Deep Reinforcement Learning and Control

Temporal Difference Learning

Spring 2019, CMU 10-403

Katerina Fragkiadaki

Used Materials

• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Rich Sutton's class and David Silver's class on Reinforcement Learning.

MC and TD Learning

- Goal: learn $v_{\pi}(s)$ from episodes of experience under policy π
- Incremental every-visit Monte-Carlo:
 - Update value $V(S_t)$ toward actual return G_t

 $V(S_t) \leftarrow V(S_t) + \alpha \left(\mathbf{G}_t - V(S_t) \right)$

- Simplest Temporal-Difference learning algorithm: TD(0)
 - Update value V(S_t) toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ called the TD error.

DP vs. MC vs. TD Learning

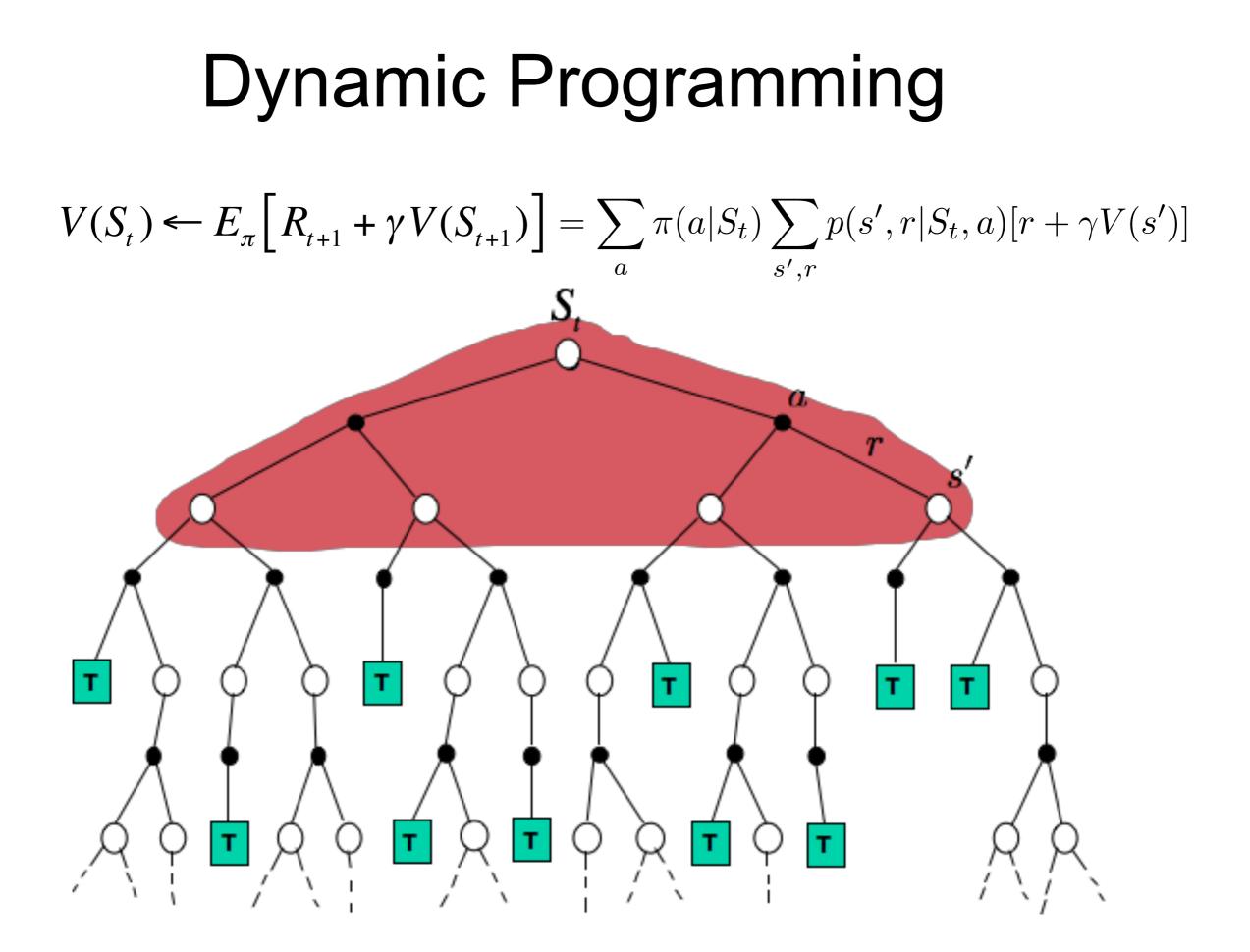
Remember:

