
Exploration/Exploitation in Multi-armed
Bandits

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon

School of Computer Science

Spring 2019, CMU 10-403

Used Materials
• Disclaimer: Some of the material and slides for this lecture were
borrowed from Russ Salakhutdinov who in turn borrowed from Rich
Sutton’s class and David Silver’s class on Reinforcement Learning.

Supervised VS Reinforcement Learning

• Supervised learning (instructive feedback): the expert directly
suggests correct actions

• Learning by interaction (evaluative feedback): the environment
provides signal whether actions the agent selects are good or bad,
not even how far away they are from the optimal actions!

• Evaluative feedback depends on the current policy the agent has
• Exploration: active search for good actions to execute

Exploration vs. Exploitation Dilemma

‣ Online decision-making involves a fundamental choice:
- Exploitation: Make the best decision given current information
- Exploration: Gather more information 

‣ The best long-term strategy may involve short-term sacrifices

‣ Gather enough information to make the best overall decisions

Exploration vs. Exploitation Dilemma

‣ Restaurant Selection
- Exploitation: Go to your favorite restaurant
- Exploration: Try a new restaurant

‣ Oil Drilling
- Exploitation: Drill at the best known location
- Exploration: Drill at a new location

‣ Game Playing
- Exploitation: Play the move you believe is best
- Exploration: Play an experimental move

Reinforcement learning

Agent and environment interact at discrete time steps: t = 0,1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

R

! = s0, a0, s1, a1, . . .

The other random variables are a function of this sequence. The transitional
target rt+1 is a function of st, at, and st+1. The termination condition �t,
terminal target zt, and prediction yt, are functions of st alone.

R(n)
t = rt+1 + �t+1zt+1 + (1� �t+1)R

(n�1)
t+1

R(0)
t = yt

R�
t = (1� �)

1X

n=1

�n�1R(n)
t

⇢t =
⇡(st, at)

b(st, at)

�wo↵(!) = �won(!)
1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(R̄
�
t � yt)rwyt

1

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

This lecture

A closer look to exploration-exploitation balancing in a simplified RL setup

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Agent and environment interact at discrete time steps: t = 0, 1, 2,K
 Agent observes state at step t: St ∈
 produces action at step t : At ∈ (St)
 gets resulting reward: Rt+1 ∈

 and resulting next state: St+1 ∈

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
St state at t
At action at t
Rt reward at t, dependent, like St, on At�1 and St�1

Gt return (cumulative discounted reward) following t

G(n)
t n-step return (Section 7.1)

G�
t �-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡
⇡(a|s) probability of taking action a in state s under stochastic policy ⇡
p(s0|s, a) probability of transition from state s to state s0 under action a
r(s, a, s0) expected immediate reward on transition from s to s0 under action a

v⇡(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q⇡(s, a) value of taking action a in state s under policy ⇡
q⇤(s, a) value of taking action a in state s under the optimal policy
Vt estimate (a random variable) of v⇡ or v⇤
Qt estimate (a random variable) of q⇡ or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,wt vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s
w>x inner product of vectors, w>x =

P
i wixi; e.g., v̂(s,w) = w>x(s)

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2
We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and

Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).
3
We use Rt+1 instead of Rt to denote the immediate reward due to the action taken

at time t because it emphasizes that the next reward and the next state, St+1, are jointly

determined.

St

Multi-Armed Bandits

At, Rt+1, At+1, Rt+2, At+2, At+3, Rt+3, . . .

The state does not change.

What is Multi-Armed Bandit?

One-Armed Bandit = Slot Machine (English slang)

source: infoslotmachine.com

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 5 / 28

One-armed bandit= Slot machine (English slang)

Multi-Armed Bandits

What is Multi-Armed Bandit?

