
Model Based Reinforcement
Learning II

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

Model learning
We will be learning the model using experience tuples. A supervised learning
problem.

s

a
s0

r

ϕ
gaussian process,

random forest, deep
neural network, linear

function

Model learning
We will be learning the model using experience tuples. A supervised learning
problem.

s

a

s0ϕ
gaussian process,

random forest, deep
neural network, linear

function

The model can be unrolled in time by feeding the prediction of the model back
as input

Why model learning

• Model-based control: given an initial state s_0 estimate action sequence
to reach a desired goal or maximize reward by unrolling the model forward
in time

• Model-based RL: train policies using:
1. a model-free RL method using simulated experience (experience

sampled from the model)
2. an imitation learning method by imitating the MPC planner

• Efficient Exploration guided by model uncertainty (later lecture)

Model-based control

a1 a2

s1 s2 s3 s4
a3

ϕ ϕ ϕ

min
a1⋯aT

. ∥sT − s*∥

s.t. . ∀t, st+1 = f(st, at; ϕ)

max
a1⋯aT

.
T

∑
t=1

rt

s.t. . ∀t, (st+1, rt+1) = f(st, at; ϕ)

r1 r2 r3

If the dynamics are non-linear and the loss is not a quadratic, this optimization is
difficult. We can use SGD or evolutionary methods.

Model-Based Reinforcement Learning

Optimize
Policy

Execute
Policy

Train Dynamics
Model

Alternating between model and policy learning
Initialize policy and D={}.

1. Run the policy and update experience tuples dataset D.
2. Train a dynamic model using D:
3. Update the policy using

1. model-free RL method on simulated experience sampled from the
model

2. Immitating a model-based controller
4. GOTO 1.

π(s; θ)

(s′�, r′�) = f(s, a; ϕ)

Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., images:

a

s
s′�

state can be 3D locations and 3D
velocities of agent joints, actions

can be torques

ϕ

e.g., Atari game playing

a
h′�

o h ϕ

a
o′�

o ϕ

Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., image or touch:

a

s
s′�

state can be 3D locations and 3D
velocities of agent joints, actions

can be torques

ϕ

e.g., Atari game playing

a
h′�

o h ϕ

a
o′�

o ϕ

This now works! It outperforms model-free RL methods: reaches same final
performance with much fewer samples! :-)

Still an open problem :-(

It’s all about representing uncertainty. Two types of uncertainty:
1. Epistemic uncertainty: uncertainty due to lack of data (that ‘d permit to uniquely

determine the underline system exactly)
2. Aleatoric uncertainty: uncertainty due to inherit stochasticity of the system

Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= (1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) + const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

We want to train a model, i.e., the state transition function (let’s forget the
reward for now). What can I do?

The environment can be stochastic

s, a

s′� s′�′�

• This means our state does not capture enough information to help us
dileneate the possible future outcomes.

• What is stochastic under one state representation, may not be stochastic
under another.

• We will always have part of the information hidden, so stochasticity will
always be there

Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= (1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) + const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

Training a probabilistic NN! Given a (s,a) as input, the NN outputs a mean
vector and a set of variances, one for each dimension of the state vector. We
train by maximizing log likelihood of our training set.

Probabilistic Neural Nets as Models
pϕ(s′�|s, a) =

exp (− 1
2 (s′ �− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))

(2π)ddetΣ(s, a; ϕ) ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= (1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ)))
+

1
2

log(detΣ(si, ai; ϕ)) + const.
μϕ(st, at; ϕ)
Σ(st, at; ϕ)

Probabilistic Neural Nets as Models

Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

There is a unique answer for s’ (no stochasticity) but I do not know it
due to lack of data!

(s, a)

s′�

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′�

Model errors!

Having a posterior distribution over my neural weights
I can quantify my uncertainty by sampling networks and measuring the entropy of
their predictions :-)
Inference of such posterior is intractable :-(but there are some nice recent
variational approximations (later lecture)

P(w |𝒟)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away of the training data :-(

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))

 Bayesian regression network

P(y |x, D) = ∫ P(y |x, ϕ)P(ϕ |D)dϕ

P(ϕ |D)

Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′�

• Neural network Ensembles are a good approximation to Bayesian Nets.
• Instead of having explicit posteriors distributions for each neural net parameter,

you just have a small set of neural nets, each trained on separate data.
• On the data they have seen, they all agree (low entropy of predictions)
• On the data they have not seen, each fails in its own way (high entropy of

predictions)

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Results

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Model-based RL in sensory space

Model Learning in sensory space

a

o h h′�

Predicting action-conditioned dynamics directly in a latent embedding space

a

o o′�

Predicting action-conditioned dynamics directly in observation space

rMANY different rewards can be
computed from the future visual
observation, e.g., make Mario jump,
make Mario move to the right, to the left,
lie down, make Mario jump on the well
and then jump back down again etc.

