Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Function Approximation for (on
policy) Prediction and Control

Lecture 8, CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David
Silver’s class on Reinforcement Learning.

Large-Scale Reinforcement Learning

» Reinforcement learning has been used to solve large problems, e.qg.
- Backgammon: 1020 states
- Computer Go: 10170 states

- Helicopter: continuous state space

» Tabular methods clearly do not work

Value Function Approximation (VFA)

» So far we have represented value function by a lookup table
- Every state s has an entry V(s), or
- Every state-action pair (s,a) has an entry Q(s,a)

» Problem with large MDPs:

- There are too many states and/or actions to store in memory

- ltis too slow to learn the value of each state individually

» Solution for large MDPs:

- Estimate value function with function approximation

v(s,W) = v (s)
or 4(s,a,w) =~ g.(s, a)

- Generalize from seen states to unseen states

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

S, ey
4 e

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

S, #(A,|S,, 0)

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

St

S, =y
4 B

When we update the parameters @, the values of many states change
simultaneously!

0(S¢, 0)

0] << |J]

Which Function Approximation”?

» There are many function approximators, e.g.

- Linear combinations of features
- Neural networks

- Decision tree

- Nearest neighbour

- Fourier / wavelet bases

Which Function Approximation”?

» There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour

- Fourier / wavelet bases

» differentiable function approximators

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
8W1

Vwl(w) = :
0J(w)

oW,

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
8w1 .
Vwd(w) = :
0J(w)
Oow, =%

» To find a local minimum of J(w), adjust w in .
direction of the negative gradient:

1
Aw = ——aV J(w)

AN

Step-size

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
6w1 -
Vwd(w) = ;
0J(w)
Owp, |

» Starting from a guess W
» We consider the sequence W, Wi, Wy, ... st

Wit1 = W, — Ea VW'](Wn)

» We then have J(Wo) Z J(Wl) Z J(Wz) Z c o

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

8
s

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) =E [(ve(S) — 9(S,w))?]

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

L]
s

J(w) =E [(ve(S) — 9(S,w))?]

Let 14(S)denote how much time we spend in each state s under policy 7, then:

|S]

Jw) =Y uS)[® -oS.w]” Y us) =1
n=1

sES

Very important choice: it is OK if we cannot learn the value of states we visit
very few times, there are too many states, | should focus on the ones that
matter: the RL way of approximating the Bellman equations!

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

L]
s

J(w) =E [(ve(S) — 9(S,w))?]

Let 1(S) denote how much time we spend in each state s under policy 7 , then:

S|
Jw) =Y uS)[® -oS.w]” Y us) =1
n=1 seS
In contrast to: JZ(W) — I Z [Vﬂ(S) — (S, W)]2

| &

sES

On-policy state distribution

Let (s) be the initial sate distribution, i.e, the probability that an episode
starts at state s, then:

n(s) = h(s)+) 0) m(a|Hp(s|5.a), Vs € S

Gradient Descent

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) =Eq [(va(S) — 9(S,w))?]

Aw = —%O&VWJ(W)

= alE; [(v:(S) — V(S,w))VuV(S,w)]

Gradient Descent

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) =Eq [(va(S) — 9(S,w))?]

Aw = —%O&VWJ(W)

= alE; [(v:(S) — V(S,w))VuV(S,w)]

» Starting from a guess W,

Gradient Descent

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) =Eq [(va(S) — 9(S,w))?]

Aw = —%OJVWJ(W)

= alE; [(v:(S) — V(S,w))VuV(S,w)]

» Starting from a guess w),

» We consider the sequence Wy, Wi, Wy, ... s.t.:

2%

n+1 — Wy — Ea VWJ(Wn)

» We then have J(wy) > J(wy) = J(wy) > ...