Multi-Armed Bandit = Multiple Slot Machine

Objective: maximize reward in a casino

source: Microsoft Research

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 6 / 28

• Multi-Armed bandit = Multiple Slot Machine

Multi-Armed Bandits

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

Multi-Armed Bandit Problem
At each timestep t the agent chooses one of the K arms and plays it .
The ith arm produces reward ri,t when played at timestep t .
The rewards ri,t are drawn from a probability distribution 𝒫i with mean μi

The agent does not know neither the arm reward distributions neither their means

Agent’s Objective:
• Maximize cumulative rewards.
• In other words: Find the arm with the highest mean reward

q⇤(a)
.
= E[Rt|At = a] , 8a 2 {1, . . . , k}

Alternative notation for mean arm rewards:

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

Example: Bernoulli Bandits

win 0.6
of time

win 0.4
of time

win 0.45
of time

• Each action (arm when played) results in success or failure. Rewards are binary!
• Mean reward for each arm represents the probability of success
• Action (arm) k ∈ {1, …, K} produces a success with probability θ_k ∈ [0, 1].

Recall: The Bernoulli distribution is the discrete probability distribution of a random variable which
takes the value 1 with probability p and the value 0 with probability q=1-p, that is, the probability
distribution of any single experiment that asks a yes–no question

https://en.wikipedia.org/wiki/Discrete_probability_distribution
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Yes%E2%80%93no_question

1 2 63 54 7 8 9 10

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)
Reward

distribution

Action

-4

4

One Bandit Task from  
The 10-armed Testbed

Rt ⇠ N(q⇤(a), 1)

Example: Gaussian Bandits

Real Motivation

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 8 / 28

Real world motivation: A/B testing
• Two arm bandits: each arm corresponds to an image variation shown to users (not

necessarily the same user)
• Mean rewards: the total percentage of users that would click on each invitationReal Motivation

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 8 / 28

Netflix Artwork

For a particular movie, we want to decide what image to show (to all the NEFLIX users)
• Actions: uploading one of the K images to a user’s home screen
• Ground-truth mean rewards (unknown): the % of NETFLIX users that will click on the

title and watch the movie
• Estimated mean rewards: the average click rate observed (quality engagement, not

clickbait)

Real world motivation: NETFLIX artwork

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

• Suppose you form estimates

The Exploration/Exploitation Dilemma

Qt(a) ⇡ q⇤(a), 8a action-value estimates

• Suppose you form estimates

• Define the greedy action at time t as

A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma

Qt(a) ⇡ q⇤(a), 8a action-value estimates

A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma
• Suppose you form estimates

• Define the greedy action at time t as

• If then you are exploiting 
If then you are exploring

Qt(a) ⇡ q⇤(a), 8a action-value estimates

At = A⇤
t

At 6= A⇤
t

A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma
• Suppose you form estimates

• Define the greedy action at time t as

• If then you are exploiting 
If then you are exploring

• You can’t do both, but you need to do both

Qt(a) ⇡ q⇤(a), 8a action-value estimates

At = A⇤
t

At 6= A⇤
t

A⇤
t
.
= argmax

a
Qt(a)

The Exploration/Exploitation Dilemma
• Suppose you form estimates

• Define the greedy action at time t as

• If then you are exploiting 
If then you are exploring

• You can’t do both, but you need to do both

• You can never stop exploring, but maybe you should explore
less with time.

Qt(a) ⇡ q⇤(a), 8a action-value estimates

At = A⇤
t

At 6= A⇤
t

Regret

‣ Maximize cumulative reward = minimize total regret

‣ The action-value is the mean reward for action a,

(expected return)q⇤(a)
.
= E[Rt|At = a] , 8a 2 {1, . . . , k}

‣ The optimal value is

v* = q(a*) = max
a∈𝒜

q*(a)

‣ The regret is the opportunity loss for one step

reward = − regretIt = 𝔼[v* − q*(at)]

‣ The total regret is the total opportunity loss

Lt = 𝔼 [
T

∑
t=1

v* − q*(at)]

Regret
‣ The count Nt(a): the number of times that action a has been selected prior

to time t

‣ The gap ∆a is the difference in value between action a and optimal
action a∗:  Δa = v* − q*(a)

‣ Regret is a function of gaps and the counts

Lt = 𝔼 [
T

∑
t=1

v* − q*(at)]
= ∑

a∈𝒜

𝔼[Nt(a)](v* − q*(a))

= ∑
a∈𝒜

𝔼[Nt(a)]Δa

Forming Action-Value Estimates

• Estimate action values as sample averages:

2.2. ACTION-VALUE METHODS 27

and to exploit with any single action selection, one often refers to the “conflict”
between exploration and exploitation.

