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Used Materials
• Disclaimer: Much of the material and slides for this lecture were 
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David 
Silver’s class on Reinforcement Learning.



Optimal Value Function
‣ An optimal value function is the maximum achievable value 

‣ Once we have Q∗, the agent can act optimally

‣ Formally, optimal values decompose into a Bellman equation 



Deep Q-Networks (DQNs)
‣ Represent action-state value function by Q-network with weights w 

When would this be preferred?



Q-Learning with FA
‣ Optimal Q-values should obey Bellman equation 

‣ Treat right-hand                                                 as a target 

‣ Minimize MSE loss by stochastic gradient descent 

‣ Remember VFA lecture: Minimize mean-squared error between the true 
action-value function qπ(S,A)  and the approximate Q function: 



‣ Minimize MSE loss by stochastic gradient descent 

Q-Learning with FA



Q-Learning: Off-Policy TD Control
‣ One-step Q-learning:



‣ Minimize MSE loss by stochastic gradient descent 

‣ Converges to Q∗ using table lookup representation 

‣ But diverges using neural networks due to:  
1. Correlations between samples  
2. Non-stationary targets 

Q-Learning with FA



Q-Learning
‣ Minimize MSE loss by stochastic gradient descent 

‣ Converges to Q∗ using table lookup representation 

‣ But diverges using neural networks due to:  
1. Correlations between samples  
2. Non-stationary targets 

Solution to both problems in DQN:



DQN
‣ To remove correlations, build data-set from agent’s own experience 

‣ To deal with non-stationarity, target parameters w− are held fixed 

‣ Sample experiences from data-set and apply update 



Experience Replay 
‣ Given experience consisting of ⟨state, value⟩, or  <state, action/value> pairs  

‣ Repeat 
- Sample state, value from experience  

- Apply stochastic gradient descent update  



DQNs: Experience Replay 
‣ DQN uses experience replay and fixed Q-targets 

‣ Use stochastic gradient descent 

‣ Store transition (st,at,rt+1,st+1) in replay memory D 

‣ Sample random mini-batch of transitions (s,a,r,s′) from D 

‣ Compute Q-learning targets w.r.t. old, fixed parameters w− 

‣ Optimize MSE between Q-network and Q-learning targets 

Q-learning target Q-network



DQNs in Atari



DQNs in Atari
‣ End-to-end learning of values Q(s,a) from pixels  

‣ Input observation is stack of raw pixels from last 4 frames  
‣ Output is Q(s,a) for 18 joystick/button positions 
‣ Reward is change in score for that step 

‣ Network architecture and hyperparameters fixed across all games 

Mnih et.al., Nature, 2014



DQNs in Atari
‣ End-to-end learning of values Q(s,a) from pixels s 
‣ Input observation is stack of raw pixels from last 4 frames  

‣ Output is Q(s,a) for 18 joystick/button positions 
‣ Reward is change in score for that step 

‣ Network architecture and hyperparameters fixed across all games 

Mnih et.al., Nature, 2014

DQN source code: sites.google.com/a/

deepmind.com/dqn/ 



Extensions
‣ Double Q-learning for fighting maximization bias 

‣ Prioritized experience replay 

‣ Dueling Q networks 

‣ Multistep returns 

‣ Value distribution 

‣ Stochastic nets for explorations instead of \epsilon-greedy



Maximization Bias
‣ We often need to maximize over our value estimates. The estimated 

maxima suffer from maximization bias 

‣ Consider a state for which all ground-truth q(s,a)=0. Our estimates 
Q(s,a) are uncertain, some are positive and some negative. 
Q(s,argmax_a(Q(s,a)) is positive while q(s,argmax_a(q(s,a))=0. 



