Carnegie Mellon

School of Computer Science

Deep Reinforcement Learning and Control

Exploration/Exploitation in Multi-armed
Bandits

Spring 2019, CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Some of the material and slides for this lecture were
borrowed from Russ Salakhutdinov who in turn borrowed from Rich
Sutton’s class and David Silver’s class on Reinforcement Learning.

Supervised VS Reinforcement Learning

- Supervised learning (instructive feedback): the expert directly
suggests correct actions

- Learning by interaction (evaluative feedback): the environment
provides signal whether actions the agent selects are good or bad,
not even how far away they are from the optimal actions!

Evaluative feedback depends on the current policy the agent has
- Exploration: active search for good actions to execute

Exploration vs. Exploitation Dilemma

» Online decision-making involves a fundamental choice:

- Exploitation: Make the best decision given current information
- Exploration: Gather more information

» The best long-term strategy may involve short-term sacrifices

» Gather enough information to make the best overall decisions

Exploration vs. Exploitation Dilemma

» Restaurant Selection

- Exploitation: Go to your favorite restaurant
- Exploration: Try a new restaurant

» Qil Drilling
- Exploitation: Drill at the best known location
- Exploration: Drill at a new location

» Game Playing
- Exploitation: Play the move you believe is best
- Exploration: Play an experimental move

Reinforcement learning

reward

action

environment

Agent and environment interact at discrete time steps: =0,1,2,3,...
Agent observes state at step t: S, €S
produces action at step t: A, € A(S,)
gets resulting reward: R, E R C R

and resulting next state: S, € 8T

r+1

. Rt+1 Rt+2m Rt+3
C) T D R O ma O e

This lecture

A closer look to exploration-exploitation balancing in a simplified RL setup

Multi-Armed Bandits

action
A

A, Ry At+19 R >, At+2’ At+3’ R3, ...

The state does not change.

Multi-Armed Bandits

One-armed bandit= Slot machine (English slang)

oRmmenm— |
B B8 B

§ oxckeoT |
i ONALL
| BAR©'7

COMBINATIONS| 5

source: infoslotmachine.com

Multi-Armed Bandits

« Multi-Armed bandit = Multiple Slot Machine

Multi-Armed Bandit Problem

At each timestep r the agent chooses one of the K arms and plays it.
The ith arm produces reward r;, when played at timestep .

The rewards r;, are drawn from a probability distribution &, with mean 4,
The agent does not know neither the arm reward distributions neither their means

Hi H2 H3

source: Pandey et al.'s slide

Alternative notation for mean arm rewards:

g«(a) =E|Ri|As = a], VYae{l,... k}

Agent’s Obijective:
« Maximize cumulative rewards.
* |In other words:

Example: Bernoulli Bandits

Recall: The Bernoulli distribution is the discrete probability distribution of a random variable which
takes the value 1 with probability p and the value 0 with probability g=1-p, that is, the probability
distribution of any single experiment that asks a yes—no question

- Each action (arm when played) results in success or failure. Rewards are binary!
- Mean reward for each arm represents the probability of success
- Action (arm) k € {1, ..., K} produces a success with probability 6_k € [0, 1].

Jackpot!!! Jackpot!!! Jackpot!!!

source: Pandey et al.’s slide

win 0.6 win 0.4 win 0.45
of time of time of time

https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Yes%E2%80%93no_question

Example: Gaussian Bandits

Reward
distribution

Real world motivation: A/B testing

Two arm bandits: each arm corresponds to an image variation shown to users (not
necessarily the same user

Mean rewards: the total percentage of users that would click on each invitation

OBAMA ® BIDEN

DINNER == BARACK INNER == BARACK

Your chance to meet the President Your chance to meet the President

|] - | \)

OBAMA ® BIDEN

DINNER w=

YOU’RE INVITED.
WE'LL COVER YOUR AIRI

You're invited.
We'll cover your airfare.

