Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Deep Q Learning

CMU 10-403

Katerina Fragkiadaki

Used Materials

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Russ Salakhutdinov, Rich Sutton’s class and David
Silver’s class on Reinforcement Learning.

Optimal Value Function

» An optimal value function is the maximum achievable value

R*(s,a) = max Q™(s,a) = Q™ (s, a)

» Once we have Q*, the agent can act optimally

m*(s) = argmax Q(s, a)

d

» Formally, optimal values decompose into a Bellman equation

Q(s,a) =

41

r + 7 max RQ*(s’,a') | s,a
d

Deep Q-Networks (DQNSs)

» Represent action-state value function by Q-network with weights w

Q(s,a,w) =~ Q*(s, a)

When would this be preferred?

1

S d

Q-Learning with FA

Optimal Q-values should obey Bellman equation

v

Q*(s,a) =Ey |r+~ max Q(s',a')* | s,a

» Treat right-hand r + 7y max Q(S’, a’, w) as a target
d

» Minimize MSE loss by stochastic gradient descent
/ / 2
| = (r+fy max Q(s’,a,w) — Q(s, a,w))
a

» Remember VFA lecture: Minimize mean-squared error between the true
action-value function g-(S,A) and the approximate Q function:

J(w) = Ex [(9x(S, A) — 4(S, A, w))?]

Q-Learning with FA

» Minimize MSE loss by stochastic gradient descent

2
[= (r T mfx Q(S,a alaw) o Q(Sa a,w))

Q-Learning: Off-Policy TD Control

» One-step Q-learning:

Q(St, Ar) + Q(St. Ar) + a [RH—I + max Q(St+1,a) — Q(S:. 1t)]

Initialize Q)(s,a), Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S. A) + Q(S,A) + a[R + ymax, Q(S".a) — Q(S, A)]
S« 5"
until S is terminal

Q-Learning with FA

» Minimize MSE loss by stochastic gradient descent

2
| = (r + 7y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples

2. Non-stationary targets

Q-Learning

» Minimize MSE loss by stochastic gradient descent

2
| = (r + 7y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples

2. Non-stationary targets

: . Playing Atari with Deep Reinforcement Learnin
Solution to both problems in DQN: YIne P 8

Valodymyr Mnih Koray Kavukcueglu David Silver Alex Graves Ioannis Antonoglou
Daan Wierstra Martin Riedmiller

DeepMind Technologies

DQN

» To remove correlations, build data-set from agent’s own experience

51,4d1,12,52
52,4d2,13,53 — S,a,r, s’

53,43, 4, 54

Sty dty, I't+14 St+1

» Sample experiences from data-set and apply update
= |r+vymax Q(s’,a,w") — Q(s,a,w)
a

» To deal with non-stationarity, target parameters w— are held fixed

Experience Replay

» Given experience consisting of (state, value), or <state, action/value> pairs

D ={(s1,v1),(s2,v3), .-, (ST, VT)}

» Repeat

- Sample state, value from experience
(s,v") ~ D
- Apply stochastic gradient descent update

Aw = a(v" — V(s,w))VwV(s, W)

DQNSs: Experience Replay

» DQN uses experience replay and fixed Q-targets

» Store transition (s;,a;,r+1,S1+4) in replay memory D
» Sample random mini-batch of transitions (s,a,r,s’) from D

» Compute Q-learning targets w.r.t. old, fixed parameters w-

» Optimize MSE between Q-network and Q-learning targets

2
Li(w;) =Es,rs~D (r+ v max Q(s",a"; w;) — Q(s, a; w,-))

d

AN o)
Y Y

Q-learning target Q-network

» Use stochastic gradient descent

DQNs in Atari

state VNN 1) action

reward

DQNs in Atari

End-to-end learning of values Q(s,a) from pixels

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
16 BxB filters
4x84x84

Stack of 4 previous - Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

» Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

DQNs in Atari

End-to-end learning of values Q(s,a) from pixels s

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|16 Bx8 filters
= % %
|
|
]

DQN source code: sites.google.com/a/

deepmind.com/dqgn/

Mnih et.al., Nature, 2014

Extensions

Double Q-learning for fighting maximization bias

v

v

Prioritized experience replay

v

Multistep returns

Maximization Bias

» We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

» Consider a state for which all ground-truth q(s,a)=0. Our estimates
Q(s,a) are uncertain, some are positive and some negative.
Q(s,argmax_a(Q(s,a)) is positive while g(s,argmax_a(q(s,a))=0.