In any specific case, whether it is better to explore or exploit depends in a com-
plex way on the precise values of the estimates, uncertainties, and the number of
remaining steps. There are many sophisticated methods for balancing exploration
and exploitation for particular mathematical formulations of the k-armed bandit and
related problems. However, most of these methods make strong assumptions about
stationarity and prior knowledge that are either violated or impossible to verify in
applications and in the full reinforcement learning problem that we consider in sub-
sequent chapters. The guarantees of optimality or bounded loss for these methods
are of little comfort when the assumptions of their theory do not apply.

In this book we do not worry about balancing exploration and exploitation in a
sophisticated way; we worry only about balancing them at all. In this chapter we
present several simple balancing methods for the k-armed bandit problem and show
that they work much better than methods that always exploit. The need to balance
exploration and exploitation is a distinctive challenge that arises in reinforcement
learning; the simplicity of the k-armed bandit problem enables us to show this in a
particularly clear form.

2.2 Action-Value Methods

We begin by looking more closely at some simple methods for estimating the values
of actions and for using the estimates to make action selection decisions. Recall that
the true value of an action is the mean reward when that action is selected. One
natural way to estimate this is by averaging the rewards actually received:

Qt(a)
.
=

sum of rewards when a taken prior to t

number of times a taken prior to t
=

P
t�1
i=1 Ri · 1Ai=aP

t�1
i=1 1Ai=a

(2.1)

where 1predicate denotes the random variable that is 1 if predicate is true and 0 if it is
not. If the denominator is zero, then we instead define Qt(a) as some default value,
such as Q1(a) = 0. As the denominator goes to infinity, by the law of large numbers,
Qt(a) converges to q⇤(a). We call this the sample-average method for estimating
action values because each estimate is an average of the sample of relevant rewards.
Of course this is just one way to estimate action values, and not necessarily the best
one. Nevertheless, for now let us stay with this simple estimation method and turn
to the question of how the estimates might be used to select actions.

The simplest action selection rule is to select the action (or one of the actions)
with highest estimated action value, that is, to select at step t one of the greedy
actions, A⇤

t , for which Qt(A⇤
t) = maxa Qt(a). This greedy action selection method

can be written as

At

.
= argmax

a

Qt(a), (2.2)

lim
Nt(a)!1

Qt(a) = q⇤(a)

The number of times action a
has been taken by time t

• The sample-average estimates converge to the true values 
If the action is taken an infinite number of times

• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n+1 rewards:

30 CHAPTER 2. MULTI-ARM BANDITS

their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

Forming Action-Value Estimates

• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n+1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

Qn+1 = Qn +
1

n

h
Rn �Qn

i

30 CHAPTER 2. MULTI-ARM BANDITS

their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

Forming Action-Value Estimates

• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n+1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

• This is a standard form for learning/update rules:

Qn+1 = Qn +
1

n

h
Rn �Qn

i

34 CHAPTER 2. MULTI-ARM BANDITS

where here R1, . . . , RNt(a) are all the rewards received following all selections of action
a prior to play t. A problem with this straightforward implementation is that its
memory and computational requirements grow over time without bound. That is,
each additional reward following a selection of action a requires more memory to
store it and results in more computation being required to determine Qt(a).

As you might suspect, this is not really necessary. It is easy to devise incremental
update formulas for computing averages with small, constant computation required
to process each new reward. For some action, let Qn denote the estimate for its nth
reward, that is, the average of its first n� 1 rewards. Given this average and a nth
reward for the action, Rn, then the average of all n rewards can be computed by

Qn+1
.
=

1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn + Qn �Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each
new reward.