Gradient Descent

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) =E, [(vW(S) — v(S, w))z]
» Gradient descent finds a local minimum:
Aw = —%anJ(w)

= alE; [(v<(S) — 7(S,w)) Vv (S, w)]

Stochastic Gradient Descent

Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

N A 2

J(w) =E, [(vW(S) —v(S,w))]
Gradient descent finds a local minimum:

Aw = —%aVWJ(w)

= alE; [(v<(S) — 7(S,w)) Vv (S, w)]

Stochastic gradient descent (SGD) samples the gradient:

Aw = a(v;(S) — 7(S,w))Vu (S, w)

v

v

v

v

Least Squares Prediction

Given value function approximation: (s, w) ~ v,(s)

And experience D consisting of (state,value) pairs

D = {(s1,v]), (52, v2),---, <5Ta V77r'>}

Find parameters w that give the best fitting value function v(s,w)?

Least squares algorithms find parameter vector w minimizing sum-
squared error between v(S;,w) and target values v,

-
LS(w) =) (v — 0(se,w))?
t=1

=Ep [(v" — ¥(s,w))?]

SGD with Experience Replay

» Given experience consisting of (state, value) pairs

D = {(s1,v]), (52, V3), ..., (ST, V) }

» Repeat

- Sample state, value from experience
(s,v") ~ D
- Apply stochastic gradient descent update

Aw = a(v" — U(s,w))VwV(s, W)

» Converges to least squares solution

Feature Vectors

» Represent state by a feature vector

Xl(S)
x(S) =

Xn(S)

» For example

- Distance of robot from landmarks
- Trends in the stock market

- Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

» Represent value function by a linear combination of features
n
~ T
0(S,w) =x(5) 'w="> x;(S)w;
J=1
» Obijective function is quadratic in parameters w

J(w) = Ex [(va(S) —x(S)Tw)?|
» Update rule is particularly simple
Vw0 (S,w) = x(S)
Aw = av;(S) — V(S,w))x(S)

» Update = step-size x prediction error x feature value

» Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

» We have assumed the true value function v(s) is given by a supervisor

» Butin RL there is no supervisor, only rewards

» In practice, we substitute a target for v_(s)

For MC, the target is the return G;

Aw = Qf(Gt — O(St, W))Vw\7(5t, W)

For TD(0), the target is the TD target: R, ; + y¥(S;11, W)

AW — a(Rt+1 + “/O(St+1, W) — O(St, W))Vw\7(5t, W)

Monte Carlo with VFA

Return G; is an unbiased, noisy sample of true value v_(S;)

Can therefore apply supervised learning to “training data™:
(51, G1), (52, G2), ..., (ST, GT)

For example, using linear Monte-Carlo policy evaluation

Aw = oGy — V(S5:, W)V V(St, w)
= a(G; — v(5:, w))x(S5;)

Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function v : 8 x R" — R

Initialize value-function weights 6 as appropriate (e.g., 8 = 0)
Repeat forever:
Generate an episode Sy, Ag, R1, 51, A1,..., Ry, ST using w
Fort=0,1,...,T —1:
0+ 0+ Oé[Gt — @(St,H)] V@(St,e)

» The TD-target

Vr(St)

TD Learning with VFA

Rii1+ vV(S;;1,w) a biased sample of true value

» Can still apply supervised learning to “training data”:

(51: R2

7\7(523 W)), <527 R3

» For example, using linear TD(0):

A/\’;(S3) W)), sery <ST—1: RT)

Aw = (R +~v0(S",w) — 0(S,w))Vu?(S, w)

= adx(S)

We ignore the dependence of the target on w!

We call it semi-gradient methods

TD Learning with VFA

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated
Input: a differentiable function ¢ : 8 x R™ — R such that ¢(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-|.5)
Take action A, observe R, S’
0 <+ 0+« R+~5(5,0) —0(5,0)|Vi(S,0)
S 5

until S’ is terminal

Control with VFA

Al

» Policy evaluation Approximate policy evaluation: G(-,-,w) = g,

» Policy improvement e-greedy policy improvement

Action-Value Function Approximation
» Approximate the action-value function
(S, A,w) =~ gr(5, A)

» Minimize mean-squared error between the true action-value function
d-(S,A) and the approximate action-value function:

J(W) = [y [(QW(SaA) — C?(Sa A, W))2]