100%

o (B)— 0
75%) | : left right

% left
actions 50%
from A Q-learning
Double
25% Q-learning
O o e e e e e e o optimal
0! ,
1 100 200 300

Episodes

Double Q-Learning

» Train 2 action-value functions, Q, and Q,

» Do Q-learning on both, but

- never on the same time steps (Q, and Q, are independent)

- pick Q or Q, at random to be updated on each step

» If updating Q4, use Q, for the value of the next state:

Ql(Stv At) < Ql(St7 At) +

+ « (Rt+1 + Q2 (St+] ,argmax (1 (St+1, a’)) — Q1(5t, At))

» Action selections are e-greedy with respect to the sum of Q, and Q,

Double Q-Learning

» Train 2 action-value functions, Q, and Q,

» Do Q-learning on both, but

- never on the same time steps (Q, and Q, are independent)

- pick Q or Q, at random to be updated on each step

» If updating Q4, use Q, for the value of the next state:

Ql(Stv At) < Ql(St7 At) +

+ « (Rt+1 + Q2 (St+] ,argmax (1 (St41, a’)) — Q1(5t, At))

» Action selections are e-greedy with respect to the sum of Q, and Q,

Double Tabular Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from)1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(sv A) — Ql(Sa A) + &(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QQ(Sla CL)) o QZ(Sv A))
S« 5

until S is terminal

Hado van Hasselt 2010

Double Deep Q-Learning

» Current Q-network w is used to select actions

» Older Q-network w— is used to evaluate actions

Action evaluation: w—

A
/ \ ,
| = (r +~vQ(s’,argmax Q(s’,a’,w),w™) — Q(s, a, w))
_
Y

Action selection: w

van Hasselt, Guez, Silver, 2015

Prioritized Replay

» Weight experience according to surprise” (or error)

» Store experience in priority queue according to DQN error

‘r + ¥ max Q(Sla ajzw_) o Q(S, d, W)

al

N J
Y
» Stochastic Prioritization p; IS proportional to
DQN error
(87
Pi) = =
21 P}

» o determines how much prioritization is used, with a = 0 corresponding to
the uniform case.

Schaul, Quan, Antonoglou, Silver, ICLR 2016

Multistep Returns

n—1
» Truncated n-step return from a state s _t: Rt(n) = Z }’t(k)R;+k+1
k=0

» Multistep Q-learning update rule:

2
[= (Rt(”) + yt(”)maxa,Q(St @S W) — 0(s, a, W))
» Singlestep Q-learning update rule:

2
[= (r T mfx Q(S,a alaw) o Q(Sa a,w))

Rainbow: Combining Improvements in Deep Reinforcement Learning

Mattco Hessel Joseph Modayil Hado van Hassclt Tom Schaul Gceorg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DecpMind DeepMind DeepMind DeepMind DecpMind

DQN
w DDQN
— Prioritized DDON
=== Dueling CDQN
200% A3C
—— Distrioutional DON
== Noisy DON

Rainbow

100% -

&g
5
N %
%
,

Median human normalized score

\.
3&"

AN

|
|
|
./
o/, el | |
L% 24 100 200

Mi lions of frames

Rainbow: Combining Improvements in Deep Reinforcement Learning

Mattco Hessel Joscph Modayil Hado van Hassclt Tom Schaul Gceorg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DecpMind DeepMind DeepMind DeepMind DecpMind
57 fgames > 20% human _ figames > 50% human _fgames > 100% human #tgames > 200% human ifgames > 500% human
LYN
- DDQN
—— Frioritized DDON
g —— Due ing DLQN
£ A3C
§n - Distributio~a DON
© — Noisy CGN
E [R airhow
E

number of

-
o

DQN

na douale

na priority
nadue ing

na mulii-step
na distribution
na naisy
Raincow

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 =0 100 150 200 0
M lliane of frames M llions of frames Millions of ‘rameas Millicne of frames

