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Used Materials
• Disclaimer: Some material and slides for this lecture were borrowed 
from Rich Sutton’s class and David Silver’s class on Reinforcement 
Learning.



An operator      on a normed vector space      is a    -contraction,  
for                  , provided for all 

 
Theorem (Contraction mapping) 
For a   -contraction     in a complete normed vector space 

•     converges to a unique fixed point in 

• at a linear convergence rate 

Remark. In general we only need metric (vs normed) space

Contraction Mapping Theorem
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Value Function Sapce

• Consider the vector space      over value functions

• There are        dimensions

• Each point in this space fully specifies a value function 

• Bellman backup brings value functions closer in this space

• And therefore the backup must converge to a unique solution
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Value Function    -Norm 

• We will measure distance between state-value functions     and     
by the      -norm 

• i.e. the largest difference between state values,
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Bellman Expectation Backup is a Contraction

• Define the Bellman expectation backup operator

• This operator is a   -contraction, i.e. it makes value functions closer 
by at least    , �

�

F⇡(v) = r⇡ + �T⇡v

∥Fπ(u) − Fπ(v)∥∞ = ∥(rπ + γTπu) − (rπ + γTπv)∥∞

= ∥γTπ(u − v)∥∞

≤ ∥γTπ(1∥(u − v)∥∞)∥∞

= ∥γ(Tπ1)∥u − v∥∞∥∞

= ∥γ1∥u − v∥∞∥∞

= γ∥u − v∥∞



Convergence of Iter. Policy Evaluation and Policy Iteration

• The Bellman expectation operator         has a unique fixed point

•       is a fixed point of         (by Bellman expectation equation)

• By contraction mapping theorem 

• Iterative policy evaluation converges to 
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Policy Improvement

• Suppose we have computed        for a deterministic policy 

• For a given state   , would it be better to do an action                  ?

• It is better to switch to action     for state     if and only if 

• And we can compute                  from       by:  
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Policy Improvement Cont.

• Do this for all states to get a new policy                 that is greedy 
with respect to      : 
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Policy Improvement Cont.

• Do this for all states to get a new policy                 that is greedy 
with respect to      : 

⇡0 � ⇡
v⇡

⇡0(s) = argmax
a

q⇡(s, a)

= argmax
a

E[Rt+1 + �v⇡(s
0)|St = s,At = a]

= argmax r(s, a) + �
X

s02S
T (s0|s, a)v⇡(s0)p(s′�|s, a)

• After policy update it holds that:

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)



Policy Improvement Cont.
• After policy update it holds that:

vπk
(s) ≤ qπk

(s, πk+1(s))

• We have indeed improved the policy (or ended up on an equally good policy)



Policy Improvement Cont.

• If policy is unchanged after the greedification step, this means that:

vπ(s) = max
a∈𝒜 (r(s, a) + γ∑

s′�

p(s′ �|s, a)vπ(s′�))
vπ(s) = max

a∈𝒜
qπ(s, a)

• But this is the Bellman optimality Equation. So v_pi=v* and \pi is optimal



Policy Iteration

 policy evaluation policy improvement
“greedification”
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Policy Iteration

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v  V (s)
V (s) 

P
s0,r p(s0

, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true

For each s 2 S:
a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false

If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

argmax r(s, a) + �⌃s02ST (s
0|s, a)v⇡(s0)

⌃a2A⇡(a|s) (r(s, a) + �⌃s02ST (s
0|s, a)V (s0))

v

v
p(s′�|s, a)

p(s′�|s, a)

(Till convergence )



• Does policy evaluation need to converge to      ?

• Or should we introduce a stopping condition

• e.g.     -convergence of value function

• Or simply stop after k iterations of iterative policy evaluation?

• For example, in the small grid world k = 3 was sufficient to achieve 
optimal policy

• Why not update policy every iteration? i.e. stop after k = 1

• This is equivalent to value iteration (next section)

Generalized Policy Iteration

v⇡

✏



Generalized Policy Iteration

Generalized Policy Iteration (GPI):  any interleaving of policy 
evaluation and policy improvement, independent of their granularity.