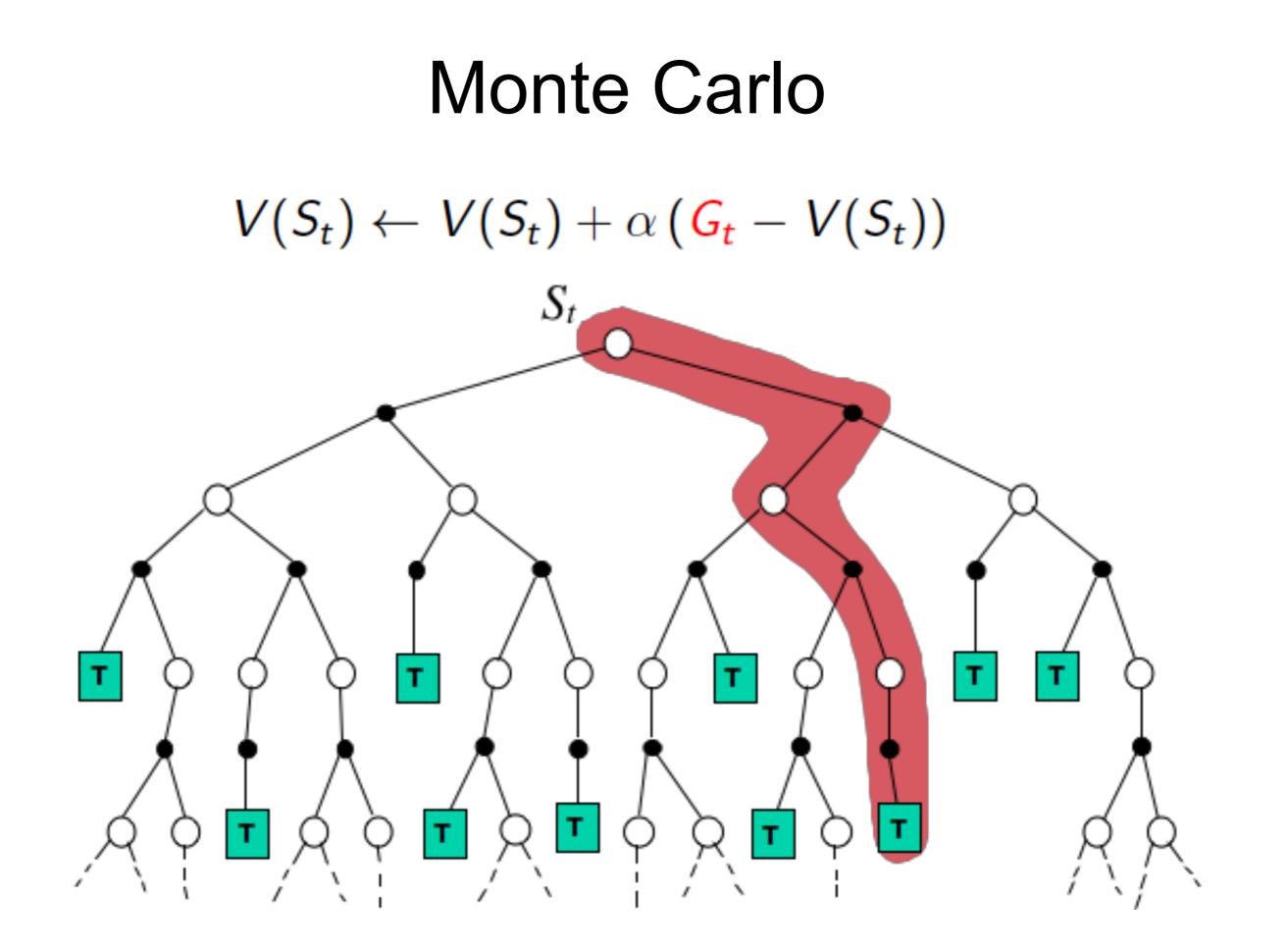
MC: sample average return approximates expectation

$$\begin{aligned} v_{\pi}(s) &\doteq \mathbb{E}_{\pi}[G_{t} \mid S_{t} = s] \\ &= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi} \left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \mid S_{t} = s \right] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s] \,. \end{aligned}$$