Double Q-Learning
‣ Train 2 action-value functions, Q1 and Q2

‣ Do Q-learning on both, but 
- never on the same time steps (Q1 and Q2 are independent) 

- pick Q1 or Q2 at random to be updated on each step

‣ Action selections are 𝜀-greedy with respect to the sum of Q1 and Q2

‣ If updating Q1, use Q2 for the value of the next state:
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Double Tabular Q-Learning144 CHAPTER 6. TEMPORAL-DIFFERENCE LEARNING

Initialize Q1(s, a) and Q2(s, a), 8s 2 S, a 2 A(s), arbitrarily
Initialize Q1(terminal-state, ·) = Q2(terminal-state, ·) = 0
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A from S using policy derived from Q1 and Q2 (e.g., "-greedy in Q1 + Q2)
Take action A, observe R, S0

With 0.5 probabilility:

Q1(S, A) Q1(S, A) + ↵
⇣
R + �Q2

�
S0, argmaxa Q1(S0, a)

�
�Q1(S, A)

⌘

else:

Q2(S, A) Q2(S, A) + ↵
⇣
R + �Q1

�
S0, argmaxa Q2(S0, a)

�
�Q2(S, A)

⌘

S  S0;
until S is terminal

Figure 6.15: Double Q-learning.

The idea of doubled learning extends naturally to algorithms for full MDPs. For
example, the doubled learning algorithm analogous to Q-learning, called Double Q-
learning, divides the time steps in two, perhaps by flipping a coin on each step. If
the coin comes up heads, the update is

Q1(St, At) Q1(St, At)+↵
⇣
Rt+1 +Q2

�
St+1, argmax

a

Q1(St+1, a)
�
�Q1(St, At)

⌘
.

(6.8)

If the coin comes up tails, then the same update is done with Q1 and Q2 switched,
so that Q2 is updated. The two approximate value functions are treated completely
symmetrically. The behavior policy can use both action value estimates. For ex-
ample, an "-greedy policy for Double Q-learning could be based on the average (or
sum) of the two action-value estimates. A complete algorithm for Double Q-learning
is given in Figure 6.15. This is the algorithm used to produce the results in Fig-
ure 6.14. In this example, doubled learning seems to eliminate the harm caused by
maximization bias. Of course there are also doubled versions of Sarsa and Expected
Sarsa.

6.8 Games, Afterstates, and Other Special Cases

In this book we try to present a uniform approach to a wide class of tasks, but of
course there are always exceptional tasks that are better treated in a specialized way.
For example, our general approach involves learning an action-value function, but in
Chapter 1 we presented a TD method for learning to play tic-tac-toe that learned
something much more like a state-value function. If we look closely at that example, it
becomes apparent that the function learned there is neither an action-value function
nor a state-value function in the usual sense. A conventional state-value function
evaluates states in which the agent has the option of selecting an action, but the

Hado van Hasselt 2010



‣ Older Q-network w− is used to evaluate actions 

Double Deep Q-Learning
‣ Current Q-network w is used to select actions 

van Hasselt, Guez, Silver, 2015  

Action selection: w

Action evaluation: w−



Prioritized Replay 
‣ Weight experience according to ``surprise” (or error)

Schaul, Quan, Antonoglou, Silver, ICLR 2016

‣ Stochastic Prioritization

‣ α determines how much prioritization is used, with α = 0 corresponding to 
the uniform case.

‣ Store experience in priority queue according to DQN error 

pi is proportional to 
DQN error



Multistep Returns
‣ Truncated n-step return from a state s_t: R(n)

t =
n−1

∑
k=0

γ(k)
t Rt+k+1

‣ Singlestep Q-learning update rule:

‣ Multistep Q-learning update rule:

I = (R(n)
t + γ(n)

t maxa′ �Q(St+n, a′�, w) − Q(s, a, w))2R(n)
t + γ(n)

t maxa′�Q(St+n, a′ �, w)









Question
‣ Imagine we have access to the internal state of the Atari simulator. Would 

online planning (e.g., using MCTS), outperform the trained DQN policy? 



