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Model learning
We will be learning the model using experience tuples. A supervised learning 
problem.
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Model learning
We will be learning the model using experience tuples. A supervised learning 
problem.
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The model can be unrolled in time by feeding the prediction of the model back 
as input



Why model learning

•  Model-based control: given an initial state s_0 estimate action sequence  
to reach a desired goal or maximize reward by unrolling the model forward 
in time

•  Model-based RL: train policies using: 
1. a model-free RL method using simulated experience (experience 

sampled from the model) 
2. an imitation learning method  by imitating the MPC planner

•  Efficient Exploration guided by model uncertainty (later lecture)



Model-based control

a1 a2

s1 s2 s3 s4
a3

ϕ ϕ ϕ

min
a1⋯aT

. ∥sT − s*∥

s.t.  . ∀t, st+1 = f(st, at; ϕ)

max
a1⋯aT

.
T

∑
t=1

rt
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If the dynamics are non-linear and the loss is not a quadratic, this optimization is 
difficult. We can use SGD or evolutionary methods.



Model-Based Reinforcement Learning

Optimize
Policy

Execute
Policy

Train Dynamics 
Model 

Alternating between model and policy learning
Initialize policy            and D={}. 

1. Run the policy and update experience tuples dataset D.
2. Train a dynamic model using D: 
3. Update the policy using 

1. model-free RL method on simulated experience sampled from the 
model

2. Immitating a model-based controller
4. GOTO 1.

π(s; θ)

(s′�, r′�) = f(s, a; ϕ)



Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., images:
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Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., image or touch:
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state  can be 3D locations and 3D 
velocities of agent joints, actions 

can be torques
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e.g., Atari game playing
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This now works! It outperforms model-free RL methods: reaches same final 
performance with much fewer samples! :-)

Still an open problem :-(



It’s all about representing uncertainty. Two types of uncertainty:
1. Epistemic uncertainty: uncertainty due to lack of data (that ‘d permit to uniquely 

determine the underline system exactly) 
2. Aleatoric uncertainty: uncertainty due to inherit stochasticity of the system



Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
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N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

We want to train a model, i.e., the state transition function (let’s forget the 
reward for now). What can I do?

The environment can be stochastic

s, a

s′� s′�′�

• This means our state does not capture enough information to help us 
dileneate  the possible future outcomes. 

• What is stochastic under one state representation, may not be stochastic 
under another.

• We will always have part of the information hidden, so stochasticity will 
always be there



Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
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D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

Training a probabilistic NN! Given a (s,a) as input, the NN outputs a mean 
vector and a set of variances, one for each dimension of the state vector. We 
train by maximizing log likelihood of our training set. 

Probabilistic Neural Nets as Models
pϕ(s′�|s, a) =

exp (− 1
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μϕ(st, at; ϕ)
Σ(st, at; ϕ)

Probabilistic Neural Nets as Models



Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

There is a unique answer for s’ (no stochasticity) but I do not know it 
due to lack of data!

(s, a)

s′�

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′�

Model errors!



Having a posterior distribution over my neural weights
I can quantify my uncertainty by sampling networks and measuring  the entropy of 
their predictions :-)
Inference of such posterior is intractable :-( but there are some nice recent 
variational approximations (later lecture)

P(w |𝒟)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away of the training data :-(

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))

 Bayesian regression network

P(y |x, D) = ∫ P(y |x, ϕ)P(ϕ |D)dϕ

P(ϕ |D)



Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′�

• Neural network Ensembles are a good approximation to Bayesian Nets.
• Instead of having explicit posteriors distributions for each neural net parameter, 

you just have a small set of neural nets, each trained on separate data. 
• On the data they have seen, they all agree (low entropy of predictions)
• On the data they have not seen, each fails in its own way (high entropy of 

predictions)



https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Results

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8


Model-based RL in sensory space



Model Learning in sensory space
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Predicting action-conditioned dynamics directly in a latent embedding space
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Predicting action-conditioned dynamics directly in observation space

rMANY different rewards can be 
computed from the future visual 
observation, e.g., make Mario jump, 
make Mario move to the right, to the left, 
lie down, make Mario jump on the well 
and then jump back down again etc.