» Use stochastic gradient descent to find a local minimum

1V J(w) = (.(S, A) — 4(S, A w))Vud(S, A w)

2
Aw = a(q(S,A) — G(S, A,w))Vwi(S, A w)

Linear Action-Value Function Approximation

» Represent state and action by a feature vector
xl(Sa A)
X(S> A) —
xn(S, A)

» Represent action-value function by linear combination of features

G(S,A,w) = x(S,A)Tw — ZXJ'(S,A)WJ'
J=1

» Stochastic gradient descent update

Vwi(S,A,w) =x(S,A)
Aw = a(q-(S,A) — G(S5,A,w))x(S, A)

Incremental Control Algorithms

» Like prediction, we must substitute a target for g(S,A)

» For MC, the target is the return G;

Aw = aG; — §(S¢, A, w))VwG(St, At w)

v

For TD(0), the target is the TD target: R, + vQ(St+1, Art1)

Aw = O‘(RLH T "/6(51+1, Att1, W) — a(SnAtaW))Vwa(St,At, W)

Can we guess the deep Q learning update rule?

Aw = a(R | +ymax g(S,,, A, W)—q(S,,A,, W) V,q(S,, A,, W)

+1

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating ¢ =~ g,

Input: a differentiable function ¢ : 6 x A x R® -+ R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A <+ initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S” is terminal:
0+« 0+aR-q(S,A,0)|Vi(s, A, o)
Go to next episode
Choose A’ as a function of ¢(5’,-,0) (e.g., e-greedy)
0+ 0+alR+~4(S", A, 0)—q(S,A,0)]Vi(S, A,)
S+ S
A A

Example: The Mountain-Car problem

j Gravity wins

Minimum-Time-to-Goal Problem

SITUATIONS:
car's position and velocity

ACTIONS:
three thrusts: forward, reverse, none

REWARDS:

always —1 until car reaches the goal

Episodic, No Discounting, y=1

roblem
Mountain-Car p
- The

A)

A a H
NaXq g{s, ,

Goal
MOUNTAIN CAR

'4:!' ‘\
LBl " ‘:‘:‘E‘E‘
/ '%‘;:«E{ ‘.:.4.\ “‘\2\ e
Frar, I:¥uz; ey \sé' 0 \‘\\,&;‘:@
M."rd.s\ = . i .-.~.*~?.~’.--*‘~m\\\‘
T \‘..-..- i bty RS ol o
i ll'N ’\\ \\\\»\?&%&@ T .m,'m"w 0D A N
AL A HREN N e
4 £ ;;‘!!llg'.[ll'@fbt\ ‘\\‘\‘\\\1@ .:::::l,l,l,l,l,llllt',','p.'gf.*,.',»'w@*@ &3
il i A T
2 IR O z
S 0 WEaEasess
‘.* t‘:““ ',]
S
0.6

120 a-uﬂ}" .‘;‘z?""‘)
‘;...QOI d .\
LA lmi"%‘i‘.-:” y O
. i 2 o
: -mm.,... L LR N
N 04 7
R R LTI 'O
\ g ’ <
0*@&‘\’&“‘&%&“%‘1&1'
46 4 ‘,.nfu#m«wmw\s‘:
FEELEROAN b\m;«w g 0
TR F"&@'Q”Q’Q‘\i""}?’l"f O
HRy LA

Batch Reinforcement Learning

Gradient descent is simple and appealing
But it is not sample efficient
Batch methods seek to find the best fitting value function

Given the agent’s experience (“training data”)

Which Function Approximation”?

» There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour

- Fourier / wavelet bases

Nearest neighbors

» Save training examples in memory as they arrive (s,v(s)). (state, value)

» Then, given a new state s’, retrieve closest state examples from the
memory and average their values based on similarity:

K
v(s) =) k(hy, h)v(s))
i=1

» Accuracy improves as more data accumulates.

» Agent’s experience has an immediate affect on value estimates in the
neighborhood of its environment’s current state.

Parametric methods need to incrementally adjust parameters of a
global approximation.