50 100 150 200

M lliane of frames

Rainbow: Combining Improvements in Deep Reinforcement Learning

Mattco Hessel Joscph Modayil Hado van Hassclt Tom Schaul Gceorg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DecpMind DeepMind DeepMind DeepMind DecpMind

DON

== N0 double

— N0 priority

=== N0 due ing ~ x

200%F . no multi-step ot Vid
no distribution -4 N e
A : ‘ I
@ P no.nmsy , ',‘,.) .:"‘.‘ :‘;C_W' ‘; P .’!w/,‘. ", vl “‘
= == Rainhow Vo™ o o L 1
9 v i~ et
; ; .'“\._l"‘u"""'"' v
@ \
-~ vy, g W
E o ’ Ny .
€ | ol y
. wra L o e
Q
-
£ 100%
©
d)
S
) | | |
0% 50 100 150 200

Millions of frames

» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?

Question

» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?

- With enough resources, yes.

- Resources = number of simulations (rollouts) and maximum
allowed depth of those rollouts.

- There is always an amount of resources when a vanilla MCTS (not
assisted by any deep nets) will outperform the learned with RL

policy.

» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?

» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?

- Because using vanilla (not assisted by any deep nets) MCTS is
very very slow, definitely very far away from real time game
playing that humans are capable of.

» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?

» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?

- That would be a very sensible approach!

Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiao@umich.edu bave ja@umich.edu
Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu Xiaoshiw@umich.edu

Offline MCTS to train online fast reactive policies

« AlphaGo: train policy and value networks at training time, combine
them with MCTS at test time

 AlphaGoZero: train policy and value networks with MCTS in the
training loop and at test time (same method used at train and test
time)

« Offline MCTS: train policy and value networks with MCTS in the
training loop, but at test time use the (reactive) policy network,
without any lookahead planning.

Revision: Monte-Carlo Tree Search

1. Selection
-+ Used for nodes we have seen before
- Pick according to UCB
2. Expansion
- Used when we reach the frontier
-+ Add one node per playout
3. Simulation
-+ Used beyond the search frontier
 Don’t bother with UCB, just play randomly
4. Backpropagation
- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Upper-Contidence Bound

Sample actions according to the following score:

parent node visits

In(N
v; +C X n(V).
\ N

tunable parameter

number of visits

‘ value estimate ‘

*score is decreasing in the number of visits (explore)
* score is increasing in a node’s value (exploit)

- always tries every option once

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi,
Fischer, 2002

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB_sample (state)
winner = MCTS sample (next state)
else: h h Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)
Explored Tree

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample (state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)
else:
New Node
next state = state
winner = random playout (next state)

update value(state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state)
else:

if some children of state exvanded:

next state = expand(random unexpanded child)
else: 1
next state = state "\
winner = random playout (next state) Random

update value(state, winner) Phase

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)

else:

New Node

¢

next state = state "

winner = random playout (next state) Random
update value(state, winner) Phase

Explored Tree

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)

else:

New Node

¢

next state = state .

winner = random playout (next state) Random('.
update value(state, winner) Phww/\b
Explored Tree

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample (state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)

else:

New Node

l“
Random b

Phase (\

next state = state
winner = random playout (next state)

update value(state, winner)

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample (state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state exvanded:

next state = expand(random unexpanded child)

else:

New Node

1“
Random b

Phase (\

next state = state
winner = random playout (next state)

update value(state, winner)

|_earning from MCTS

» The MCTS agent plays against himself and generates (s, a, Q(s,a)) tuples.
Use this data to train:

» UCTtoRegression: A regression network, that given 4 frames

regresses to Q(s,a,w) for all actions

» UCTtoClassification: A classification network, that given 4 frames

predicts the best action through multiclass classification

» The state distribution visited using actions of the MCTS planner will not
match the state distribution obtained from the learned policy.

>

UCTtoClassification-Interleaved: Interleave UCTtoClassification
with data collection: Start from 200 runs with MCTS as before, train
UCTtoClassification, deploy it for 200 runs allowing 5% of the time a
random action to be sampled, use MCTS to decide best action for
those states, train UCTtoClassification and so on and so forth.