Model Learning in sensory space
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Predicting action-conditioned dynamics directly in a latent embedding space



Model Learning - 4 Qs always in mind
• What shall we be predicting?
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• What is the architecture of the model, what structural biases should we add to 

get it to generalize?

a
h′�

o h
a

• What is the action representation?

h′�

o h
a



Model Learning - 4 Qs always in mind
• What loss do we use?
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• Train a neural network that given an image (sequence) and an action, 
predict the pixels of the next frame

• Unroll it forward in time to predict multiple future frames
• (Use this frame prediction to come up with an exploratory behavior in 

DQN: choose the action that leads to frames that are most dissimilar 
to a buffer of recent frames)
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A solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the 
model to diverge (though people do that)

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ ℒ(ϕ) =
1
N

N

∑
i=1

∥f(ai
1, oi

1; ϕ) − oi
2∥



Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works
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A solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the 
model to diverge (though people do that)



Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ ̂o3 ̂o4

A solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
own mistakes!

Q: Can I train my model using tupples (o,a,o’) and at test time unroll it over time?
A: no, we will suffer from distribution shift, same as in imitation learning: tiny mistakes will soon cause the 
model to diverge (though people do that)
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Small objects are missed, e.g., the bullets. 
Q: Why?
A: They induce a tiny mean pixel prediction loss (despite the fact they 
may be task-relevant)



Similar architecture as before but..



Reward-aware loss!

• We train the dynamics model to generate a future sequence so that the 
rewards obtained from the simulated sequence agree with the rewards 
obtained in the ``real” (videogame) world. I put L2 on the rewards as opposed 
to just on pixels. This encourages to focus  on objects that are too small and 
incur a tiny L2 pixel loss, but may be important for the game. 

• (Nonetheless, they made the ball larger :-( )

results

https://sites.google.com/view/modelbasedrlatari/home


Results

• Number of frames required to reach human performance. 
• Model based first time wins also from pixels!!

results

https://sites.google.com/view/modelbasedrlatari/home


Model-based RL in Atari
• We predicted next frame
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• Our model was a CNN

s

a

o
h

h′�

• The Atari discrete action set, one hot encoding
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Model-based RL in Atari
• We mimimized L2 pixel distance+reward prediction
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Predicting Raw Sensory Input (Pixels)

Should our prediction model be predicting the input observations?
• Observation prediction is difficult especially for high dimensional 

observations, such as images. 
• Observation contains a lot of information unnecessary for planning, 

e.g., dynamically changing backgrounds that the agent cannot 
control and/or are irrelevant to the reward. 



a

Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 

o h h′� hg

r = exp( −∥h′�− hg∥)

Prediction in a latent space 

g



What is the problem with this optimization problem?

There is a trivial solution :-(

min
w,ϕ

. ∥f(h(o; w), a; ϕ) − h(o′�; w)∥f (h(o; w), a; ϕ)
hw(o)

hw(o′�)

o

o′�

a

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Prediction in a latent space 



a

Prediction in a latent space 
Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 

hw(o)o

a
hw(o′�)o′�

o hw(o)

f (h(o; w), a; ϕ)

min
w,ϕ,ψ

. ∥f(h(o; w), a; ϕ) − h(o′�; w)∥ + ∥Inv(h(o; w), h(o′ �); ψ) − a∥
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Learning visual dynamics

• Overall, the scene over time, content-wise does not change
• What if, instead of predicting appearance, or deep features that do not 

disentangle motion and appearance, we track objects and just predict object 
motion?
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Malik

How do we learn to play Billiards?
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 41Predictive Visual Models of Physics for Playing Billiards, K.F. et al. ICLR 2016

Learning Action-Conditioned Billiard Dynamics

We simply predict ball motion trajectories



 42

Q: will our model be able to generalize across different number of balls?

Force field

Learning Action-Conditioned Billiard Dynamics

CNN
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World-Centric Prediction Object-Centric Prediction

Learning Action-Conditioned Billiard Dynamics

Q: will our model be able to generalize across different number of balls present?
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F

Object-centric Billiard Dynamics

CNN

ball displacement
dx

• The object-centric CNN is shared across all objects in the scene. 
• We apply it one object at a time to predict the object’s  future displacement.
• We then copy paste the ball at the predicted location, and feed back as input.