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Note that the step-size parameter (StepSize) used in the incremental method
described above changes from time step to time step. In processing the nth reward
for action a, that method uses a step-size parameter of 1

n
. In this book we denote

the step-size parameter by the symbol ↵ or, more generally, by ↵t(a). We sometimes
use the informal shorthand ↵ = 1

n
to refer to this case, leaving the dependence of n

on the action implicit.

30 CHAPTER 2. MULTI-ARM BANDITS

their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

Forming Action-Value Estimates

• To simplify notation, let us focus on one action

• We consider only its rewards, and its estimate after n+1 rewards:

• How can we do this incrementally (without storing all the rewards)?

• Could store a running sum and count (and divide), or equivalently:

• This is a standard form for learning/update rules:

Qn+1 = Qn +
1

n

h
Rn �Qn

i

34 CHAPTER 2. MULTI-ARM BANDITS

where here R1, . . . , RNt(a) are all the rewards received following all selections of action
a prior to play t. A problem with this straightforward implementation is that its
memory and computational requirements grow over time without bound. That is,
each additional reward following a selection of action a requires more memory to
store it and results in more computation being required to determine Qt(a).

As you might suspect, this is not really necessary. It is easy to devise incremental
update formulas for computing averages with small, constant computation required
to process each new reward. For some action, let Qn denote the estimate for its nth
reward, that is, the average of its first n� 1 rewards. Given this average and a nth
reward for the action, Rn, then the average of all n rewards can be computed by

Qn+1
.
=

1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn + Qn �Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implementation
requires memory only for Qn and n, and only the small computation (2.3) for each
new reward.

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Note that the step-size parameter (StepSize) used in the incremental method
described above changes from time step to time step. In processing the nth reward
for action a, that method uses a step-size parameter of 1

n
. In this book we denote

the step-size parameter by the symbol ↵ or, more generally, by ↵t(a). We sometimes
use the informal shorthand ↵ = 1

n
to refer to this case, leaving the dependence of n

on the action implicit.

30 CHAPTER 2. MULTI-ARM BANDITS

their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

error

Forming Action-Value Estimates

Derivation of incremental update

30 CHAPTER 2. MULTI-ARM BANDITS

their chances of recognizing the optimal action. The " = 0.1 method explores more,
and usually finds the optimal action earlier, but never selects it more than 91% of
the time. The " = 0.01 method improves more slowly, but eventually would perform
better than the " = 0.1 method on both performance measures. It is also possible to
reduce " over time to try to get the best of both high and low values.

The advantage of "-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier
rewards it takes more exploration to find the optimal action, and "-greedy methods
should fare even better relative to the greedy method. On the other hand, if the
reward variances were zero, then the greedy method would know the true value of
each action after trying it once. In this case the greedy method might actually
perform best because it would soon find the optimal action and then never explore.
But even in the deterministic case, there is a large advantage to exploring if we
weaken some of the other assumptions. For example, suppose the bandit task were
nonstationary, that is, that the true values of the actions changed over time. In this
case exploration is needed even in the deterministic case to make sure one of the
nongreedy actions has not changed to become better than the greedy one. As we
will see in the next few chapters, e↵ective nonstationarity is the case most commonly
encountered in reinforcement learning. Even if the underlying task is stationary and
deterministic, the learner faces a set of banditlike decision tasks each of which changes
over time as learning proceeds and the agent’s policy changes. Reinforcement learning
requires a balance between exploration and exploitation.

Exercise 2.1 In the comparison shown in Figure 2.2, which method will perform best
in the long run in terms of cumulative reward and cumulative probability of selecting
the best action? How much better will it be? Express your answer quantitatively.

2.3 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as
sample averages of observed rewards. We now turn to the question of how these
averages can be computed in a computationally e�cient manner, in particular, with
constant memory and per-time-step computation.

To simplify notation we concentrate on a single action. Let Ri now denote the
reward received after the ith selection of this action, and let Qn denote the estimate
of its action value after it has been selected n � 1 times, which we can now write
simply as

Qn

.
=

R1 + R2 + · · · + Rn�1

n � 1
.

