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Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David
Silver’s class on Reinforcement Learning.



Optimal Value Function

» An optimal value function is the maximum achievable value

R*(s,a) = max Q™(s,a) = Q™ (s, a)

»  Once we have Q*, the agent can act optimally

m*(s) = argmax Q(s, a)

d

» Formally, optimal values decompose into a Bellman equation

Q(s,a) =

41

r + 7 max RQ*(s’,a') | s,a
d




Deep Q-Networks (DQNSs)

» Represent action-state value function by Q-network with weights w

Q(s,a,w) =~ Q*(s, a)

When would this be preferred?

1

S d




Q-Learning with FA

Optimal Q-values should obey Bellman equation

v

Q*(s,a) =Ey |r+~ max Q(s',a')* | s,a

» Treat right-hand r + 7y max Q(S’, a’, w) as a target
d

»  Minimize MSE loss by stochastic gradient descent
/ / 2
| = (r+fy max Q(s’,a,w) — Q(s, a,w))
a

» Remember VFA lecture: Minimize mean-squared error between the true
action-value function g-(S,A) and the approximate Q function:

J(w) = Ex [(9x(S, A) — 4(S, A, w))?]




Q-Learning with FA

» Minimize MSE loss by stochastic gradient descent

2
[ = (r T mfx Q(S,a alaw) o Q(Sa a,w))



Q-Learning: Off-Policy TD Control

» One-step Q-learning:

Q(St, Ar) + Q(St. Ar) + a [RH—I + max Q(St+1,a) — Q(S:. 1t)]

Initialize Q)(s,a), Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S. A) + Q(S,A) + a[R + ymax, Q(S".a) — Q(S, A)]
S« 5"
until S is terminal




Q-Learning with FA

» Minimize MSE loss by stochastic gradient descent

2
| = (r + 7y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples

2. Non-stationary targets



Q-Learning

» Minimize MSE loss by stochastic gradient descent

2
| = (r + 7y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples
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: . Playing Atari with Deep Reinforcement Learnin
Solution to both problems in DQN: YIne P 8
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DQN

» To remove correlations, build data-set from agent’s own experience

51,4d1,12,52
52,4d2,13,53 —  S,a,r, s’

53,43, 4, 54

Sty dty, I't+14 St+1

»  Sample experiences from data-set and apply update
= |r+vymax Q(s’,a,w") — Q(s,a,w)
a

» To deal with non-stationarity, target parameters w— are held fixed



Experience Replay

» Given experience consisting of (state, value), or <state, action/value> pairs

D ={(s1,v1),(s2,v3 ), .-, (ST, VT)}

» Repeat

- Sample state, value from experience
(s,v") ~ D
- Apply stochastic gradient descent update

Aw = a(v" — V(s,w))VwV(s, W)



DQNSs: Experience Replay

» DQN uses experience replay and fixed Q-targets

» Store transition (s;,a;,r+1,S1+4) in replay memory D
»  Sample random mini-batch of transitions (s,a,r,s’) from D

»  Compute Q-learning targets w.r.t. old, fixed parameters w-

»  Optimize MSE between Q-network and Q-learning targets

2
Li(w;) =Es,rs~D (r+ v max Q(s",a"; w; ) — Q(s, a; w,-))

d

AN o )
Y Y

Q-learning target Q-network

» Use stochastic gradient descent



DQNs in Atari

state VNN 1 ) action

reward




DQNs in Atari

End-to-end learning of values Q(s,a) from pixels

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
16 BxB filters
4x84x84

Stack of 4 previous - Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

» Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014



DQNs in Atari

End-to-end learning of values Q(s,a) from pixels s

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|16 Bx8 filters
= % %
|
|
]

DQN source code: sites.google.com/a/

deepmind.com/dqgn/

Mnih et.al., Nature, 2014



Extensions

Double Q-learning for fighting maximization bias

v

v

Prioritized experience replay

v

Multistep returns



Maximization Bias

»  We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

» Consider a state for which all ground-truth q(s,a)=0. Our estimates
Q(s,a) are uncertain, some are positive and some negative.
Q(s,argmax_a(Q(s,a)) is positive while g(s,argmax_a(q(s,a))=0.
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Double Q-Learning

» Train 2 action-value functions, Q, and Q,

» Do Q-learning on both, but

- never on the same time steps (Q, and Q, are independent)

- pick Q or Q, at random to be updated on each step

» If updating Q4, use Q, for the value of the next state:

Ql(Stv At) < Ql(St7 At) +

+ « (Rt+1 + Q2 (St+] ,argmax (1 (St+1, a’)) — Q1(5t, At))

» Action selections are e-greedy with respect to the sum of Q, and Q,
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Double Tabular Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from )1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(sv A) — Ql(Sa A) + &(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QQ(Sla CL)) o QZ(Sv A))
S« 5

until S is terminal

Hado van Hasselt 2010



Double Deep Q-Learning

» Current Q-network w is used to select actions

» Older Q-network w— is used to evaluate actions

Action evaluation: w—

A
/ \ ,
| = (r +~vQ(s’,argmax Q(s’,a’,w),w™) — Q(s, a, w))
_
Y

Action selection: w

van Hasselt, Guez, Silver, 2015



Prioritized Replay

»  Weight experience according to surprise” (or error)

»  Store experience in priority queue according to DQN error

‘r + ¥ max Q(Sla ajzw_) o Q(S, d, W)

al

N J
Y
»  Stochastic Prioritization p; IS proportional to
DQN error
(87
Pi) = =
21 P}

» o determines how much prioritization is used, with a = 0 corresponding to
the uniform case.

