Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Temporal Difference Learning

Spring 2019, CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Rich Sutton’s class and David Silver’s class on
Reinforcement Learning.

MC and TD Learning

» Goal: learn v, (8) from episodes of experience under policy T

» Incremental every-visit Monte-Carlo:
- Update value V(S;) toward actual return G;

V(S:) « V(S5:) + a(G: — V(S))

» Simplest Temporal-Difference learning algorithm: TD(0)
- Update value V(S;) toward estimated returns Rit1 + vV(St+1)

V(St) < V(S:) + a(Ris1 + v V(See1) — V(St))

» Rir1 + yV/(S¢41) is called the TD target
¥ 0 = Rev1 +yV(Si11) — V(S:) called the TD error.

DP vs. MC vs. TD Learning

MC: sample average return

/ approximates expectation

» Remember:

’UW(S) = fw[Gt | StZS]
" o)
= E; Z’Y Riiky1 | St=8
k=0 J
- -)
= Ex|Ri41 + WZVth+k+2 St=8
k=0 i
= [Rt+1 + Yur(St+1) | St=s].
— \ DP: the expected values are

TD: combine both: Sample
expected values and use a
current estimate V(S;,,) of the true

Vr(St+1)

provided by a model. But we use
a current estimate V(S;,4) of the
true v (Si4q)

Dynamic Programming

V(S) < E,[R,, +7V(S,.)] = n(als) Y p(s'. 715t a)lr + 4V ()]

Monte Carlo

V(S:) « V(S:) + a(G — V(S5:))
St

Simplest TD(0) Method

V(St) <+ V(St) + a (R + 7 V(Sev1) — V(St))

TD Methods Bootstrap and Sample

» Bootstrapping: update involves an estimate
- MC does not bootstrap
- DP bootstraps
- TD bootstraps

» Sampling: update does not involve an expected value
- MC samples
- DP does not sample

- TD samples

TD Prediction

» Policy Evaluation (the prediction problem):

- for a given policy 11, compute the state-value function v

» Remember: Simple every-visit Monte Carlo method:

V(Sy) « V(S) + |Gy = V(S1)

4

/

target: the actual return after time ¢

» The simplest Temporal-Difference method TD(0):

V(S1) = V() + | Repr + 9V (St41) = V(S1)
l
\

target: an estimate of the return

Example: Driving Home

Elapsed Tvme Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 30
2ndary road, behind truck 30 10 40
entering home street 40 3 43

arrive home 43 0 43

Example: Driving Home

Changes recommended by Monte

Carlo methods (o=1)

45 -
___actual outcome_
, 40 -
Predicted
total
time
30) <

' | || || ' 1
leaving reach exiting 2ndary home arrive
office car highway road street home

Situation

Predicted
total
travel
time

Changes recommended
by TD methods (a=1)

45 -
actual
outcome
40
35
30
T T T T T T
leaving reach exiting 2ndary home arrive
office car highway road sireet home

Situation

Advantages of TD Learning

TD methods do not require a model of the environment, only
experience

TD, but not MC, methods can be fully incremental

You can learn before knowing the final outcome

- Less memory

- Less computation

You can learn without the final outcome

- From incomplete sequences

Both MC and TD converge (under certain assumptions to be
detailed later), but which is faster?

Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,

- e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating, TD
converges for sufficiently small a.

Constant-a MC also converges under these conditions, but may
converge to a different answer.

AB Example

» Suppose you observe the following 8 episodes:

A,0,B,0

B, 1

B,1 V(B)? 0.75
B, 1

B. 1 V(A)? 07
B, 1

B, 1

B.0

»

» Assume Markov states, no discounting (y = 1)

AB Example

V(A)? 075

r=10
o 100%

AB Example

» The prediction that best matches the training data is V(A)=0

>

This minimizes the mean-square-error on the training set

This is what a batch Monte Carlo method gets

If we consider the sequentiality of the problem, then we would set
V(A)=.75

This is correct for the maximum likelihood estimate of a Markov
model generating the data

l.e, if we do a best fit Markov model, and assume it is exactly
correct, and then compute what it predicts.