The obvious implementation would be to maintain a record of all the rewards and
then perform this computation whenever the estimated value was needed. However,
in this case the memory and computational requirements would grow over time as
more rewards are seen. Each additional reward would require more memory to store
it and more computation to compute the sum in the numerator.

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Non-stationary bandits

• Suppose the true action values change slowly over time

• then we say that the problem is nonstationary

• In this case, sample averages are not a good idea

• Why?

Non-stationary bandits

• Suppose the true action values change slowly over time

• then we say that the problem is nonstationary

• In this case, sample averages are not a good idea

• Better is an “exponential, recency-weighted average”:

Qn+1
.
= Qn + ↵

h
Rn �Qn

i

= (1� ↵)nQ1 +
nX

i=1

↵(1� ↵)n�iRi,

where ↵ is a constant step-size parameter, ↵ 2 (0, 1]
where α ∈ (0,1] and constant

The smaller the i, the smaller the multiplier-> forgetting earlier rewards

This lecture

We have seen how to form estimates for the bandit mean rewards.
Next we will discuss our action selection strategy (policy)

Baseline: Fixed exploration period+Greedy

1.Allocate a fixed time period to exploration when you try
bandits uniformly at random

Baseline: Fixed exploration period+Greedy

1.Allocate a fixed time period to exploration when you try
bandits uniformly at random

2.Estimate mean rewards for all actions Qt(a) =
1

Nt(a)

t−1

∑
i=1

ri1(Ai = a)

Baseline: Fixed exploration period+Greedy

1.Allocate a fixed time period to exploration when you try
bandits uniformly at random

2.Estimate mean rewards for all actions

3.Select the action that is optimal for the estimated mean rewards
given all data thus far, breaking ties at random

at = argmaxa∈𝒜Qt(a)

Qt(a) =
1

Nt(a)

t−1

∑
i=1

ri1(Ai = a)

Baseline: Fixed exploration period+Greedy

1.Allocate a fixed time period to exploration when you try
bandits uniformly at random

2.Estimate mean rewards for all actions

3.Select the action that is optimal for the estimated mean rewards
given all data thus far, breaking ties at random

4.GOTO 3
at = argmaxa∈𝒜Qt(a)

Qt(a) =
1

Nt(a)

t−1

∑
i=1

ri1(Ai = a)

Baseline: Fixed exploration period + Greedy
Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

Qt(a1) = 0.3 Qt(a2) = 0.5 Qt(a3) = 0.1

Q: Will the greedy method always pick the second action?

After the fixed exploration period we have formed the following reward estimates

‣ Greedy can lock onto a suboptimal action forever
‣ ⇒ Greedy has linear total regret

ε-Greedy Action Selection

• In greedy action selection, you always exploit

• In 𝜀-greedy, you are usually greedy, but with probability 𝜀 you
instead pick an action at random (possibly the greedy action
again)

• This is perhaps the simplest way to balance exploration and
exploitation

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

ε-Greedy Action Selection

‣ The ε-greedy algorithm continues to explore forever
- With probability 1 − ε select

- With probability ε select a random action

ε-Greedy Algorithm

‣ ⇒ ε-greedy has linear total regret

‣ Constant ε ensures minimum regret

at = argmaxa∈𝒜Qt(a)

Counting Regret

‣ If an algorithm forever explores it will have linear total regret
‣ If an algorithm never explores it will have linear total regret

Average reward for three algorithms

 = 0 (greedy)

 ! = 0 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

= 0.01

 = 0.1!
!

!

 = 0.1!
= 0.01!

1

1

Q: In the limit (after infinite number of steps), which method will result in the largest average
reward?

Average reward for
three algorithms

We sample 10 arm bandits
instantiations:

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)

 = 0 (greedy)

 ! = 0 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

= 0.01

 = 0.1!
!

!

 = 0.1!
= 0.01!