No purchase, payment, or contribution necessary to enter or win. Contributing will notimprove chances of No purchase, payment, or contribution necessary to enter or win, Contributing will notimprove chances of
winning. Void where prohibited. Entries must be received by September 20, 2012. You may enter by

winning. Void where prohibited. Entries must be received by September 2
contributing to Obama Victory Fund 2012 here or click he

2012. You may enter by
e to enter without contributing. Three winners will

contributing to Obama Victory Fund 2012 he

e or click here to enter without contributing. Three winners will
each receive the following prize package: round-trip tickets for winner from within the fifty U.S. States, DC,
or Puerto Rico to a destination to be determined by the Sponsor; hotel accommodations; and dinner with
President Obama on a date to be determined by the Sponsor (approximate retail value of all prizes
$4,800). 0dds of winning depend on number of entries received. Promotion open only to U.S. ci

each receive the following prize package: round-irip tickets for winner from within the fifty U.S. States, DC,
or Puerto Rico to a destination to be determined by the Sponsor; hotel accommodations; and dinner with

President Obama on a date to be determined by the Sponsor (approximate retail value of all prizes

$4,800). Odds of winning depend on number of entries r:

ved. Promotion open only to U.S. ci
lawful permanent U.S. residents who are legal residents of 50 United States, District of Columbia and

ens, o

ns, or
lawiul permanent U.S. residents who are legal residents of 50 United States, District of Columbia and
Puerto Rico and 18 or older (or age of majority under applicable law). Promotion subject to Official Rules
and additional restrictions on eligibility. Sponsor: Obama for America, 130 E. Randolph St
Chicago, IL 60601

Puerto Rico and 18 or older (or age of majority under applicable law). Promotion subject to Official Rules

and additional restrictions on eli

bilit. Sponsor: Obama for America, 130 E. Randolph St
Chicago, IL 60601

OBAMA © BIDEN OBAMA © BIDEN

Privacy Policy ~ Terms of Service Privacy Policy ~ Terms of Service

Contributions or gifts to Obama Victory Fund 2012 are not tax deductible

VICTORY FUND 2012, AJOINT FUNDRAISING COMMITTEE AUTHORIZED BY OBAMAFOR AMERICA, THE DEMOCRATIC NATIONAL COMMITTEE,
AND THE STATE DEMOCRATIC PARTIES IN THE FOLLOWING STATES: CO, FL, IA, NV, NH, NC, OH, PA, VA, AND W1

Contributions or gifts to Obama Victory Fund 2012 are not tax deductible.

12, AJOINT FUNDRAISING COMMITTEE AUTHORIZED BY OBAMAFOR AMERICA, THE DEH"C TIC NATIONAL COMMITTEE,
ATE DEMOCRATIC PARTIES IN THE FOLLOWING STATES: CO, FL, IA, NV, NH, NC, OH, PA

PAID FOR BY OBAN

PAID FOR BY OBAMAVICTORY FUND
AND THE

©2011-2012 Obama for America. All Rights Reserved

©2011-2012 Obama for America. All Rights Reserved

Real world motivation: NETFLIX artwork

For a particular movie, we want to decide what image to show (to all the NEFLIX users)

» Actions: uploading one of the K images to a user’s home screen

« Ground-truth mean rewards (unknown): the % of NETFLIX users that will click on the
title and watch the movie

- Estimated mean rewards: the average click rate observed (quality engagement, not
clickbait)

Netflix Artwork

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (CL) ~ (x (Cl), Va action-value estimates

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (CL) ~ (x (Cl), Va action-value estimates

e Define the action at time t as

A; = argmax Q;(a)

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (CL) ~ (x (Cl), Va action-value estimates

* Define the greedy action at time t as

A; = argmax Q;(a)

* If A, = A; then you are exploiting
If A; # A; then you are exploring

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (CL) ~ (]« (CL), Va action-value estimates
* Define the greedy action at time t as

A; = argmax Q;(a)

* If A, = A then you are exploiting
If A; # A; then you are exploring

* You can’t do both, but you need to do both

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qt (CL) ~ (]« (a), Va action-value estimates
* Define the greedy action at time t as

A; = argmax Q;(a)

* If A, = A then you are exploiting
If A; # A; then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time.

