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This lecture

Exploration in Large Continuous State
Spaces



Exploration: It's all about modelling our uncertainty (again)

- Exploration: trying out new things (new behaviours), with the

hope of discovering higher rewards
: doing what you know will yield the highest reward

- We explore efficiently once we know what we do not know,
and target our exploration to the unknown part of the space.

- All non-naive exploration methods consider some form of
uncertainty estimation, regarding policies, Q-functions, or
transition dynamics..



Previous lecture: Exploration in Bandits

- Stateless.
- Q: what does this mean?
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N Bandits

Thompson Sampling

Represent a posterior distribution of mean rewards
of the arms, as opposed to point estimates.

1. Sample from it 6,.6,, .6, ~ p(6,,6,---6))
2. Choose action a = argmaxEy[r(a)]

Play the red arm!
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Previous lecture: Exploration in Bandits

Thompson Sampling

Represent a posterior distribution of mean rewards
of the arms, as opposed to point estimates.

1. Sample from it 6,.6,,--,6, ~ p(9,,6,---6,)
2. Choose action a = argmax Ey[r(a)]

3. Play action, observe reward

4. Update the mean reward distribution

» Can | do something like that for general MDPs?
* What is the equivalent of mean rewards for geenral MDP?



Exploration via Posterior sampling of Q functions

Represent a posterior distribution of Q functions, instead of a point
estimate.

1. Sample from P(Q) ¢~ P

2. Choose actions according to this Q for one
episode a = argmax Q(a, s)

3. Update the Q distribution using the collected
experience tuples

Then we do not need \epsilon-greedy for exploration! Better exploration
by representing uncertainty over Q.

But how can we learn a distribution of Q functions P(Q) if Q function is
a deep neural network?



Representing Uncertainty in Deep Learning
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Exploration via Posterior Sampling of Q-functions

1. Bayesian neural networks. Estimate posteriors for the neural
weights, as opposed to point estimates. We just saw that..

2. Neural network ensembles. Train multiple Q-function approximations
each on using different subset of the data. A reasonable approximation to 1.

3. Neural network ensembles with shared backbone. Only the heads
are trained with different subset of the data. A reasonable approximation

to 2 with less computation.

4. Ensembling by dropout. Randomly mask-out (zero out)neural
network weights, to create different neural nets, both at train and test time.

reasonable approximation to 2.



Exploration via Posterior sampling of Q-functions

1. Bayesian neural networks. Estimate posteriors for the neural
weights, as opposed to point estimates. We just saw that..

2. Neural network ensembles. Train multiple Q-function approximations
each on using different subset of the data. A reasonable approximation to 1.

3. Neural network ensembles with shared backbone. Only the heads

are trained with different subset of the data. A reasonable approximation
to 2 with less computation.

4. Ensembling by dropout. Randomly mask-out (zero out)neural
network weights, to create different neural nets, both at train and test time.
reasonable approximation to 2. (but authors showed 3. worked better than
4.)

Deep exploration with bootstrapped DQN, Osband et al.



Exploration via Posterior Sampling of Q-functions

1. Sample from P(Q) ¢~ P

2. Choose actions according to this Q for one |
episode a = argmax Q(a, s) )

3. Update the Q distribution using the collected
experience tuples

With ensembles we achieve similar things as with Bayesian nets:

- The entropy of predictions of the network (obtained by sampling different
heads) is high in the no data regime. Thus, Q function values will have
high entropy there and encourage exploration.

- When Q values have , 1 exploit, i do not explore.

Deep exploration with bootstrapped DQN, Osband et al.



Exploration via Posterior Sampling of Q-functions
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Motivation: “Forces” that energize an organism to act and that direct its
activity
- Extrinsic Motivation: being moved to do something because of some
external reward ($$, a prize, etc.).
-+ Problem: such rewards are sparse..
Intrinsic Motivation: being moved to do something because it is
inherently enjoyable (curiosity, exploration, novelty, surprise,
incongruity, complexity...)
-+ @QGain: Task independent! Free of human supervision, no need
to code up reward functions to incentivize the agent. A general
loss functions that drives learning.