1

1

Optimal action for three algorithms

Average reward for
three algorithms

We sample 10 arm bandits
instantiations from here

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)

Q: Which method will find the optimal action in the limit?

 = 0 (greedy)

 ! = 0 (greedy)

0

0.5

1

1.5

Average
reward

0 250 500 750 1000

Steps

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 250 500 750 1000

Steps

= 0.01

 = 0.1!
!

!

 = 0.1!
= 0.01!

1

1

Optimal action for three algorithms

Average reward for
three algorithms

We sample 10 arm bandits
instantiations from here

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)

Q: Does the performance of those methods depend on the initialization of the action value
estimates?

Optimistic Initialization

‣  Encourages systematic exploration early on

‣  But optimistic greedy can still lock onto
a suboptimal action if rewards are stochastic

‣  Simple and practical idea: initialize Q(a) to high value

‣  Update action value by incremental Monte-Carlo evaluation

‣  Starting with N(a) > 0

just an incremental estimate
of sample mean,
including one ‘hallucinated’
initial optimistic value

Qt(at) = Qt−1(at) +
1

Nt(at)
(rt − Qt−1(at))

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

Qt(a1) = 1 Qt(a2) = 1 Qt(a3) = 1

Q: When it is possible that greedy action selection will not try out all the actions?

We initialize with the following reward estimates for Bernoulli bandits

Optimistic Initial Values

• Suppose we initialize the action values optimistically (),  
e.g., on the 10-armed testbed

Optimistic Initial Values

Q1(a) = 5

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy

Q0 = 5, = 0

realistic, !-greedy

Q0 = 0, = 0.11

1

Steps

!

!

1

Average reward for
three algorithms

Rt ⇠ N(q⇤(a), 1)
q⇤(a) ⇠ N(0, 1)

To achieve that we need to reason about uncertainty of our
action value estimates

‣ Goal: find an algorithm with sub-linear regret for any multi-armed bandit

Optimism in the Face of Uncertainty

‣ Which action should we pick?
‣ The more uncertain we are about an action-value
‣ The more important it is to explore that action
‣ It could turn out to be the best action

Optimism in the Face of Uncertainty

‣ After picking blue action
‣ We are less uncertain about the value
‣ And more likely to pick another action
‣ Until we home in on best action

Upper Confidence Bounds
‣ Estimate an upper confidence Ut(a) for each action value
‣ Such that with high probability  

‣ This upper confidence depends on the number of times action a has
been selected
- Small Nt(a) ⇒ large Ut(a) (estimated value is uncertain)
- Large Nt(a) ⇒ small Ut(a) (estimated value is accurate)

Estimated mean Estimated Upper
Confidence

‣ Select action maximizing Upper Confidence Bound (UCB)

q*(a) ≤ Qt(a) + Ut(a)

at = argmaxa∈𝒜Qt(a) + Ut(a)

Hoeffding’s Inequality

‣ We will apply Hoeffding’s Inequality to rewards of the bandit
conditioned on selecting action a

Calculating Upper Confidence Bounds

‣ Pick a probability p that true value exceeds UCB
‣ Now solve for Ut(a)

‣ Reduce p as we observe more rewards, e.g. p = t−c, c=4
(note: c is a hyper-parameter that trades-off explore/exploit)

‣ Ensures we select optimal action as t → ∞

Upper Confidence Bound (UCB)
• A clever way of reducing exploration over time

• Estimate an upper bound on the true action values

• Select the action with the largest (estimated) upper bound

2.6. UPPER-CONFIDENCE-BOUND ACTION SELECTION 37

0%

20%

40%

60%

80%

100%

%
Optimal
action

0 200 400 600 800 1000

Plays

optimistic, greedy

Q0 = 5, = 0

realistic, !-greedy

Q0 = 0, = 0.11

1

Steps

!

!