Regret

The action-value is the mean reward for action a,
g«(a) = E[R¢|A; = a], Vaec{l,... k} (expected return)
The optimal value is

V. = g(a*) = max g«(a)
aced

The regret is the opportunity loss for one step

I = E[v. — g«(a)] reward = — regret

The total regret is the total opportunity loss

T

Lt = [Z Vi — Q*(Clt)

=1

Maximize cumulative reward = minimize total regret

Regret

The count Ny(a): the number of times that action a has been selected prior
to time t

The gap A, is the difference in value between action a and optimal
action a-: A, =v.— q«(a)

Regret is a function of gaps and the counts

T

Lt = [Z Vi — Q*(at)

| =1

— 2 [E[Nt(a)](\/* — Q*(a))

aed

=) EN(@)]A,

ace

Forming Action-Value Estimates

* Estimate action values as sample averages:

sum of rewards when a taken prior to ¢ ZZ;% Ri 14,4

Qt(a) =

number of times a taken prior to ¢ N Zf;} 14,—q

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

The number of times action a
has been taken by time ¢

Forming Action-Value Estimates

* To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1_|_R2_|‘"’_|_Rn—1
N n—1

Qn

Forming Action-Value Estimates

* To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1_|_R2_|‘"’_|_Rn—1
N n—1

Qn

* How can we do this incrementally (without storing all the rewards)?

* Could store a running sum and count (and divide), or equivalently:

Qnt1 = Qn : [Rn — Qn}

n

Forming Action-Value Estimates

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1_|_R2_|‘"’_|_Rn—1
N n—1

Qn

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

Qnt1 = Qn : [Rn — Qn}

n

This is a standard form for learning/update rules:

NewEstimate < OldEstimate + StepSize [Target — OldEstimate}

Forming Action-Value Estimates

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1_|‘R2_|_”“|—Rn—1
N n—1

Qn

How can we do this incrementally (without storing all the rewards)?

Could store a running sum and count (and divide), or equivalently:

Qnt1 = Qn : [Rn — Qn}

n

This is a standard form for learning/update rules: °"'

NewEstimate < OldEstimate + StepSize [Target — O]dEstimate}

Derivation of incremental update

_ Ri+Ry+-+ Ry
N n—1

n

||
S |-

]
IS

Qn—|—1

Non-stationary bandits

* Suppose the true action values change slowly over time

* then we say that the problem is nonstationary

* |n this case, sample averages are not a good idea

* Why!

Non-stationary bandits

Suppose the true action values change slowly over time

* then we say that the problem is nonstationary

In this case, sample averages are not a good idea

Better is an “exponential, recency-weighted average’:
Qnit = Qu+a| Ry = Qn|

n
=(1-a)"Q1+ » all —a)" 'R,
i=1
where a € (0,1] and constant

This lecture

We have seen how to form estimates for the bandit mean rewards.

Next we will discuss our action selection strategy (policy)

Baseline: Fixed exploration period+Greedy

| Allocate a fixed time period to exploration when you try
bandits uniformly at random

Baseline: Fixed exploration period+Greedy

| Allocate a fixed time period to exploration when you try
bandits uniformly at random

—1

1

2.Estimate mean rewards for all actions () =

Baseline: Fixed exploration period+Greedy

| Allocate a fixed time period to exploration when you try
bandits uniformly at random

—1

: 2 r1(A, = a)

2.Estimate mean rewards for all actions () = o
A

3.Select the action that is optimal for the estimated mean rewards
given all data thus far, breaking ties at random

a, = argmax . ,0/(a)

Baseline: Fixed exploration period+Greedy

| Allocate a fixed time period to exploration when you try
bandits uniformly at random

—1

: 2 r1(A, = a)

2.Estimate mean rewards for all actions () = o
A

3.Select the action that is optimal for the estimated mean rewards
given all data thus far, breaking ties at random

a, = argmax . ,0/(a)

4.GOTO 3

Baseline: Fixed exploration period + Greedy

After the fixed exploration period we have formed the following reward estimates

Q: Will the greedy method always pick the second action?
» Greedy can lock onto a suboptimal action forever

» = Greedy has linear total regret

e-Greedy Action Selection

* |n greedy action selection, you always exploit

* |n e-greedy, you are usually greedy, but with probability € you

instead pick an action at random (possibly the greedy action
again)