TD: combine both: Sample expected values and use a current estimate $V(S_{t+1})$ of the true $v_{\pi}(S_{t+1})$

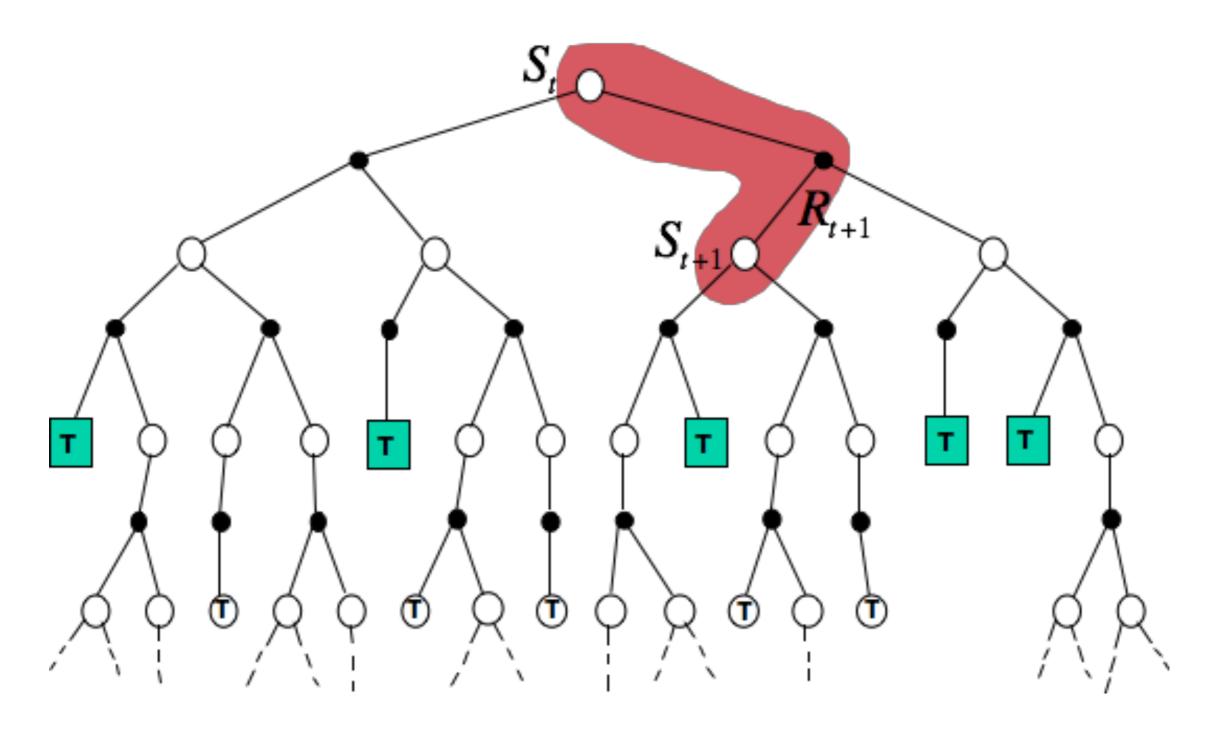
DP: the expected values are provided by a model. But we use a current estimate $V(S_{t+1})$ of the true $v_{\pi}(S_{t+1})$





Simplest TD(0) Method

 $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$



TD Methods Bootstrap and Sample

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples

TD Prediction

- Policy Evaluation (the prediction problem):
 - for a given policy π , compute the state-value function v_{π}
- Remember: Simple every-visit Monte Carlo method:

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big]$$

target: the actual return after time *t*

► The simplest Temporal-Difference method TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

target: an estimate of the return

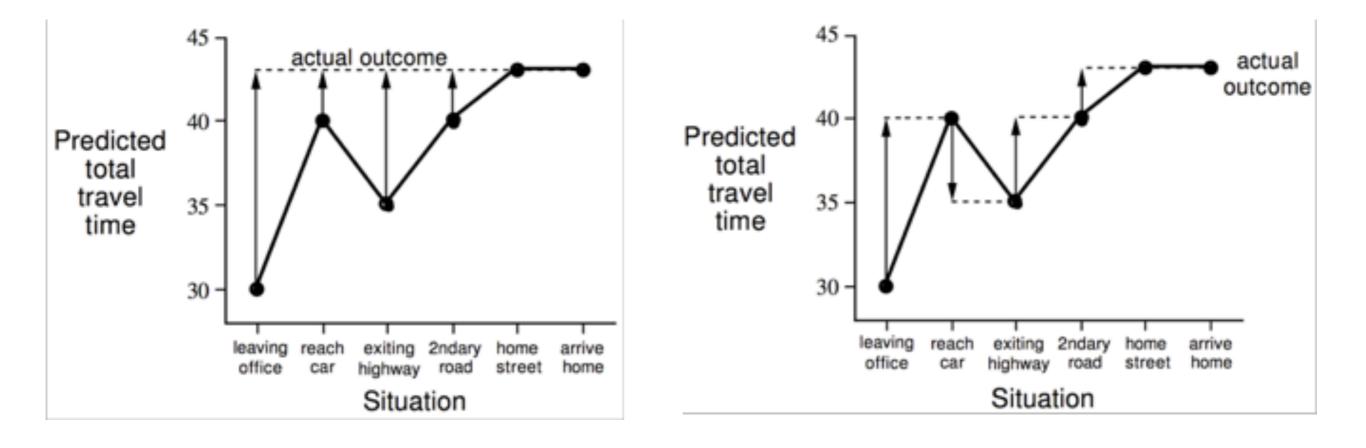
Example: Driving Home

	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

Example: Driving Home

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)



Advantages of TD Learning

- TD methods do not require a model of the environment, only experience
- TD, but not MC, methods can be fully incremental
- You can learn before knowing the final outcome
 - Less memory
 - Less computation
- You can learn without the final outcome
 - From incomplete sequences
- Both MC and TD converge (under certain assumptions to be detailed later), but which is faster?

Batch Updating in TD and MC methods

- Batch Updating: train completely on a finite amount of data,
 - e.g., train repeatedly on 10 episodes until convergence.
- Compute updates according to TD or MC, but only update estimates after each complete pass through the data.
- For any finite Markov prediction task, under batch updating, TD converges for sufficiently small α.
- Constant-α MC also converges under these conditions, but may converge to a different answer.

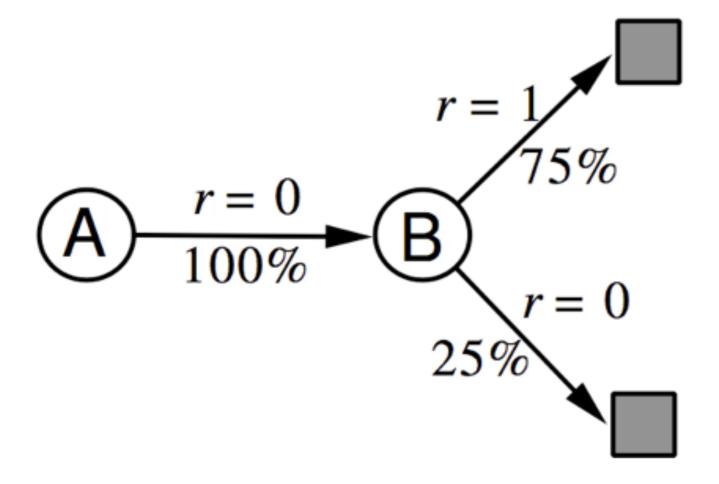
AB Example

• Suppose you observe the following 8 episodes:

A, 0, B, 0**B**, 1 **B**, 1 V(B)? 0.75**B**, 1 V(A)? 0?**B**, 1 **B**, 1 **B**, 1 **B**, 0

• Assume Markov states, no discounting ($\gamma = 1$)

AB Example



V(A)? 0.75

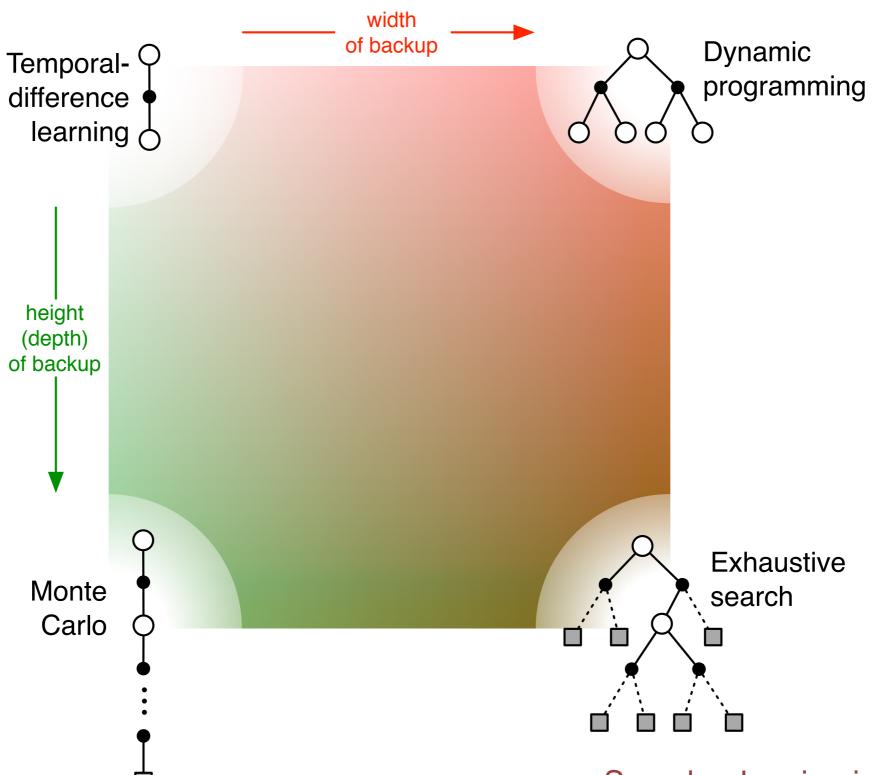
AB Example

- The prediction that best matches the training data is V(A)=0
 - This minimizes the mean-square-error on the training set
 - This is what a batch Monte Carlo method gets
- If we consider the sequentiality of the problem, then we would set V(A)=.75
 - This is correct for the maximum likelihood estimate of a Markov model generating the data
 - i.e, if we do a best fit Markov model, and assume it is exactly correct, and then compute what it predicts.
 - This is called the certainty-equivalence estimate
 - This is what TD gets

Summary so far

- Introduced one-step tabular model-free TD methods
- These methods bootstrap and sample, combining aspects of DP and MC methods
- If the world is truly Markov, then TD methods will learn faster than MC methods

Unified View



Search, planning in a later lecture!

Learning An Action-Value Function

• Estimate q_{π} for the current policy π

$$\cdots \underbrace{S_{t}}_{S_{t},A_{t}} \underbrace{R_{t+1}}_{S_{t+1},A_{t+1}} \underbrace{S_{t+2}}_{S_{t+2}} \underbrace{R_{t+3}}_{S_{t+3},A_{t+3}} \underbrace{S_{t+3}}_{S_{t+3},A_{t+3}} \cdots$$

After every transition from a nonterminal state, S_t , do this: $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \Big]$ If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$