Extrinsic Rewards

Environment

Critic




INtrinsic Rewaras

— | External Environment

Actions Sensations

Internal Environment '

Critic

Rewards

Decisions States

Y
Agent -

"Organism"

All rewards are intrinsic



Curiosity VS Survival

“As knowledge accumulated about the conditions that
govern exploratory behavior and about how quickly it
appears after birth, it seemed less and less likely that
this behavior could be a derivative of hunger, thirst,
sexual appetite, pain, fear of pain, and the like, or that
stimuli sought through exploration are welcomed

because they have previously accompanied satisfaction
of these drives.”

D. E. Berlyne, Curiosity and Exploration, Science, 1966

Intrinsic Motivation different than Intrinsic Necessity: being moved to do
something because it is necessary (eat, drink, find shelter from rain...)



Curiosity and Never-ending Learning

Why should we care?

- Because curiosity is a general, task independent cost function, that if
we successfully incorporate to our learning machines, it may result in
agents that (want to) improve with experience, like people do.

- Those intelligent agents would not require supervision by coding up
reward functions for every little task, they would learn (almost)
autonomously

- Curiosity-driven motivation is beyond satisfaction of hunger, thirst, and

other biological activities (which arguably would be harder to code up
in artificial agents..)



Curiosity-driven exploration

Seek novelty/surprise:
* Visit novel states s

« Observe novel state transitions (s,a)->S’

Q: How can we computationally formalize that?



Curiosity-driven exploration-one way to do it

We will add to the extrinsics (task-related)
rewards:

Independent of the task in hand!

R(s,a,s") = r(s,a,s") + B'(s,a,s’)

| - \ -
N N

extrinsic Intrinsic

We would then be using rewards R'(s,a,s’) in our favorite model free
RL method.



Curiosity-driven exploration-one way to do it

We will add to the extrinsics (task-related)
rewards:

Independent of the task in hand!

R'(s,a,s") =r(s,a,s) + B'(s,a,s’)

| - \ -
N N

extrinsic Intrinsic

We would then be using rewards R'(s,a,s’) in our favorite model free
RL method.

Exploration reward bonuses are non stationary: as the agent interacts with the
environment, what is now new and novel, becomes old and known.



Curiosity-driven exploration

Seek novelty/surprise:

 Visit novel states s



State Visitation counts in Small MDPs

Book-keep state visitation counts N(s)

Add exploration reward bonuses that encourage policies that visit
states with fewer counts.

R(s,a,s) = r(s,a,s’) + B(N(s))

o~ o~

extrinsic intrinsic

N(s) : number of times i visited state s

UCB: B(N(s)) = ?\;?S? | - I

MBIE-EB (Strehl & Littman, 2008):  B(N(s)) =

BEB (Kolter & Ng, 2009): B(N(s)) =



State Visitation Counts in High Dimensions

* We want to come up with something that rewards states that we have
not visited often.

» But in high dimensions, we rarely visit a state twice!

* We need to capture a notion of state similarity, and reward states that
are most dissimilar that what we have seen so far, as opposed to
different (as they will always be different)

R(s,a,s) = r(s,a,s’) + B(N(s))

Ty~ Ty~

extrinsic INFiNSIC e =

the rich natural world



Uniftying Count-Based Exploration and Intrinsic Motivation

Marc G. Bellemare Sriram Srinivasan Georg Ostrovski
bellemare @ google.com srsrinivasan @ google.com ostrovski @google.com
Tom Schaul David Saxton Rémi Munos
schaul @google.com saxton@ google.com munos @ google.com

We use parametrized density estimates instead of discrete counts.

- py(S) :parametrized visitation density: how much we have visited state s.
Even if we have not seen exactly the same state s, the probability can
be high if we visited similar states.



Exploring with Pseudcounts

State s

B(N(s)) =

1
N(s)

= fit model py(s) to all states D seen so far
take a step 7 and observe s;

fit new model py/(s) to D Us;
use pa(s;) and pg:(s;) to estimate N(s)
o set 7 =1y + B(N(8)) ~—— .

pseudo-count”

how to get N(s)? use the equations

N(s; N(s;)+1
Po(si) = % ) por(Si) = ,ﬁ:_ 1

two equations and two unknowns!