Model Learning in sensory space

a

o o′�

Predicting action-conditioned dynamics directly in observation space

a

o h h′�

Predicting action-conditioned dynamics directly in a latent embedding space

Model Learning - 4 Qs always in mind
• What shall we be predicting?

a

o h h′�

a
• What is the architecture of the model, what structural biases should we add to

get it to generalize?

a
h′�

o h
a

• What is the action representation?

h′�

o h
a

Model Learning - 4 Qs always in mind
• What loss do we use?

a

o h h′�

a

• Train a neural network that given an image (sequence) and an action,
predict the pixels of the next frame

• Unroll it forward in time to predict multiple future frames
• (Use this frame prediction to come up with an exploratory behavior in

DQN: choose the action that leads to frames that are most dissimilar
to a buffer of recent frames)

s

a
CNN

o o′�

A solution: Progressively increase the unroll length k at training time so that the model learns to correct its
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to diverge (though people do that)

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ ℒ(ϕ) =
1
N

N

∑
i=1

∥f(ai
1, oi

1; ϕ) − oi
2∥

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ

ℒ =
1
N

N

∑
i=1

∥ ̂oi
2 − oi

2∥

̂o3

ℒ(ϕ) =
1
N

N

∑
i=1

∥f(ai
1, oi

1; ϕ) − oi
2∥+

∥f(ai
2, f(ai

1, oi
1; ϕ); ϕ) − oi

3∥ϕ

A solution: Progressively increase the unroll length k at training time so that the model learns to correct its
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to diverge (though people do that)

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ ̂o3 ̂o4

A solution: Progressively increase the unroll length k at training time so that the model learns to correct its
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the
model to diverge (though people do that)

ϕϕ

ℒ(ϕ) =
1
N

N

∑
i=1

∥ f (ai
1, oi

1; ϕ) − oi
2∥+

∥ f (a i
2, f (ai

1, oi
1; ϕ); ϕ) − oi

3∥+

∥ f (a i
3, f (a i

2, f (ai
1, oi

1; ϕ); ϕ); ϕ) − oi
4∥

Small objects are missed, e.g., the bullets.
Q: Why?
A: They induce a tiny mean pixel prediction loss (despite the fact they
may be task-relevant)

Similar architecture as before but..

Reward-aware loss!

• We train the dynamics model to generate a future sequence so that the
rewards obtained from the simulated sequence agree with the rewards
obtained in the ``real” (videogame) world. I put L2 on the rewards as opposed
to just on pixels. This encourages to focus on objects that are too small and
incur a tiny L2 pixel loss, but may be important for the game.

• (Nonetheless, they made the ball larger :-()

results

https://sites.google.com/view/modelbasedrlatari/home

Results

• Number of frames required to reach human performance.
• Model based first time wins also from pixels!!

results

https://sites.google.com/view/modelbasedrlatari/home

Model-based RL in Atari
• We predicted next frame

s

a

o
h

h′�

• Our model was a CNN

s

a

o
h

h′�

• The Atari discrete action set, one hot encoding

s

a

o
h

h′�

Model-based RL in Atari
• We mimimized L2 pixel distance+reward prediction

s

a

o
h

h′�

Predicting Raw Sensory Input (Pixels)

Should our prediction model be predicting the input observations?
• Observation prediction is difficult especially for high dimensional

observations, such as images.
• Observation contains a lot of information unnecessary for planning,

e.g., dynamically changing backgrounds that the agent cannot
control and/or are irrelevant to the reward.

a

Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.

o h h′� hg

r = exp(−∥h′�− hg∥)

Prediction in a latent space

g

What is the problem with this optimization problem?

There is a trivial solution :-(

min
w,ϕ

. ∥f(h(o; w), a; ϕ) − h(o′�; w)∥f (h(o; w), a; ϕ)
hw(o)

hw(o′�)

o

o′�

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Prediction in a latent space

a

Prediction in a latent space
Our model tries to predict a (potentially latent) embedding, from which
rewards can be computed, e.g., by matching the embedding from my
desired goal image to the prediction.

hw(o)o

a
hw(o′�)o′�

o hw(o)

f (h(o; w), a; ϕ)

min
w,ϕ,ψ

. ∥f(h(o; w), a; ϕ) − h(o′�; w)∥ + ∥Inv(h(o; w), h(o′ �); ψ) − a∥

F

 35

Learning visual dynamics

• Overall, the scene over time, content-wise does not change
• What if, instead of predicting appearance, or deep features that do not

disentangle motion and appearance, we track objects and just predict object
motion?

F

 36

Malik

How do we learn to play Billiards?