 51

file:///.file/
id=6571367.7967880



Playing Billiards

 52

How should I push the red ball so that it collides with the green on?
CEM for searching in the force space



Learning Visual Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across 

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change, 

predicting motion suffices. Let’s predict only the dynamic properties and keep 
the static one fixed. 



Billiards
• We predicted object displacement trajectories

s

a

o
h

h′�

• We had one CNN per object in the scene, shared the weights across objects
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• A force applied to each object
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Graph Encoding
• In the Billiard case, object context was taken into account by using a large 

enough image patch around each object (node). 
• What if we explicitly send each node’s computations to neighboring nodes to be 

taken account when computing their future?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

We will encode a robotic agent as a graph, where nodes are the different bodies of 
the agent and edges are the joints, links between the bodies

Graph neural networks!
They generalize convolutions to general 
graphs, as opposed to pixel grids.



Graph Encoding

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Node features:
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints

• In the Billiard case, object context was taken into account by using a large 
enough image patch around each object (node). 

• What if we explicitly send each node’s computations to neighboring nodes to be 
taken account when computing their future?



Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

• I predict only the dynamic node features, their temporal difference.
• The node and edge computation functions are shared across all nodes 

and all edges! Graph convolution.
• Train with regression.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints
• No visual input here, much easier!



Robots as graphs
• We predicted dynamic node features
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• Our model is a Graph Neural networ, the node update function is shared 
across all nodes (thus we can generalize across different number of nodes)
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• Forces applied to each node
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Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference:

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints



Graph Model Predictive Control

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across 

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change, 

predicting motion suffices. Let’s predict only the dynamic properties and keep 
the static one fixed. 



Visual dynamics using motion transformation

h′�

Differentiable warping

Instead of predicting a next  frame directly  

Q: Why this is beneficial?

We can predict a motion field and warp the last frame to produce the next 



Visual dynamics using motion transformation

Goal representation: move certain 
pixel of the initial image to desired 
locations

We will learn a model of pixel 
motion displacements

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.



Visual dynamics using motion transformation

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.



Visual dynamics using motion transformation

Goal representation: move certain pixels directly from  the 
very  initial image to desired locations

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

Temporal skip-connection! Handle occlusions by copying pixels from 
the very initial images, rather than the previous image.



Visual dynamics using motion transformation

https://sites.google.com/view/sna-visual-mpc

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.

This model is used with Model predictive control to move pixels to desired locations

https://sites.google.com/view/sna-visual-mpc


Image prediction using temporal skip connections

• We predicted future images
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• Our model is a CNN that predicts motion masks for the initial image and right 
the previous image, Such motion allow generalization
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• Both continuous and discrete action representation were used
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What should we be predicting?

Do we really need to be predicting observations?

• What if we knew what are the quantities that matter for the goals i care 
about?

• For example, I care to predict where the object will end up during pushing but 
I do not care exactly where it will end up, when it falls off the table, or I do not 
care about its intensity changes due to lighting. 

• Let’s assume we knew this set of important useful to predict features. Would 
we do better?

• Yes! we would win the competition in Doom the minimum.



Visual dynamics using motion transformation

• Main idea: You are provided with a set of measurements m paired with input 
visual (and other sensory) observations. 

• Measurements can be health, ammunition levels, enemies killed. 
• Your goal can be expressed as a combination of those measurements.

measurement offsets are the prediction targets: f = (mt+τ1
− mt, ⋯, mt+τn

− mt)

(multi) goal representation: u(f, g) = g⊤f

What will be the future measurements for a set of future temporal instances 
(no unrolling)



Visual dynamics using motion transformation

Train a deep predictor. No unrolling! One shot prediction of future values for all actions:

No policy, direct action selection:



Learning dynamics of goal-related measurements

Action selection:

Training: we learn the model using \epsilon-greedy exploration policy over the 
current best chosen actions.



Learning dynamics of goal-related measurements



Learning dynamics of goal-related measurements