A geometric metaphor for
convergence of GPI: 

evaluation

improvement
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Principle of Optimality

• Any optimal policy can be subdivided into two components:

• An optimal first action 

• Followed by an optimal policy from successor state 

• Theorem (Principle of Optimality)

• A policy             achieves the optimal value from state   , 
dfsfdsfdf dsfdf  , if and only if

• For any state      reachable from   ,      achieves the optimal 
value from state   , 

⇡(a|s) s
v⇡(s) = v⇤(s)

s0 s ⇡
s0 v⇡(s

0) = v⇤(s
0)

A⇤

S 0



Value Iteration

• Problem: find optimal policy

• Solution: iterative application of Bellman optimality backup

•  

• Using synchronous backups

• At each iteration k + 1

• For all states 

• Update                  from  

⇡

v1 ! v2 ! ... ! v⇤

vk+1(s) vk(s
0)

s 2 S



Value Iteration (2)
Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration (2)
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Bellman Optimality Backup is a Contraction

• Define the Bellman optimality backup operator    ,

• This operator is a     -contraction, i.e. it makes value functions 
closer by at least      (similar to previous proof)

F ⇤

F ⇤(v) = max
a2A

r(a) + �T (a)v

||F ⇤(u)� F ⇤(v)||1  �||u� v||1
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Convergence of Value Iteration

• The Bellman optimality operator        has a unique fixed point

•       is a fixed point of        (by Bellman optimality equation)

• By contraction mapping theorem

• Value iteration converges on 

F ⇤

v⇤ F ⇤
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• Algorithms are based on state-value function              or 

• Complexity                   per iteration, for       actions and       states

• Could also apply to action-value function                  or 
• Complexity                     per iteration

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation Iterative Policy 
Evaluation

Control Bellman Expectation Equation + 
Greedy Policy Improvement Policy Iteration

Control Bellman Optimality Equation Value Iteration

v⇤(s)v⇡(s)

q⇡(s, a) q⇤(s, a)
O(mn

2)

O(m2
n
2)

m n



Summary so far
• We are investigating finite MDPs: finite sets of actions and states

• We explained why value functions are important 

• We discussed two ways to compute optimal policies: policy iteration and 
value iteration

• We saw that value iteration and policy evaluation converge to v* and v_pi 
and that policy iteration converges to the optimal policy and optimal value 
function (\pi*,v*)

• We have understood that exhaustive state sweeps (synchronous 
dynamic programming) are hopeless… 

Can we change that?



Efficiency of DP

• To find an optimal policy is polynomial in the number of states…

• BUT, the number of states is often astronomical, e.g., often 
growing exponentially with the number of state variables (what 
Bellman called “the curse of dimensionality”).

• In practice, classical DP can be applied to problems with a few 
millions of states.



Asynchronous DP

• All the DP methods described so far require exhaustive sweeps of 
the entire state set.

• Asynchronous DP does not use sweeps. Instead it works like this:

• Repeat until convergence criterion is met:

• Sample a state at random and apply the appropriate backup

• Still need lots of computation, but does not get locked into 
hopelessly long sweeps

• Guaranteed to converge if all states continue to be selected



Asynchronous Dynamic Programming

• Three simple ideas for asynchronous dynamic programming:

• In-place dynamic programming

• Prioritized sweeping

• Real-time dynamic programming



• Synchronous value iteration stores two copies of value function

• for all       in 

• In-place value iteration only stores one copy of value function

• for all       in

In-Place Dynamic Programming
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Prioritized Sweeping

• Use magnitude of Bellman error to guide state selection, e.g.

• Backup the state with the largest remaining Bellman error

• Update Bellman poor of affected states after each backup

• Requires knowledge of reverse dynamics (predecessor states)

• Can be implemented efficiently by maintaining a priority queue

�����max
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Example: Shortest Path

• Body Level One              

• Body Level Two              

• Body Level Three              

• Body Level Four              

Body Level Five

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example: Shortest Path
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Real-time Dynamic Programming

• Idea: only states that are relevant to agent

• Use agent’s experience to guide the selection of states

• After each time-step

• Backup the state
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