* This is perhaps the simplest way to balance exploration and
exploitation

e-Greedy Action Selection

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) < 0
N(a) < 0

Repeat forever:
yon { arg max, Q(a) with probability 1 —e (breaking ties randomly)
a random action with probability e
R < bandit(A)
N(A)+ N(A)+1
Q(A) — Q(A) + i [R - Q(A)]

e-Greedy Algorithm

» The e-greedy algorithm continues to explore forever
- With probability 1 — € select @ = argmax,,0(a)

- With probability € select a random action

» Constant € ensures minimum regret

» = g-greedy has linear total regret

Counting Regret

greedy
e-greedy
Total regret |
decaying e-greedy
0] 1 2 3 : ; 6 7 : g 10 N 12 13 1 15 1 17 18 19
Time-steps

» If an algorithm forever explores it will have linear total regret
» If an algorithm never explores it will have linear total regret

Average reward for three algorithms

We sample 10 arm bandits 2
instantiations: N W
distribution)
q«(a) ~ N(0,1) 5 W

Ry ~ j\((Q*((l)vl)

IIIIIIIII
11111111111

1.5 _

= ().
R P
=001
. 1, PR o
- — reed
Average e=01(Y)
reward
0.5 4
0 | | | |
1 250 500 750 1000
Steps

Q: In the limit (after infinite number of steps), which method will result in the largest average
reward?

Optimal action for three algorithms

We sample 10 arm bandits 2
instantiations from here rowars Mol | B
distribution)
q«(a) ~ N(0,1) 5 W

Rt ~ N(Q* (a)7 1)

IIIIIIIII
11111111111

100% _
80% _
% 60% _
Optimal
action 40% 4
e = ((greedy)
20% 4
0%

T I | | |
1 250 500 750 1000

Q: Which method will find the optimal actioi iy the limit?

Optimal action for three algorithms

We sample 10 arm bandits :
instantiations from here Roward
distribution)
' (CL) ~ N(O, 1) < ’

Rt ~ N(Q* (a)7 1)

IIIIIIIII
11111111111

100% _
80% _
o 60%-

Optimal
action 40% _

e = 0 (greedy)

20% 4

0%

| | | |
250 500 750 1000
Steps

[

Q: Does the performance of those methods depend on the initialization of the action value
estimates?

Optimistic Initialization

Simple and practical idea: initialize Q(a) to high value
Update action value by incremental Monte-Carlo evaluation

Starting with N(a) > 0

1
Qt(at) — Qt—l(at) + (r t Qt—l(at))
N{a,)
Encourages systematic exploration early on just an incremental estimate
of sample mean,
But optimistic greedy can still lock onto including one ‘hallucinated’

a suboptimal action if rewards are stochastic initial optimistic value

Optimistic Initial Values

We initialize with the following reward estimates for Bernoulli bandits

Q: When it is possible that greedy action selection will not try out all the actions?

Optimistic Initial Values

g=(a) ~ N(0,1) . + * | * * “ ‘
Ry ~ N(Q* (a)7 1) °

|||||||||
11111111111

* Suppose we initialize the action values optimistically ((Q1(a) =5),
e.g., on the 10-armed testbed

100% —
optimistic, greedy
80% — Q,=5, =0
% 60% — realistic, e-greedy
Optimal 0,=0,€=0.1
action 40% -
20% -
0% = | | | I |
1 200 400 600 800 1000

» Goal: find an algorithm with sub-linear regret for any multi-armed bandit

To achieve that we need to reason about uncertainty of our

action value estimates

Optimism in the Face of Uncertainty

p(Q) |

» Which action should we pick?