Results

Agent B.Rider Breakoutr I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 0942 21 29725 5100 200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 366(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent B.Rider Breakoui Enduro Pong Q%bert Seaquesi S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Results

Agent B.Rider Breakoutr I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20) 1952 1705 S¥1
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 0942 21 29725 5100 200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 366(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent B.Rider Breakout Enduro Pong Q%bert Seaquest S.Invaders
UCT 7233 406 788 21 18830 3257 2354

Online planning (without aided by any neural net!) outperforms DQN policy. It takes though ""a few
days on a recent multicore computer to play for each game”.

Results

Agent B.Rider Breakoutr I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 042 21 29725 5100 [200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 5366(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent B.Rider Breakoui Enduro Pong Q%bert Seaquesi S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Classification is doing much better than regression! indeed, we are training for exactly what we care
about.

Results

Agent B.Rider Breakoutr I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 042 21 29725 5100 [200
-greedy 5676 269 692 21 19890 2760 6&0
UCC-I 3388(4.6) 215(6.69) 601(11) 1900.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5TO2 380 741 21 200025 2995 692
UCR 2405(12) 143(6.7) 366(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

B.Rider

S.Invadery

2354

Breakout Endure

406

Agent
UCT

Q*bert
18850

Seaquesl

3257

Pong
788 21

~NAN
7233

Interleaving is important to prevent mismatch between the training data and the data that the trained
policy will see at test time.

Results

Agent B.Rider Breakoutr I[nduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 0942 21 29725 5100 200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 J3388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 210
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 366(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Tablc 2: Performance (gamc scorcs) of the off-linc UCT gamce playing agent.

Agent B.Rider Breakoui Enduro Pong Q%bert Seaquesi S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Results improve further if you allow MCTS planner to have more simulations and build more reliable Q
estimates.

Problem

Step 69: FIRE Step 70: DOWN+FIRE Step 74 DOWN<FIRE Step 75:RIGHI+FIRE Step 76:RIGHT+FIRE Step 78: RIGHT-FIRE Step 79:.DOWN+FIRE

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the depth of
our MCTS planner, thus it is ignored.

» Why don’t we always use MCTS (or some other planner) as supervision for
reactive policy learning?

- Because in many domains we do not have access to the dynamics.

Neural Episodic Control

Alexander Pritzel
Benigno Uria
Sriram Srinivasan
Adria Puipdoménech
Oriol Vinyals

Demis Hassabis
Daan Wierstra
Charles Blundell

DeepMind, London UK

APRITZEL @GOOGLE.COM
BURIA@GOOGLE.COM

SRSRINIVASAN@GOQGLE.COM
ADRIAP@GODOGLE.COM

VINYALS@GOOGLE.COM
DEMISHASSABIS@GOOGLE.COM
WIERSTRA@GOOGLE.COM
CBLUNDELL@GOOGLE.COM

Nearest neighbors Lookup

hi Qi

Q(Sa a’)’ — Z w; Qi

B [k(hhy)
. : Z:j k(h, hj)

Writing in the memory

h; Qi

N—1

N—
Q(N) (Sta a) — Z ’Yj'rt—{-j + 7N Ht?‘x Q(St-{-Na CL,)
j=0

It identical key h present:

Writing

Qi + Qi + a(Q™)(s,a) — Q)

Flse add row (h, Q"(s, a)) to the memory

N-1

QW (s,0) = Y ¥y + 7N max Q(sesn,)

J.:

Algorithm 1 Neural Episodic Control

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to M,, .
Append (s, ay, Q(N)(st,at)) to D.
Train on a random minibatch from D.
end for
end for

Algorithm 1 Neural Episodic Control

N-1

QW (s,a) = Y ¥y + 7N max Q(sern,)
j=0

1 n a
—§VWJ(W) = (g-(5,A) — G(5,A,w))VuG(S5.A,w)
Aw = (}T(qﬁ'(sa A) o 6(57 A:\ W))VWEI(S Aa W)

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to M,, .
Append (s¢, a;, Q™) (s, a¢)) to D.
Train on a random minibatch from D.
end for
end for