This is called the certainty-equivalence estimate

This is what TD gets

Summary so far

Introduced one-step tabular model-free TD methods

These methods bootstrap and sample, combining aspects of DP
and MC methods

If the world is truly Markov, then TD methods will learn faster than
MC methods

Unified View

Temporal- y |
difference programming
learning

height
(depth)
of backup

O .
® Exhaustive
Monte . search
Carlo O 5
[

. Y
. .
.)
. .
. . ’ .
. : . .

l Search, planning in a later lecture!

Learning An Action-Value Function

» Estimate g, for the current policy 1

- — S) ® S, ® S.. ® S PN
t St,At " St+1,At+1 w St+2,At+2 \fy St+3,At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < O(S,.A)+a|R,, +70(S,,.A,)-0S,.A)]
If §,,, 1s terminal, then define Q(S,,,,A,,,)=0

r+1

Sarsa: On-Policy TD Control

» Turn this into a control method by always updating the policy to be
greedy with respect to the current estimate:

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, A) + Q(S, A) + a|R+1Q(5", 4") — Q(S, A)]
S+ S A+ A

until S is terminal

Windy Gridworld

S G .

standard
moves

O 0 01 1.1 2 2 1 0

» undiscounted, episodic, reward = —1 until goal

Results of Sarsa on the Windy Gridworld

170 ~
150 - /
S G
A N
100 -
Eplsodes 0O 0 0 1
50 -
O-

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

Q: Can a policy result in infinite loops? What will MC policy iteration do then?
- If the policy leads to infinite loop states, MC control will get trapped as the episode will not

terminate.
* Instead, TD control can update continually the state-action values and switch to a different

policy.

Q-Learning: Off-Policy TD Control

» One-step Q-learning:

Q(St Ar) = Q(Si, A + 0| Resa +ymaxQ(Si1,0) — Q(Sh, Ay)|

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’

Q(S, A) < Q(S, A) + a|R + ymax, Q(S/7 a) — Q(S, A)]

S+ S

until S is terminal

Q(S, 4) + Q(S, 4) + a[R+vQ(5", A) — Q(S, A)]

Cliffwalking

R=-1

Safer path

Optimal path
S The Cliff LT

R =-100

e —greedy,e = 0.1

Sarsa

25 -
Sum of -5() -
rewards Q-learning
during
episode -

'l()() 1 1 1 | 1
0 100 200 300 400 500

Episodes

Expected Sarsa

» Instead of the sample value-of-next-state, use the expectation!

Q(St, Ar) <+ Q(St, Ay) + :Rt+1 + YE[Q(St41, Atr1) | Sia1] — Q(St, At)}

QS Ar) + | Rist + 7Y 7(alSe41)Q(Si11,0) — Q(S1, Ay)|

» Expected Sarsa performs better than Sarsa (but costs more)
» Q: why?

Q: Is expected SARSA on policy or off policy? What if \pi is the greedy deterministic policy?

Performance on the Cliff-walking Task

0)
QF«#)v‘ é (/‘_(, }\;_\' ‘,v‘_(' % % % > % % > % % % % X
: Expected Sarsa
40 - Asymptotic Performance P /]
...... xxxx.
88888888 —F—&F 88— 1
Q-learning o X
Reward _x-*‘x' R S A AR AREANS S H
80 I v PR RER = A~ . i
per 80 x‘_x““‘v‘ "o g0
episode x Ve
- v B
x @ Interim Performance
o0l 7 (after 100 episodes)
o
><
¥
m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Summary

Introduced one-step tabular model-free TD methods

These methods bootstrap and sample, combining aspects of DP and
MC methods

TD methods are computationally congenial

If the world is truly Markov, then TD methods will learn faster than
MC methods

Extend prediction to control by employing some form of GPI

- On-policy control: Sarsa, Expected Sarsa

- Off-policy control: Q-learning