. ) 1 — po(8;)
N (s;) = npg(s; n =
(Si) = pa(si) por(si) — pals:

)pQ(Sz‘)

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.



Exploring with Pseudcounts
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State s

1

BV =1\ 57

= fit model py(s) to all states D seen so far
take a step 7 and observe s;

fit new model py/(s) to D Us;
use pa(s;) and pg:(s;) to estimate N(s)
o set 7 =1y + B(N(8)) ~—— .

pseudo-count”

how to get N(s)? use the equations

N (s;) ~ N(si) +1
po(si) = — por(si) = P
two equations and two unknowns!
A ) 1 — por(s;)
N S;) = n S; n = p@(sfi)
(8:) = 7ipots:) por (1) — po(s)

How are we going to estimate pH(S) ?

A model that given an image predicts a probability: how much | have seen this image in the past.

Unifying Count-Based Exploration and Intrinsic Motivation, Bellemare et al.



Generative models of Images

ﬂariatinnal AutoEncoders (VAE)
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VAE

GAN Autoregressive Models

Efficient inference with

- generate sharp image. | very simple and stable training process

Pros. ; ! - no need for any Markov chain or |- currently gives the best log likelihood.
approximate latent variables. approx networks during sampling. |- ~ tractable likelihood  »
- generated samples tend to be| - difficult to optimize due to | : . . . .
Cons. blurry. unstable training dynamics. relatively inefficient during sampling

(cf. https:,I’,fnpenai.Cﬂmft}%fgenerative-mndelsf]|

We like that! We want it
to compute probabilities,
not to draw beautiful
samples!



Generative models of Images

One shot image generation (usually used in VAEs and GANS):

Random
latent vector

Z —>

Trained giant

Feed-forward =3 [ -

neural network

N X1

Generated
Image

[l. Goodfellow, 2016]

Autoregressive image generation: Generate the image one pixel at a

time

Trained
recurrent
neural
network

—_—




Autoregressive Image generation

Intultion

p(X) — p(mlax% ceey ZITRZ)

Bayes Theorem:

2
p(x) = Hp(ﬂfz'lﬂ?l, ---,333‘—1)
i—=1

A sequential model!

L2

Pixel recurrent neural networks, ICML 2016

Pixel RNN: a neural networks that sequentially predicts the pixels in the image



i
B xo;

Spatial LSTM

pixels

/" softmax layer

Adapted from: Generative image modeling using
spatial LSTM. Theis & Bethge, 2015

the pixel i am estimating the value for

SLSTM-2

SLSTM-1

pixels

the pixel that have already been predicted, and on which our LSTM is conditioning



Spatial LSTM

OO OO O
OO OO O oixels
cooeo
£ / softmax layer

L SLSTM-2
Too slow, no parallelization: |
update the pixels one by one.

SLSTM-1

pixels

Adapted from: Generative image modeling using
spatial LSTM. Theis & Bethge, 2015

Bl Ti; the pixel i am estimating the value for

H X <ij the pixel that have already been predicted, and on which our LSTM is conditioning



Multinomial Distribution for Pixel Value

* Treat pixels as discrete variables:

* To estimate a pixel value, do classification in
every channel (256 classes indicating pixel
values 0-255) ;

* Implemented with a final softmax layer

o

255

o
[yel
o
n
o
[&]

Figure: Example softmax outputs in the final layer,
representing probability distribution over 256 classes.

Figure from: Oord et al.



Pixel RNN

RowlLSTM
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4
/7
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4

J9Ae| xewyjos

image sLSTM-1 SLSTM-2 sLSTM-12

Pixel recurrent neural networks, ICML 2016




Row LSTM

e 3.;3.//’/.
OO OQ. . /O.OO First LSTM Layer
O O O O

® O OO
OO O‘OOOOO Image layer
ONONONONG®

Row LSTM

Pixel recurrent neural networks, ICML 2016




Pixel RNN

Diagonal LSTM
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Pixel recurrent neural networks, ICML 2016




Diagonal LSTM

* To optimize, we skew the feature maps so it can be parallelized

Pixel recurrent neural networks, ICML 2016
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Pixel CNN

* 2D convolution on previous layer
* Apply masks so a pixel does not see future pixels (in sequential order)

OO0 OO0
OO0 OO0
O O @ O O masked convolution

Pixel recurrent neural networks, ICML 2016




Comparison

PixelCNN PixelRNN — Row LSTM PixelRNN - Diagonal BiLSTM
Full dependency field Triangular receptive field Full dependency field
Fastest Slow Slowest
Worst log-likelihood - Best log-likelihood
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Figure from: Oord et al.