Figure 2.2: The e↵ect of optimistic initial action-value estimates on the 10-armed testbed.
Both methods used a constant step-size parameter, ↵ = 0.1.

example, it is not well suited to nonstationary problems because its drive for ex-
ploration is inherently temporary. If the task changes, creating a renewed need for
exploration, this method cannot help. Indeed, any method that focuses on the initial
state in any special way is unlikely to help with the general nonstationary case. The
beginning of time occurs only once, and thus we should not focus on it too much.
This criticism applies as well to the sample-average methods, which also treat the
beginning of time as a special event, averaging all subsequent rewards with equal
weights. Nevertheless, all of these methods are very simple, and one of them or some
simple combination of them is often adequate in practice. In the rest of this book
we make frequent use of several of these simple exploration techniques.

2.6 Upper-Confidence-Bound Action Selection

Exploration is needed because the estimates of the action values are uncertain. The
greedy actions are those that look best at present, but some of the other actions
may actually be better. "-greedy action selection forces the non-greedy actions to
be tried, but indiscriminately, with no preference for those that are nearly greedy or
particularly uncertain. It would be better to select among the non-greedy actions
according to their potential for actually being optimal, taking into account both how
close their estimates are to being maximal and the uncertainties in those estimates.
One e↵ective way of doing this is to select actions as

At

.
= argmax

a

"
Qt(a) + c

s
log t

Nt(a)

#
, (2.8)

where log t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would
have to be raised to in order to equal t), and the number c > 0 controls the degree
of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-
root term is a measure of the uncertainty or variance in the estimate of a’s value.

1

!-greedy ! = 0.1

UCB c = 2

Average
reward

Steps

Problem Setting (Stochastic Bandit)

The reward ri ,t follows the probability distribution Pi , with mean µi

Here, the agent should find the arm with the highest µi

source: Pandey et al.’s slide

Today, we will only consider the stochastic bandit

Sangwoo Mo (KAIST) Network Workshop December 23, 2016 10 / 28

1000 pulls,
600 wins
Q_t(a_1)=0.6

1000 pulls,
400 wins
Q_t(a_2)=0.4

10 pulls,
4 wins
Q_t(a_1)=0.4

The problem with using mean estimates is that we cannot reason about uncertainty
of those estimates..

2.3. INCREMENTAL IMPLEMENTATION 31

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given Qn and the nth reward, Rn, the new average of all n rewards
can be computed by

Qn+1 =
1

n

nX

i=1

Ri

=
1

n

Rn +

n�1X

i=1

Ri

!

=
1

n

Rn + (n� 1)

1

n� 1

n�1X

i=1

Ri

!

=
1

n

⇣
Rn + (n� 1)Qn

⌘

=
1

n

⇣
Rn + nQn �Qn

⌘

= Qn +
1

n

h
Rn �Qn

i
, (2.3)

which holds even for n = 1, obtaining Q2 = R1 for arbitrary Q1. This implemen-
tation requires memory only for Qn and n, and only the small computation (2.3)
for each new reward. Pseudocode for a complete bandit algorithm using incremen-
tally computed sample averages and "-greedy action selection is shown below. The
function bandit(a) is assumed to take an action and return a corresponding reward.

A simple bandit algorithm

Initialize, for a = 1 to k:
Q(a) 0
N(a) 0

Repeat forever:

A
⇢

arg maxa Q(a) with probability 1� " (breaking ties randomly)
a random action with probability "

R bandit(A)
N(A) N(A) + 1
Q(A) Q(A) + 1

N(A)

⇥
R�Q(A)

⇤

The update rule (2.3) is of a form that occurs frequently throughout this book.
The general form is

NewEstimate OldEstimate + StepSize
h
Target�OldEstimate

i
. (2.4)

The expression
⇥
Target�OldEstimate

⇤
is an error in the estimate. It is reduced by

taking a step toward the “Target.” The target is presumed to indicate a desirable
direction in which to move, though it may be noisy. In the case above, for example,
the target is the nth reward.

Epsilon-greedy

Bayesian Bandits

‣ Bayesian bandits exploit prior knowledge of rewards,

‣ So far we have made no assumptions about the reward distribution R
- Except bounds on rewards

‣ Use posterior to guide exploration

‣ They compute posterior distribution of rewards
- where the history is:

Bayes rule
Bayes rule enables us to reverse probabilities:

P(B|A)P(A)
P(B)

P(A|B) =

Slide from Nanto de Freitas

Problem 1: Diagnoses

! The doctor has bad news and good news.

