
Markov Decision Processes (2)

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Lecture 4, CMU 10-403

Katerina Fragkiadaki

Used Materials
• Disclaimer: Some material and slides for this lecture were borrowed
from Rich Sutton’s class and David Silver’s class on Reinforcement
Learning.

An operator on a normed vector space is a -contraction,  
for , provided for all

 
Theorem (Contraction mapping) 
For a -contraction in a complete normed vector space

• converges to a unique fixed point in

• at a linear convergence rate

Remark. In general we only need metric (vs normed) space

Contraction Mapping Theorem

F X �

||T (x)� T (y)||  �||x� y||

x, y 2 X0 < � < 1

� F X

F X
�

Value Function Sapce

• Consider the vector space over value functions

• There are dimensions

• Each point in this space fully specifies a value function

• Bellman backup brings value functions closer in this space

• And therefore the backup must converge to a unique solution

|S|
v(s)

V

s1

s2

s3

Value Function -Norm

• We will measure distance between state-value functions and
by the -norm

• i.e. the largest difference between state values,

1

u v
1

||u� v||1 = max
s2S

|u(s)� v(s)|

∥u∥∞ = max
s∈𝒮

|u(s) |

Bellman Expectation Backup is a Contraction

• Define the Bellman expectation backup operator

• This operator is a -contraction, i.e. it makes value functions closer
by at least , �

�

F⇡(v) = r⇡ + �T⇡v

∥Fπ(u) − Fπ(v)∥∞ = ∥(rπ + γTπu) − (rπ + γTπv)∥∞

= ∥γTπ(u − v)∥∞

≤ ∥γTπ(1∥(u − v)∥∞)∥∞

= ∥γ(Tπ1)∥u − v∥∞∥∞

= ∥γ1∥u − v∥∞∥∞

= γ∥u − v∥∞

Convergence of Iter. Policy Evaluation and Policy Iteration

• The Bellman expectation operator has a unique fixed point

• is a fixed point of (by Bellman expectation equation)

• By contraction mapping theorem

• Iterative policy evaluation converges to

F⇡

v⇡

F⇡v⇡

Policy Improvement

• Suppose we have computed for a deterministic policy

• For a given state , would it be better to do an action ?

• It is better to switch to action for state if and only if

• And we can compute from by:

v⇡ ⇡

s a 6= ⇡(s)

a s

q⇡(s, a) > v⇡(s)

q⇡(s, a) v⇡

vπ(s) = ∑
a

π(a |s) r(s, a) + γ∑
r,s′�

p(s′�|s, a)vπ(s′�)

qπ(s, a) = r(s, a) + γ ∑
s′�∈𝒮

p(s′�|s, a)vπ(s′�)

Policy Improvement Cont.

• Do this for all states to get a new policy that is greedy
with respect to :

⇡0 � ⇡
v⇡

⇡0(s) = argmax
a

q⇡(s, a)

= argmax
a

E[Rt+1 + �v⇡(s
0)|St = s,At = a]

= argmax r(s, a) + �
X

s02S
T (s0|s, a)v⇡(s0)p(s′�|s, a)

Policy Improvement Cont.

• Do this for all states to get a new policy that is greedy
with respect to :

⇡0 � ⇡
v⇡

⇡0(s) = argmax
a

q⇡(s, a)

= argmax
a

E[Rt+1 + �v⇡(s
0)|St = s,At = a]

= argmax r(s, a) + �
X

s02S
T (s0|s, a)v⇡(s0)p(s′�|s, a)

• After policy update it holds that:

v⇡(s) =
X

a2A
⇡(a|s)q⇡(s, a)

Policy Improvement Cont.
• After policy update it holds that:

vπk
(s) ≤ qπk

(s, πk+1(s))

• We have indeed improved the policy (or ended up on an equally good policy)

Policy Improvement Cont.

• If policy is unchanged after the greedification step, this means that:

vπ(s) = max
a∈𝒜 (r(s, a) + γ∑

s′�

p(s′ �|s, a)vπ(s′�))
vπ(s) = max

a∈𝒜
qπ(s, a)

• But this is the Bellman optimality Equation. So v_pi=v* and \pi is optimal

Policy Iteration

 policy evaluation policy improvement
“greedification”

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! ...

I�! ⇡⇤
E�! v⇤

Policy Iteration

92 CHAPTER 4. DYNAMIC PROGRAMMING

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Repeat

� 0
For each s 2 S:

v V (s)
V (s)

P
s0,r p(s0

, r|s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number)

3. Policy Improvement
policy-stable true

For each s 2 S:
a ⇡(s)
⇡(s) arg maxa

P
s0,r p(s0

, r|s, a)
⇥
r + �V (s0)

⇤

If a 6= ⇡(s), then policy-stable false

If policy-stable, then stop and return V and ⇡; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for v⇤. This
algorithm has a subtle bug, in that it may never terminate if the policy con-
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

argmax r(s, a) + �⌃s02ST (s
0|s, a)v⇡(s0)

⌃a2A⇡(a|s) (r(s, a) + �⌃s02ST (s
0|s, a)V (s0))

v

v
p(s′�|s, a)

p(s′�|s, a)

(Till convergence)

• Does policy evaluation need to converge to ?

• Or should we introduce a stopping condition

• e.g. -convergence of value function

• Or simply stop after k iterations of iterative policy evaluation?

• For example, in the small grid world k = 3 was sufficient to achieve
optimal policy

• Why not update policy every iteration? i.e. stop after k = 1

• This is equivalent to value iteration (next section)

Generalized Policy Iteration

v⇡

✏

Generalized Policy Iteration

Generalized Policy Iteration (GPI): any interleaving of policy
evaluation and policy improvement, independent of their granularity.