Sarsa: On-Policy TD Control

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate:

```
Initialize Q(s, a), \forall s \in S, a \in \mathcal{A}(s), arbitrarily, and Q(terminal-state, \cdot) = 0

Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Repeat (for each step of episode):

Take action A, observe R, S'

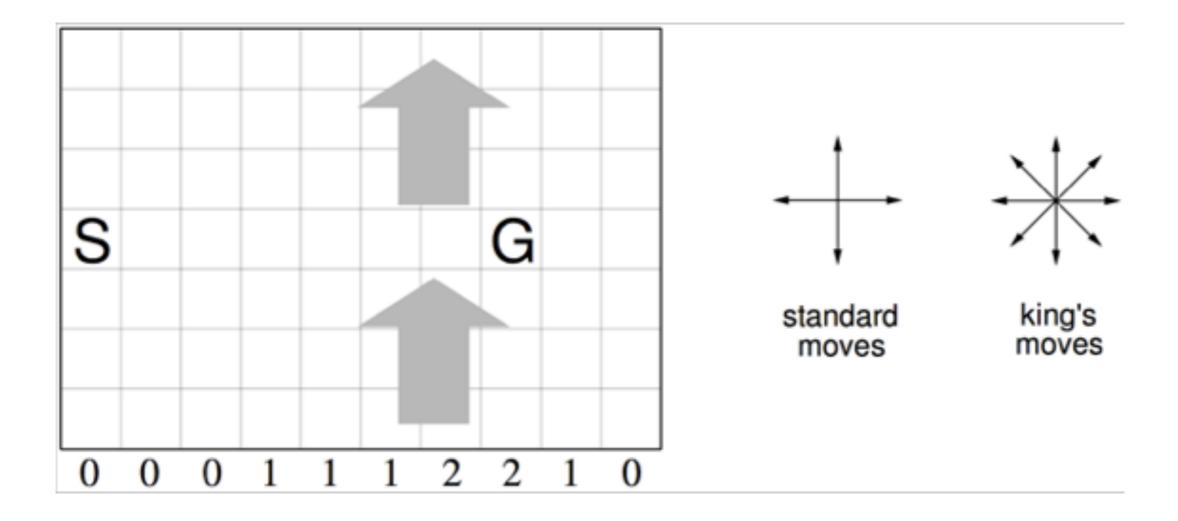
Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma Q(S', A') - Q(S, A)]

S \leftarrow S'; A \leftarrow A';

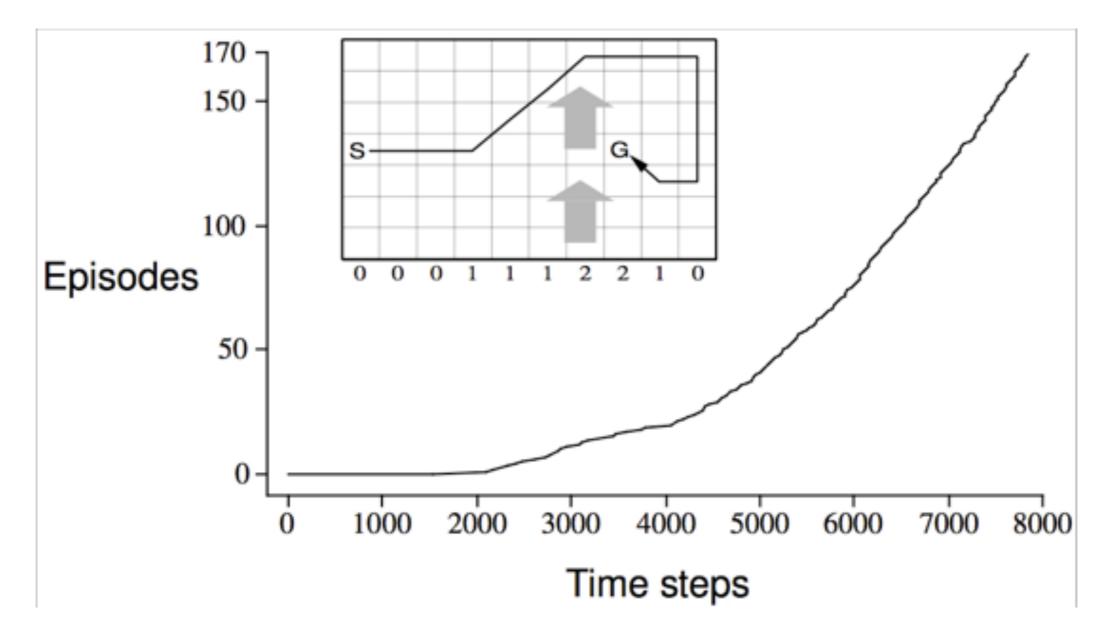
until S is terminal
```