! The bad news is that you tested positive for a
serious disease, and that the test is 99% accurate
(i.e., the probability of testing positive given that
you have the disease is 0.99, as is the probability of you have the disease is 0.99, as is the probability of
testing negative given that you don’t have the
disease).

! The good news is that this is a rare disease,
striking only 1 in 10,000 people.

! What are the chances that you actually have the
disease?

Slide from Nanto de Freitas

Problem 1: Diagnoses
The test is 99% accurate: P(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=1) = 0.0001

Slide from Nanto de Freitas

Problem 1: Diagnoses
The test is 99% accurate: P(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=1) = 0.0001

Slide from Nanto de Freitas

Problem 1: Diagnoses
The test is 99% accurate: P(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000: P(D=1) = 0.0001

0.0098

Slide from Nanto de Freitas

Bayesian learning for model parameters
Step 1: Given n data, D = x1:n = {x1, x2,…, xn }, write down the
expression for the likelihood:

p(D |θ θ θ θ)

Step 3: Compute the posterior:

Step 2: Specify a prior: p(θ θ θ θ)

Step 3: Compute the posterior:

p(θ θ θ θ | D) p(D |θ θ θ θ) p(θ θ θ θ)
p(D)

=

Slide from Nanto de Freitas

Bernoulli bandits - Prior
Let’s consider a Beta distribution prior over the mean rewards of the Bernoulli bandits:

Beta(α, β)

The mean is α
α + β

The larger the α + β the more concentrated the distribution

Bernoulli bandits-Posterior
Let’s consider a Beta distribution prior over the mean rewards of the Bernoulli bandits:

Bayesian learning for model parameters
Step 1: Given n data, D = x1:n = {x1, x2,…, xn }, write down the
expression for the likelihood:

p(D |θ θ θ θ)

Step 3: Compute the posterior:

Step 2: Specify a prior: p(θ θ θ θ)

Step 3: Compute the posterior:

p(θ θ θ θ | D) p(D |θ θ θ θ) p(θ θ θ θ)
p(D)

=

The posterior is also a Beta! Because beta is conjugate distribution for the Bernoulli
distribution.
A closed form solution for the bayesian update, possible only for conjugate distributions!

Greedy VS Thompson for Bernoulli bandits

̂p(θ1, θ2⋯θk)
a = arg max

a
𝔼θ[r(a)]

θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)

a: success
b: failure

Recall: Thompson Sampling

Represent a posterior distribution of mean rewards
of the bandits, as opposed to mean estimates.

1. Sample from it
2. Choose action
3. Update the mean reward distribution ̂p(θ1, θ2⋯θk)

a = arg max
a

𝔼θ[r(a)]
θ1, θ2, ⋯, θk ∼ ̂p(θ1, θ2⋯θk)

The equivalent of mean expected rewards for general MDPs are Q
functions

Contextual Bandits (aka Associative Search)

‣  A contextual bandit is a tuple ⟨A, S , R⟩

‣  A is a known set of k actions (or “arms”)

‣  is an unknown distribution over
states (or “contexts”)

‣  is an unknown probability
distribution over rewards

‣  The goal is to maximize cumulative reward

‣  At each time t

-  Environment generates state
-  Agent selects action
-  Environment generates reward

Real world motivation: Personalized NETFLIX artwork

Netflix Artwork

For a particular title and a particular user, we will use the contextual multi-armed bandit
formulation to decide what image to show per title per user
• Actions: uploading an image (available for this movie title) to a user’s home screen
• Mean rewards (unknown): the % of NETFLIX users that will click on the title and watch

the movie
• Estimated mean rewards: the average click rate (+quality engagement, not clickbait)
• Context (s) : user attributes, e.g., language preferences, gender of films she has

watched, time and day of the week, etc.

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