Schaul, Quan, Antonoglou, Silver, ICLR 2016



Multistep Returns

n—1
» Truncated n-step return from a state s _t: Rt(n) = Z }’t(k)R;+k+1
k=0

»  Multistep Q-learning update rule:

2
[ = (Rt(”) + yt(”)maxa,Q(St @S W) — 0(s, a, W))
»  Singlestep Q-learning update rule:

2
[ = (r T mfx Q(S,a alaw) o Q(Sa a,w))



Rainbow: Combining Improvements in Deep Reinforcement Learning
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» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?



Question

» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?

- With enough resources, yes.

- Resources = number of simulations (rollouts) and maximum
allowed depth of those rollouts.

- There is always an amount of resources when a vanilla MCTS (not
assisted by any deep nets) will outperform the learned with RL

policy.



» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?



» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?

- Because using vanilla (not assisted by any deep nets) MCTS is
very very slow, definitely very far away from real time game
playing that humans are capable of.



» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?



» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?

- That would be a very sensible approach!



Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiao@umich.edu bave ja@umich.edu
Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu Xiaoshiw@umich.edu



Offline MCTS to train online fast reactive policies

« AlphaGo: train policy and value networks at training time, combine
them with MCTS at test time

 AlphaGoZero: train policy and value networks with MCTS in the
training loop and at test time (same method used at train and test
time)

« Offline MCTS: train policy and value networks with MCTS in the
training loop, but at test time use the (reactive) policy network,
without any lookahead planning.



Revision: Monte-Carlo Tree Search

1. Selection
-+ Used for nodes we have seen before
- Pick according to UCB
2. Expansion
- Used when we reach the frontier
-+ Add one node per playout
3. Simulation
-+ Used beyond the search frontier
 Don’t bother with UCB, just play randomly
4. Backpropagation
- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006



Upper-Contidence Bound

Sample actions according to the following score:

parent node visits

In(N
v; +C X n(V).
\ N

tunable parameter

number of visits

‘ value estimate ‘

*score is decreasing in the number of visits (explore)
* score is increasing in a node’s value (exploit)

- always tries every option once

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi,
Fischer, 2002



Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB_sample (state)
winner = MCTS sample (next state)
else: h h Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)
Explored Tree
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Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
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|_earning from MCTS

» The MCTS agent plays against himself and generates (s, a, Q(s,a)) tuples.
Use this data to train:

» UCTtoRegression: A regression network, that given 4 frames

regresses to Q(s,a,w) for all actions

» UCTtoClassification: A classification network, that given 4 frames

predicts the best action through multiclass classification

» The state distribution visited using actions of the MCTS planner will not
match the state distribution obtained from the learned policy.

>

UCTtoClassification-Interleaved: Interleave UCTtoClassification
with data collection: Start from 200 runs with MCTS as before, train
UCTtoClassification, deploy it for 200 runs allowing 5% of the time a
random action to be sampled, use MCTS to decide best action for
those states, train UCTtoClassification and so on and so forth.



Results

Agent B.Rider Breakoutr  I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20)  175(5.63)  558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 0942 21 29725 5100 200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6)  215(6.69) 601(11) 19(0.14)  13189(35.3) 2701(6.09)  670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12)  143(6.7) 366(10.2)  19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent  B.Rider  Breakoui  Enduro  Pong  Q%bert  Seaquesi  S.Invaders
UCT 7233 406 788 21 18850 3257 2354
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Online planning (without aided by any neural net!) outperforms DQN policy. It takes though ""a few
days on a recent multicore computer to play for each game”.
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Classification is doing much better than regression! indeed, we are training for exactly what we care
about.
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Interleaving is important to prevent mismatch between the training data and the data that the trained
policy will see at test time.




Results

Agent B.Rider Breakoutr  I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20)  175(5.63)  558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 0942 21 29725 5100 200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6)  215(6.69) 601(11) 19(0.14)  13189(35.3) 2701(6.09)  670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12)  143(6.7) 366(10.2)  19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent  B.Rider  Breakoui  Enduro  Pong  Q%bert  Seaquesi  S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Results improve further if you allow MCTS planner to have more simulations and build more reliable Q
estimates.




Problem

Step 69: FIRE Step 70: DOWN+FIRE Step 74 DOWN<FIRE Step 75:RIGHI+FIRE  Step 76:RIGHT+FIRE Step 78: RIGHT-FIRE  Step 79:.DOWN+FIRE

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the depth of
our MCTS planner, thus it is ignored.




»  Why don’t we always use MCTS (or some other planner) as supervision for
reactive policy learning?

- Because in many domains we do not have access to the dynamics.
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Nearest neighbors Lookup

hi Qi

Q(Sa a’)’ — Z w; Qi

B [ k(hhy)
. : Z:j k(h, hj)




Writing in the memory

h; Qi

N—1

N—
Q(N) (Sta a) — Z ’Yj'rt—{-j + 7N Ht?‘x Q(St-{-Na CL,)
j=0

It identical key h present:

Writing

Qi + Qi + a(Q™)(s,a) — Q)

Flse add row (h, Q"(s, a)) to the memory



N-1

QW (s,0) = Y ¥y + 7N max Q(sesn, )

J.:

Algorithm 1 Neural Episodic Control

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to M,, .
Append (s, ay, Q(N)(st,at)) to D.
Train on a random minibatch from D.
end for
end for




Algorithm 1 Neural Episodic Control

N-1

QW (s,a) = Y ¥y + 7N max Q(sern, )
j=0

1 n a
—§VWJ(W) = (g-(5,A) — G(5,A,w))VuG(S5.A,w)
Aw = (}T(qﬁ'(sa A) o 6(57 A:\ W))VWEI(S Aa W)

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to M,, .
Append (s¢, a;, Q™) (s, a¢)) to D.
Train on a random minibatch from D.
end for
end for