Windy Gridworld



undiscounted, episodic, reward = -1 until goal

Results of Sarsa on the Windy Gridworld



Q: Can a policy result in infinite loops? What will MC policy iteration do then?

- If the policy leads to infinite loop states, MC control will get trapped as the episode will not terminate.
- Instead, TD control can update continually the state-action values and switch to a different policy.

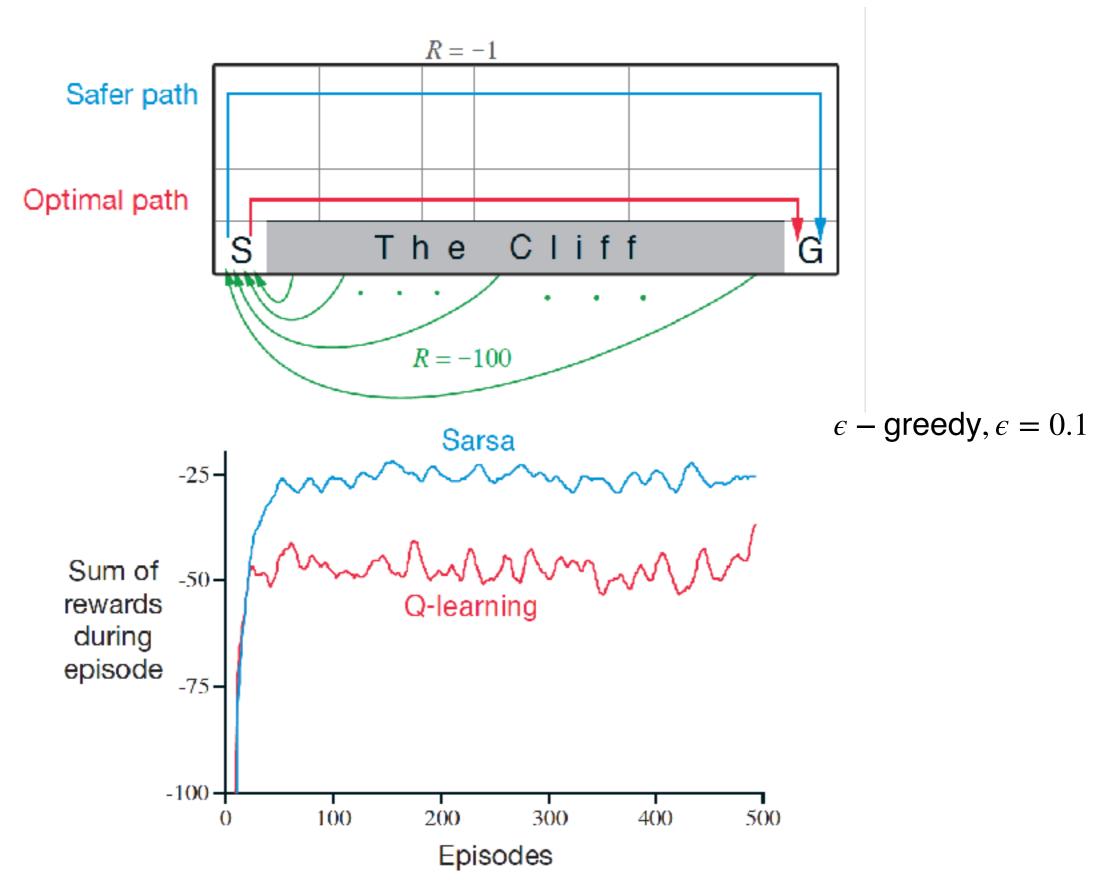
Q-Learning: Off-Policy TD Control

One-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma Q(S', A') - Q(S, A)]$$