Better density estimation usually helps

Montezuma's Revenge Private Eye
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Better density estimation helps

Frame preprocessing: shrink and convert to grayscale

Original Frame (160x210) 3-bit Greyscale (42x42)

Figure 4. Samples after 25K steps. Left: CTS, right: PixelCNN.



Curiosity-driven exploration

Seek novelty/surprise:

 Visit novel states s



State Counting with DeepHashing

- We still count states (images) but not in pixel space, but in latent
compressed space.

- Compress s into a latent code, then count occurrences of the code.
How do we get the image encoding? E.g, using autoencoders.

- downsample r F
code |- [ ™,
5 . * ety
| O -M"'.._ ™, '...1
™ o NN " ™, LY
.\'.\_\"'\._\. .\.-\.
Bl |¢ b = ¢ } o & x 6 5| 6 &34 & limear softmax
Oy = 5= 5 W s S B XSS ‘
" R A I | '"‘a:_r" e w10 10 .
s 96 x 24 x 24 06 = 24 x 24
a 2400 -

1 % 52 = 52 ] 52 52 64 x52x 52

* Note: There is no guarantee such reconstruction loss will capture the
important things that make two states to be similar or not policy wise..

#Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.



State Counting with DeepHash

- We still count states (images) but not in pixel space, but in latent
compressed space.

- Compress s into a latent code, then count occurrences of the code.

- How do we get the image encoding? E.g, using autoencoders.
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#Exploration- A Study of Count-Based Exploration for Deep Reinforcement Learning, Tang et al.



Curiosity-driven exploration

Seek novelty/surprise:

« Observe novel state transitions (s,a)->S’



Mental models

If the organism carries a small scale model’ of
external reality and its own possible actions
The within its head, it is able try out various

Nature of
Explanation

alternatives, conclude which is the best of
them, react to future situations before they
arise, utilize the knowledge of the past in
KENNETH dealing with present and the future, and in
CRAIK every way react in much fuller, safer and more
competent manner to emergencies which face
it.

_ -- Kenneth Craik, 1943, Chapter 5, page 61

That was what model based RL was all about.

Now we will be exploring so that our model improves the fastest!
[credit: Jitendra Malik]




Computational Curiosity

- “The direct goal of curiosity and boredom is to
improve the world model. The indirect goal is to ease
the learning of new goal-directed action sequences.”

- “The same complex mechanism which is used for
‘normal’ goal-directed learning is used for
implementing curiosity and boredom. There is no
need for devising a separate system which aims at
improving the world model.”

- “Curiosity Unit”: reward is a function of the mismatch
between model’s current predictions and actuality.
There is positive reinforcement whenever the system
fails to correctly predict the environment.

- “Thus the usual credit assignment process ...
encourages certain past actions in order to repeat
situations similar to the mismatch situation.” (planning
to make your (internal) world model to fail)

Jurgen Schmidhuber, 1991, 1991, 1997




Computational Curiosity

In other words:

-+ Model learning and model improvement can be cast
as the goals of goal-seeking behaviour.

- My goal is not to beat Atari but to improve my Atari
model.

- OK. What is my reward then that trying to maximize
that reward will lead to fast model learning?




Reward Prediction Error

Add exploration reward bonuses that encourage policies to visit states
that will cause the prediction model to fail.

model error!

Ri(s,a,s) = r(s,a,s") + RB'(||T(s,a;0)—s'||)

extrinsic intrinsic

Note: we will be using T(s,a;\theta) to denote the dynamics (transition)
function.