» The more uncertain we are about an action-value
» The more important it is to explore that action

It could turn out to be the best action

Optimism in the Face of Uncertainty

» After picking blue action
» We are less uncertain about the value

» And more likely to pick another action
» Until we home in on best action

v

Upper Confidence Bounds

Estimate an upper confidence U,(a) for each action value

Such that with high probability
Q*(a) S Qt(a) + Uz(a)

/ N\

Estimated Upper
Confidence

Estimated mean

This upper confidence depends on the number of times action a has
been selected

- Small Ny(a) = large U,(a) (estimated value is uncertain)
- Large Ni(a) = small U,(a) (estimated value is accurate)

Select action maximizing Upper Confidence Bound (UCB)

a, = argmax . ,0/(a) + U/la)

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

E_et X1, ...,Xt be i.i.d. random variables in [0,1], and let
X:=21>!_. X, be the sample mean. Then

T

PE[X]>X:+u] < o

» We will apply Hoeffding’s Inequality to rewards of the bandit
conditioned on selecting action a

P|Q(a) > Qu(a) + Us(a)| < e 2M(UEF

Calculating Upper Confidence Bounds

Pick a probability p that true value exceeds UCB

Now solve for U,(a)

—2Nt(a) Ut(3)2

e =p

—log p
U(a) = \/th(a)

Reduce p as we observe more rewards, e.g. p = t=¢, c=4
(note: c is a hyper-parameter that trades-off explore/exploit)

Ensures we select optimal actionast — «

2logt
N(a)

Ui(a) =

Upper Confidence Bound (UCB)

* A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

* Select the action with the largest (estimated) upper bound

, _ logt _
A, =
t arggnax Qt(a) + C\/Nt(a)

UCB C = 2) L | \
et — ‘,1,Wfq-n[ww.-wh‘,}/-\paw'«(u«rw‘wrm\r"bNM 1T i
Tp,- ‘ 1 !

Average | |y
reward

Steps

Jackpot!!! ' t Jackpor!!!

1000 pulls, 1000 pulls, 10 pulls,
600 wins 400 wins 4 wins
Q_t(a_1)=0.6 Q_t(a_2)=0.4 Q_t(a_1)=0.4

Repeat forever:
A { argmax, Q(a) with probability 1 —e (breaking ties randomly)
E Si IO n - re ed a random action with probability
p g y R <+ bandit(A)
N(A) « N(A)+1
QA) QA+ by [R - Q(A)]

The problem with using mean estimates is that we cannot reason about uncertainty
of those estimates..

30

— action1
— action 2
— action 3 [

25

probability density
= N
w o

=
o
T

0.0 0.2 0.4 0.6 0.8 1.0

v

v

v

v

Bayesian Bandits

So far we have made no assumptions about the reward distribution R

- Except bounds on rewards

Bayesian bandits exploit prior knowledge of rewards, p [R]

They compute posterior distribution of rewards p [R ‘ ht]
- where the historyis: h; = a1, r1,...,ar—1, t—1

Use posterior to guide exploration

Bayes rule

Bayes rule enables us to reverse probabilities:

pB) = L (I%;f (4)

Slide from Nanto de Freitas

Problem 1: Diagnoses

1 The doctor has bad news and good news.

[The bad news is that you tested positive for a
serious disease, and that the test is 99% accurate
(1.e., the probability of testing positive given that
you have the disease 1s 0.99, as 1s the probability of
testing negative given that you don’t have the
disease).

[The good news is that this is a rare disease,
striking only 1 1n 10,000 people.

] What are the chances that you actually have the
disease?

Problem 1: Diagnoses

The test is 99% accurate: P(T=1ID=1) = 0.99 and P(T=0/D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=I) = 0.0001

Slide from Nanto de Freitas

Problem 1: Diagnoses

The test is 99% accurate: P(T=1ID=1) = 0.99 and P(T=0/D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=I) = 0.0001

(0<i]72)) = PEUP-OP (D=1}
(11 9P 0-0)# P(rr D o~

Slide from Nanto de Freitas

Problem 1: Diagnoses

The test is 99% accurate: P(T=1ID=1) = 0.99 and P(T=0/D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=I1) = 0.0001

(p=<1|Ts)) = P(Ts \\Dw\F(D*\E
(11 19y (0-0) (1 0)P)

~ 0.0098

Slide from Nanto de Freitas

Bayesian learning for model parameters

Step 1: Given n data, D = x,., = {x;, x,,..., x,, }, write down the
expression for the likelihood.:

p(DI6)
Step 2: Specify a prior: p(6)