Cliffwalking



Expected Sarsa

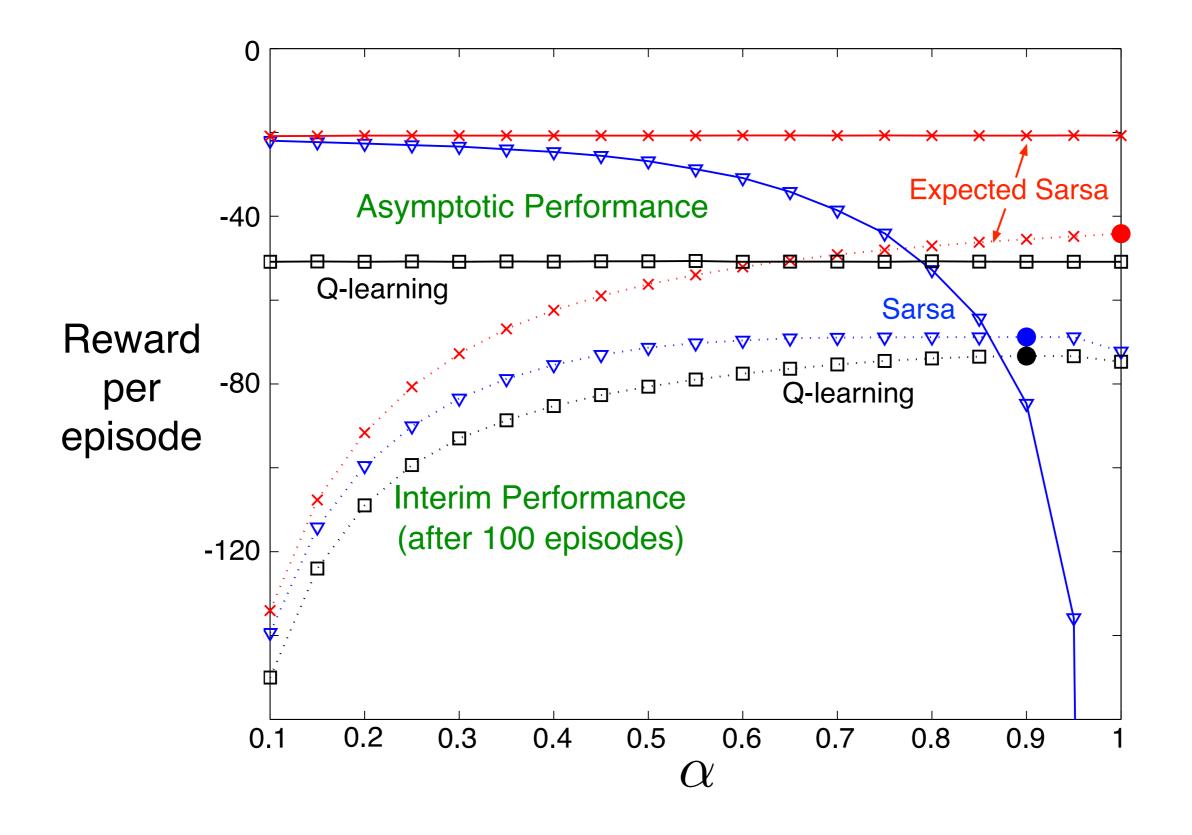
Instead of the sample value-of-next-state, use the expectation!

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \Big] \\ \leftarrow Q(S_{t}, A_{t}) + \alpha \Big[R_{t+1} + \gamma \sum \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \Big]$$

- Expected Sarsa performs better than Sarsa (but costs more)
 - ▶ Q: why?

Q: Is expected SARSA on policy or off policy? What if \pi is the greedy deterministic policy?

Performance on the Cliff-walking Task



Summary

- Introduced one-step tabular model-free TD methods
- These methods bootstrap and sample, combining aspects of DP and MC methods
- TD methods are computationally congenial
- If the world is truly Markov, then TD methods will learn faster than MC methods
- Extend prediction to control by employing some form of GPI
 - On-policy control: Sarsa, Expected Sarsa
 - Off-policy control: Q-learning