLoop
          W \leftarrow W \frac{1}{\mu(A_t|S_t)}
```

Target policy is greedy and deterministic

Behavior policy is soft, typically ε -greedy

Summary

- MC has several advantages over DP:
 - Can learn directly from interaction with environment
 - No need for full models
 - Less harmed by violating Markov property (later in class)
- MC methods provide an alternate policy evaluation process
- One issue to watch for: maintaining sufficient exploration
 - Can learn directly from interaction with environment
- Looked at distinction between on-policy and off-policy methods
- Looked at importance sampling for off-policy learning
- Looked at distinction between ordinary and weighted IS

- MC methods are different than Dynamic Programming in that they:
 - 1. use experience in place of known dynamics and reward functions
 - 2. do not bootrap
- Next lecture we will see temporal difference learning which
 - 3. use experience in place of known dynamics and reward functions
 - 4. bootrap!