Step 3: Compute the posterior:

p(OID) p(D16)p(6)
~ p(D)

Slide from Nanto de Freitas

Bernoulll bandits - Prior

Let’s consider a Beta distribution prior over the mean rewards of the Bernoulli bandits:

I'(cx ap—1 1
p(Ok) = F((af)—lt(gi))g (1—6r)” I'(n) =(n—1)!

a
a+f
The larger the a + f the more concentrated the distribution

The mean is

2.5 1
a=p=05—
/\\ a=5pF=1 ——
\ @=1pB=3 —
> L/ \ a=2,B=2 —
| \a=2,B=5 =
{ \
"‘ \'\
1.5 F \/ A
Beta(a, /) -
o v \
Q. ‘ ~\
1H) \
t' \
; \
0.5 -: N

,l
y

0 0.2 0.4 0.6 0.8 1

Bernoulll bandits-Posterior

Let’s consider a Beta distribution prior over the mean rewards of the Bernoulli bandits:

 T(k +BK) jor—tfy g Bt
PO = Fawr('+ () = (n— 1)

p(61D) - p(D16) p(6)

p(D)

The posterior is also a Beta! Because beta is conjugate distribution for the Bernoulli
distribution.
A closed form solution for the bayesian update, possible only for conjugate distributions!

(ag, Br) + (re, 1 —ry) if 2y =K.

(Qk,‘Bk) — {

Greedy VS Thompson for Bernoulli bandits

Algorithm 1 BernGreedy(K, a, () Algorithm 2 BernThompson(K, «, (3)
1: fort=1,2,... do 1: fort=1,2,... do
2: #estimate model: 2: #sample model:
3: for k=1,...,K do 3: for k=1,...,K do
4. ék < ak/(ozk + ﬁk) 4: Sample ék ~ beta(ozk, Bk)
5: end for 5: end for
a: SUCCess . 6
b: failure . #select and apply action: 7: #select and apply action:
8: Ty 4— argmax, ék: 8: Ty ¢— argmax, ék
9: Apply x; and observe r; 9: Apply x; and observe r;
10: 10:
11: #update distribution: 11: #update distribution:
12: (O‘wta ﬁwt) — (awt7ﬁ$t)+(rt7 1_Tt) 12: (aa?ta 59%) — (O‘wtvﬁwt)_‘_(rtv 1—7“75)
13: end for 13: end for

— action 2 — action 2
— action 3 | — action 3 [

N

w
T

N

w
T

N

o
T

[

[=)
T

probability density
) G
probability density
=
()]

[
o
T

w
T

o

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
mean reward mean reward

o
o

Recall: Thompson Sampling

Represent a posterior distribution of mean rewards

of the bandits, as opposed to mean estimates. R

1. Sample from it 6.6, .0~ p6,.6,:--6)
2. Choose action @ =argmaxklria)

3. Update the mean reward distribution p(0,, 6,:--6,)

The equivalent of mean expected rewards for general MDPs are Q
functions

Contextual Bandits (aka Associative Search)

A contextual bandit is a tuple (A, S, R)

v

A is a known set of k actions (or “arms”)

v

v

S=P [5] is an unknown distribution over
states (or “contexts”)

R2(r) = P[rl|s, a] is an unknown probability
distribution over rewards

v

At each time t

v

- Environment generates state s; ~ S
- Agent selects action a; € A
- Environment generates reward r: ~ R

v

. . . ¢
The goal is to maximize cumulative reward) |~ _, r;

Real world motivation: Personalized NETFLIX artwork

VN %)
k &«GRW‘

For a particular title and a particular user, we will use the contextual multi-armed bandit

formulation to decide what image to show per title per user

- Actions: uploading an image (available for this movie title) to a user’s home screen

- Mean rewards (unknown): the % of NETFLIX users that will click on the title and watch
the movie

- Estimated mean rewards: the average click rate (+quality engagement, not clickbait)

- Context (s) : user attributes, e.g., language preferences, gender of films she has
watched, time and day of the week, etc. Netflix Artwork

GOOD WILL HUNTING

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