 37

 38

 39

 40

 41Predictive Visual Models of Physics for Playing Billiards, K.F. et al. ICLR 2016

Learning Action-Conditioned Billiard Dynamics

We simply predict ball motion trajectories

 42

Q: will our model be able to generalize across different number of balls?

Force field

Learning Action-Conditioned Billiard Dynamics

CNN

F

 43

F

World-Centric Prediction Object-Centric Prediction

Learning Action-Conditioned Billiard Dynamics

Q: will our model be able to generalize across different number of balls present?

 44

 45

 46

 47

 48

 49

 50

F

Object-centric Billiard Dynamics

CNN

ball displacement
dx

• The object-centric CNN is shared across all objects in the scene.
• We apply it one object at a time to predict the object’s future displacement.
• We then copy paste the ball at the predicted location, and feed back as input.

 51

file:///.file/
id=6571367.7967880

Playing Billiards

 52

How should I push the red ball so that it collides with the green on?
CEM for searching in the force space

Learning Visual Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change,

predicting motion suffices. Let’s predict only the dynamic properties and keep
the static one fixed.

Billiards
• We predicted object displacement trajectories

s

a

o
h

h′�

• We had one CNN per object in the scene, shared the weights across objects

s

a

o
h

h′�

• A force applied to each object

so
h

h′�

Graph Encoding
• In the Billiard case, object context was taken into account by using a large

enough image patch around each object (node).
• What if we explicitly send each node’s computations to neighboring nodes to be

taken account when computing their future?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

We will encode a robotic agent as a graph, where nodes are the different bodies of
the agent and edges are the joints, links between the bodies

Graph neural networks!
They generalize convolutions to general
graphs, as opposed to pixel grids.

Graph Encoding

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Node features:
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints

• In the Billiard case, object context was taken into account by using a large
enough image patch around each object (node).

• What if we explicitly send each node’s computations to neighboring nodes to be
taken account when computing their future?

Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

• I predict only the dynamic node features, their temporal difference.
• The node and edge computation functions are shared across all nodes

and all edges! Graph convolution.
• Train with regression.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints
• No visual input here, much easier!

Robots as graphs
• We predicted dynamic node features

s

a

o
h

h′�

• Our model is a Graph Neural networ, the node update function is shared
across all nodes (thus we can generalize across different number of nodes)

s

a

o
h

h′�

• Forces applied to each node

s

a

o
h

h′�

Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference:

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular

velocities
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints

Graph Model Predictive Control

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change,

predicting motion suffices. Let’s predict only the dynamic properties and keep
the static one fixed.

Visual dynamics using motion transformation

h′�

Differentiable warping

Instead of predicting a next frame directly

Q: Why this is beneficial?

We can predict a motion field and warp the last frame to produce the next

Visual dynamics using motion transformation

Goal representation: move certain
pixel of the initial image to desired
locations

We will learn a model of pixel
motion displacements

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

Visual dynamics using motion transformation

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

Visual dynamics using motion transformation

Goal representation: move certain pixels directly from the
very initial image to desired locations

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

Temporal skip-connection! Handle occlusions by copying pixels from
the very initial images, rather than the previous image.

Visual dynamics using motion transformation

https://sites.google.com/view/sna-visual-mpc

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

This model is used with Model predictive control to move pixels to desired locations

https://sites.google.com/view/sna-visual-mpc

Image prediction using temporal skip connections

• We predicted future images

s

a

o
h

h′�

• Our model is a CNN that predicts motion masks for the initial image and right
the previous image, Such motion allow generalization

s

a

o
h

h′�

• Both continuous and discrete action representation were used

s

a

o
h

h′�

What should we be predicting?

Do we really need to be predicting observations?

• What if we knew what are the quantities that matter for the goals i care
about?

• For example, I care to predict where the object will end up during pushing but
I do not care exactly where it will end up, when it falls off the table, or I do not
care about its intensity changes due to lighting.

• Let’s assume we knew this set of important useful to predict features. Would
we do better?

• Yes! we would win the competition in Doom the minimum.

Visual dynamics using motion transformation

• Main idea: You are provided with a set of measurements m paired with input
visual (and other sensory) observations.

• Measurements can be health, ammunition levels, enemies killed.
• Your goal can be expressed as a combination of those measurements.

measurement offsets are the prediction targets: f = (mt+τ1
− mt, ⋯, mt+τn

− mt)

(multi) goal representation: u(f, g) = g⊤f

What will be the future measurements for a set of future temporal instances
(no unrolling)

Visual dynamics using motion transformation

Train a deep predictor. No unrolling! One shot prediction of future values for all actions:

No policy, direct action selection:

Learning dynamics of goal-related measurements

Action selection:

Training: we learn the model using \epsilon-greedy exploration policy over the
current best chosen actions.

Learning dynamics of goal-related measurements

Learning dynamics of goal-related measurements