Learning Visual Dynamics

Exploration reward bonus %'(s,a, s") = || T(s,a; 0) — 5’|

t,
2

R(s,a,s") = r(s,a,s") + RB'(s,a,s)

min. ||T(s,a;0) — 5|
0

¥ _—
SR R S R A

Here we predict the visual observation!

extrinsic  intrinsic



Action-Conditional Video Prediction
using Deep Networks in Atari Games

Junhyuk Oh  Xiaoxiao Guo Honglak Lee Richard Lewis  Satinder Singh

» Train a neural network that given an image (sequence) and an action,
predict the pixels of the next frame

 Unroll it forward in time to predict multiple future frames

 Use this frame prediction to come up with an exploratory behavior in

DQN: choose the action that leads to frames that are most dissimilar

to a buffer of recent frames




Frame prediction

L \I:‘J/ \@_, A _,@,5
) Multiplicative interactions
, , , , between action and hidden
encoding transformation decoding state (nOt Concatenation):

(a) Feedforward encoding

hiec Z Winhe™ag; + b,

Unroll the model by
feeding the prediction
e e D AN E el back as input!

e e

I I
encoding transformation decoding

(b) Recurrent encoding

Progressively increase k (the length of the conditioning history) so that we do not feed garbage predictions
as input to the predictive model:

2K Xt+k X H

t

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.



Small objects are missed, e.g., the bullets. It is because they induce a
tiny mean pixel prediction loss (despite the fact they may be task-
relevant)



Frame prediction for Exploration

Algorithm 1 Deep Q-learning with informed exploration

Allocate capacity of replay memory R
Allocate capacity of trajectory memory D
Initialize parameters 6 of DQN
while steps < M do

Reset game and observe image

Store image z; in D

for t=1 to 7" do

Sample ¢ from Bernoulli distribution with parameter €

Set @, — argmin,_ n.p (xga)) ifc=1
argmax, ) (¢ (s¢),a;0)) otherwise

Choose action a¢, observe reward r; and image x4 1
Set s¢+1 = xt—2:¢+1 and preprocess images ¢¢r1 = @ (S¢+1)
Store image x¢,1 in D
Store transition (¢, a¢, ¢, G¢+1) in R
Sample a mini-batch of transitions {¢;, a;, 7, ¢;+1} from R
Update # based on the mini-batch and Bellman equation
steps = steps + 1
end for
end while

Minimize similarity to a trajectory memory

Model Seaquest ~ S. Invaders Freeway QBert Ms Pacman

DOQN - Random exploration 13119 (538) 698 (20) 30.9 (0.2) 3876 (106) 2281 (53)
DQN - Informed exploration 13265 (577) 681 (23) 32.2(0.2) 8238 (498) 2522 (57)




Predicting Raw Sensory Input (Pixels)

Should our prediction model be predicting the input observations?

- Observation prediction is difficult especially for high dimensional
observations.

-+ Observation contains a lot of information unnecessary for planning,
e.g., dynamically changing backgrounds that the agent cannot
control and/or are irrelevant to the reward.



Learning Visual Dynamics

Exploration reward bonus (s, a, s') = || T(E(s; ¢), a; 0) — E(s; @)||

SIS I I S S S S

f,

y

T(E(s; ¢);0)

What is the problem with this optimization problem?

There is a trivial solution :-(

min .
0

IT(E(s; ), a; 0) — E(s; p)||



Learning Visual Dynamics

Exploration reward bonus %'(s, a, s') = ||T(E(s; ¢), a; 0) — E(s; @)||
mgn . |[ITEGs; @), a;0) — E(s’, )|

rrl‘rrrf‘rl , T(E(s; 45), 0)

Autoencoding loss: min. ||D(E(s; @), ) — s||
¢

E(s; ¢)

lly Connected Layers
® e oo
® o | O ® (0|0
o o 0 ® 0 o °
o [®] O : @] ® |l o
® o | © ® (o |lo 5 = D(E(s; ), w
9 ® ¢ = ¢ 0 [ ] ‘ gt 4 ( ( ’¢)’ )
¢ O 128 0] °
@] ;E:B units ‘.J.:
1000 1000

lllll
uuuuu

Let’s learn image encoding using autoencoders (to avoid the trivial
solution)
...and suffer the problems of autoencoding reconstruction loss that has

little to do with our task
Incentivizing exploration in RL with deep predictive models, Stadie et al.



Explore guided by Novelty of Transition Dynamics

It uses the autoencoder solution!