A geometric metaphor for
convergence of GPI:

evaluation

improvement

⇡ greedy(V)

V⇡

V v⇡

v⇤⇡⇤

v⇤,⇡⇤

V0,⇡0

V = v⇡

⇡ = greed
y(V)

v⇡

v⇡

v⇤

v⇤

Principle of Optimality

• Any optimal policy can be subdivided into two components:

• An optimal first action

• Followed by an optimal policy from successor state

• Theorem (Principle of Optimality)

• A policy achieves the optimal value from state ,
dfsfdsfdf dsfdf , if and only if

• For any state reachable from , achieves the optimal
value from state ,

⇡(a|s) s
v⇡(s) = v⇤(s)

s0 s ⇡
s0 v⇡(s

0) = v⇤(s
0)

A⇤

S 0

Value Iteration

• Problem: find optimal policy

• Solution: iterative application of Bellman optimality backup

•

• Using synchronous backups

• At each iteration k + 1

• For all states

• Update from

⇡

v1 ! v2 ! ... ! v⇤

vk+1(s) vk(s
0)

s 2 S

Value Iteration (2)
Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Value Iteration (2)

vk+1(s) � s

vk(s0) � s0

r

a

vk+1(s) = max
a2A

Ra

s + �
X

s02S
Pa
ss0vk(s

0)

!

vk+1 = max
a2A

RaRaRa + �PaPaPavk

r

vk+1(s) = max
a2A

r(s, a) + �

X

s02S
T (s0|s, a)vk(s0)

!

vk+1 = max
a2A

r(a) + �T (a)vk

vk+1(s) s

vk(s
0) s0

p(s′�|s, a)

γp(a)vk

v[k+1](s) = max
a∈𝒜 (r(s, a) + γ ∑

s′�∈𝒮

p(s′ �|s, a)v[k](s′�)), ∀s

Bellman Optimality Backup is a Contraction

• Define the Bellman optimality backup operator ,

• This operator is a -contraction, i.e. it makes value functions
closer by at least (similar to previous proof)

F ⇤

F ⇤(v) = max
a2A

r(a) + �T (a)v

||F ⇤(u)� F ⇤(v)||1  �||u� v||1

�
�

γp(a)v

Convergence of Value Iteration

• The Bellman optimality operator has a unique fixed point

• is a fixed point of (by Bellman optimality equation)

• By contraction mapping theorem

• Value iteration converges on

F ⇤

v⇤ F ⇤

v⇤

• Algorithms are based on state-value function or

• Complexity per iteration, for actions and states

• Could also apply to action-value function or
• Complexity per iteration

Synchronous Dynamic Programming Algorithms

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation Iterative Policy
Evaluation

Control Bellman Expectation Equation +
Greedy Policy Improvement Policy Iteration

Control Bellman Optimality Equation Value Iteration

v⇤(s)v⇡(s)

q⇡(s, a) q⇤(s, a)
O(mn

2)

O(m2
n
2)

m n

Summary so far
• We are investigating finite MDPs: finite sets of actions and states

• We explained why value functions are important

• We discussed two ways to compute optimal policies: policy iteration and
value iteration

• We saw that value iteration and policy evaluation converge to v* and v_pi
and that policy iteration converges to the optimal policy and optimal value
function (\pi*,v*)

• We have understood that exhaustive state sweeps (synchronous
dynamic programming) are hopeless…

Can we change that?

Efficiency of DP

• To find an optimal policy is polynomial in the number of states…

• BUT, the number of states is often astronomical, e.g., often
growing exponentially with the number of state variables (what
Bellman called “the curse of dimensionality”).

• In practice, classical DP can be applied to problems with a few
millions of states.

Asynchronous DP

• All the DP methods described so far require exhaustive sweeps of
the entire state set.

• Asynchronous DP does not use sweeps. Instead it works like this:

• Repeat until convergence criterion is met:

• Sample a state at random and apply the appropriate backup

• Still need lots of computation, but does not get locked into
hopelessly long sweeps

• Guaranteed to converge if all states continue to be selected

Asynchronous Dynamic Programming

• Three simple ideas for asynchronous dynamic programming:

• In-place dynamic programming

• Prioritized sweeping

• Real-time dynamic programming

• Synchronous value iteration stores two copies of value function

• for all in

• In-place value iteration only stores one copy of value function

• for all in

In-Place Dynamic Programming

s S
vnew(s) max

a2A

r(s, a) + �

X

s02S
T (s0|s, a)vold(s0)

!

v(s) max
a2A

r(s, a) + �

X

s02S
T (s0|s, a)v(s0)

!

vold vnew

s S

p

p

Prioritized Sweeping

• Use magnitude of Bellman error to guide state selection, e.g.

• Backup the state with the largest remaining Bellman error

• Update Bellman poor of affected states after each backup

• Requires knowledge of reverse dynamics (predecessor states)

• Can be implemented efficiently by maintaining a priority queue

�����max
a2A

r(s, a) + �

X

s02S
T (s0|s, a)v(s0)

!
� v(s)

�����
p

Example: Shortest Path

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

Body Level Five

Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs

Example: Shortest Path

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0

-1

-2

-2

-1

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

-2

0

-1

-2

-3

-1

-2

-3

-3

-2

-3

-3

-3

-3

-3

-3

-3

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-4

-3

-4

-4

-4

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-5

0

-1

-2

-3

-1

-2

-3

-4

-2

-3

-4

-5

-3

-4

-5

-6

g

Problem V1 V2 V3

V4 V5 V6 V7

Real-time Dynamic Programming

• Idea: only states that are relevant to agent

• Use agent’s experience to guide the selection of states

• After each time-step

• Backup the state

v(St) max
a2A

r(St, a) + �

X

s02S
T (s0|St, a)v(s

0)

!

St,At, rt+1

St

p