Question
‣ Imagine we have access to the internal state of the Atari simulator. Would 

online planning (e.g., using MCTS), outperform the trained DQN policy? 

• With enough resources, yes.  

• Resources = number of simulations (rollouts) and maximum 
allowed depth of those  rollouts.  

• There is always an amount of resources when a vanilla MCTS (not 
assisted by any deep nets) will outperform the learned with RL 
policy. 



Question
‣ Then why we do not use MCTS with online planning to play Atari instead of 

learning a policy?



Question
‣ Then why we do not use MCTS with online planning to play Atari instead of 

learning a policy?

• Because using vanilla (not assisted by any deep nets) MCTS is 
very very slow, definitely very far away from real time game 
playing that humans are capable of.



Question
‣ If we used MCTS during training time to suggest actions using online 

planning, and we would try to mimic the output of the planner, would we do 
better than DQN that learns a policy without using any model while playing 
in real time?



Question
‣ If we used MCTS during training time to suggest actions using online 

planning, and we would try to mimic the output of the planner, would we do 
better than DQN that learns a policy without using any model while playing 
in real time?

• That would be a very sensible approach!





Offline MCTS to train online fast reactive policies

• AlphaGo: train policy and value networks at training time, combine 
them with MCTS at test time

• AlphaGoZero: train policy and value networks with MCTS in the 
training loop and at test time (same method used at train and test 
time)

• Offline MCTS: train policy and value networks with MCTS in the 
training loop, but at test time use the (reactive) policy network, 
without any lookahead planning. 

• Where does the benefit come from?



1. Selection
• Used for nodes we have seen before
• Pick according to UCB

2. Expansion
• Used when we reach the frontier
• Add one node per playout

3. Simulation
• Used beyond the search frontier
• Don’t bother with UCB, just play randomly

4. Backpropagation
• After reaching a terminal node
• Update value and visits for states expanded in selection and expansion

Revision: Monte-Carlo Tree Search

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006



Sample actions according to the following score:

• score is decreasing in the number of visits (explore)  
• score is increasing in a node’s value (exploit)  
• always tries every option once  

Upper-Confidence Bound

At = argmaxa [ ]

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi, 
Fischer, 2002



Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
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Learning from MCTS 
‣ The MCTS agent plays against himself and generates (s, a, Q(s,a)) tuples. 

Use this data to train: 

‣ UCTtoRegression: A regression network, that given 4 frames 
regresses to Q(s,a,w) for all actions 

‣ UCTtoClassification: A classification network, that given 4 frames 
predicts the best action through multiclass classification 

‣ The state distribution visited using actions of the MCTS planner will not 
match the state distribution obtained from the learned policy. 

‣  UCTtoClassification-Interleaved: Interleave UCTtoClassification 
with data collection: Start from 200 runs with MCTS as before, train  
UCTtoClassification, deploy it for 200 runs allowing 5% of the time a 
random action to be sampled, use MCTS to decide best action for 
those states, train UCTtoClassification and so on and so forth.



Results



Results

Online planning (without aided by any neural net!) outperforms DQN policy. It takes though ``a few 
days on a recent multicore computer to play for each game”.



Results

Classification is doing much better than regression! indeed, we are training for exactly what we care 
about.



Results

Interleaving is important to prevent mismatch between the training data and the data that the trained 
policy will see at test time.



Results

Results improve further if you allow MCTS planner to have more simulations and build more reliable Q 
estimates. 



Problem

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the depth of 
our MCTS planner, thus it is ignored.



Question
‣ Why don’t we always use MCTS (or some other planner) as supervision for 

reactive policy learning?

• Because in many domains we do not have access to the dynamics.





Nearest neighbors Lookup



If identical key h present:

Else add row                    to the memory(h, QN(s, a))

Writing in the memory



‣ Repeat 
- Sample state, value from experience  

- Apply stochastic gradient descent update  



‣ Repeat 
- Sample state, value from experience  