Algorithm 1 Reinforcement learning with model prediction exploration bonuses

1: Initialize max, = 1, EpochLength, 3, C

2: for iteration t in 7" do

3: Observe (St, Aty St41, R(St, at))

Encode the observations to obtain o(s;) and o(s;41)

Compute e(s¢, at) = ||o(ss+1) — Me(o(s¢),a)||3 and &(s¢, a;) =

COII]pUte RBonus(St’ at) = R(S, a) —— ﬁ (ét(t-it.cat))

if e(s¢,a;) > max, then
max, = e(S¢, at)
9: endif
10:  Store (s¢, at, Rbonus) in @ memory bank €.
11:  Pass 2 to the reinforcement learning algorithm to update 7.
12: if ¢ mod EpochLength == 0 then

e(s¢,aq)
max,

o A A

13: Use €2 to update M.
14: Optionally, update o.
15:  endif

16: end for

17: return optimized policy 7

Incentivizing exploration in RL with deep predictive models, Stadie et al.



Learning Visual Dynamics

Exploration reward bonus &'(s, a, s") = ||T(E(s; ¢), a; 0) — E(s"; @)||

f,

R Ao ’ T(E(s; $); 0)

/ ngid)n- IT(ECs; ), a; 0) — E(s”; @) || + || Inv(E(s; @), E(s; ¢); ) — a]

Let’s couple forward and inverse models (to avoid the trivial solution)
...then we will only predict things that the agent can control

Curiosity driven exploration with self-supervised prediction, Pathak et al.



Learning Visual Dynamics

Exploration reward bonus (s, a, s') = || T(E(s; ¢), a; 0) — E(s; @)||

f,

R Ao ’ T(E(s; $); 0)

/ mein- IT(ECs; ), a; 0) — E(s”; @) || + || Inv(E(s; ), E(s; ¢); 0) — 4|

N, B

p S R R

Let’s use random neural networks (networks initialized randomly and
frozen thereatfter)
...and be embarassed about how well it works on Atari games

Large-scale study of Curiosity-Driven Learning, Burda et al.



Task Versus Exploration rewards

Exploration reward bonus %'(s, a, s') = ||T(E(s; ¢), a; 0) — E(s; @)||

Only task reward: R(s,a,s’) = r(s,a,s’)
extrinsic
Task+curiosity: Ri(s,a,s) = r(s,a,s’) + RB'(s,a,s’)

extrinsic intrinsic

Sparse task + curiosity: R'(s,a,s’) = rl(s,a,s) + B'(s,a,s)

extrinsic terminal Intrinsic



Task Versus Exploration rewards

Exploration reward bonus %'(s,a, s’) = ||T(E(s; ¢), a; 0) — E(s"; @) ||

Only task reward: R(s,a,s’) = r(s,a,s’)
extrinsic
Task-+curiosity: Ri(s,a,s") = r(s,a,s) + RB'(s,a,s’)

extrinsic intrinsic

Sparse task + curiosity: R'(s,a,s’) = rl(s,a,s) + H'(s,a,s’)

extrinsic terminal Intrinsic




Policy Transter

Policies trained with A3C using only curiosity rewards
Prediction error using forward/inverse model coupling

Trained on Level-1 Testing on Level-2

0 000000 x 00 1-2 384

Large-scale study of Curiosity-Driven Learning, Burda et al.



Curiosity helps even more when rewards are sparse

. extrinsic only reward
. exploration+extrinsic, where model learning happens in learned feature space
ICM(pixel)+A3C: exploration+extrinsic, where model learning happens in pixel space
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(a) “dense reward” setting (b) “sparse reward” setting (c) “very sparse reward” setting

Conclusions

- Using curiosity as a reward results in policies that collect much higher
task rewards than policies trained under task reward alone - so curiosity
(as prediction error) a good proxy for task rewards

Curiosity driven exploration with self-supervised prediction, Pathak et al.
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Limitation of Prediction Error as Bonus

- Agent will be rewarded even though the model cannot improve.
- The agent is attracted forever in the most noisy states, with
unpredictable outcomes.

- If we give the agent a TV and a remote, it becomes a couch
potato!

Large-scale study of Curiosity-Driven Learning, Burda et al.



