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Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL
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Anything the agent can use to predict how the environment will respond to 
its actions, concretely, the state transition T(s’|s,a) and reward R(s,a).



Model learning
We will be learning the model using experience tuples. A supervised learning 
problem.
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ϕ
gaussian process, 

random forest, deep 
neural network, linear 

function



System identification: we assume 
the dynamics equations given and 
only have few unknown parameters

general parametric form (no 
prior from Physics knowledge)Newtonian Physics equations VERSUS

Neural networks: lots of unknown 
parameters, generic structure

Much easier to learn but suffers 
from under-modeling

Very flexible, very hard to get it to 
generalize

Model learning



Why model learning

•  Model-based control: given an initial state s_0 estimate action sequence  
to reach a desired goal or maximize reward by unrolling the model forward 
in time

•  Model-based RL: train policies using: 
1. a model-free RL method using simulated experience (experience 

sampled from the model) 
2. an imitation learning method  by imitating the MPC planner

•  Efficient Exploration guided by model uncertainty (later lecture)
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Model-based control

a1 a2

s1 s2 s3 s4
a3

ϕ ϕ ϕ

min
a1⋯aT

. ∥sT − s*∥

s.t.  . ∀t, st+1 = f(st, at; ϕ)

max
a1⋯aT

.
T

∑
t=1

rt

s.t.  . ∀t, (st+1, rt+1) = f(st, at; ϕ)

r1 r2 r3

If the dynamics are non-linear and the loss is not a quadratic, this optimization is 
difficult. We can use SGD or evolutionary methods.



Model-based control- SGD
1.Given an initial action sequence 
2.Unroll the model forward in time
3.Compare and computer error against a desired final state
4.Backpropagate the error to the action sequence

a1 a2 a3
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1.Given an initial action sequence 
2.Unroll the model forward in time
3.Compare and compute error against a desired final state
4.Backpropagate the error to the action sequence
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s1 s2 s3 ∥s4 − s*∥

a3
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Model-based control



1.Given an initial action sequence 
2.Unroll the model forward in time
3.Compare and compute error against a desired final state or compute sum of 

rewards
4.Backpropagate the error to the action sequence

a1 a2

s1 s2 s3
a3

ϕ ϕ ϕ
T

∑
t=1

rt

Model-based control

r1 r2 r3



1.Given an initial action sequence 
2.Unroll the model forward in time
3.Compare and computer error against a desired final state
4.Backpropagate the error to the action sequence

a*1 a*2

s1 s2 s3

min
a1⋯aT

. ∥s4 − s*∥

a*3

∥s4 − s*∥ϕ ϕ ϕ

We execute only the first action and then GOTO 1, to avoid error 
accumulation. (Model Predictive Control)

Model-based control



1.Given an initial action sequence 
2.Unroll the model forward in time
3.Computer sum of rewards
4.Backpropagate the gradient to the action sequence

a*1 a*2

s1 s2 s3
a*3

ϕ ϕ ϕ

We execute only the first action and then GOTO 1, to avoid error 
accumulation. (Model Predictive Control)

Model-based control

max
a1⋯aT

.
T

∑
t=1

rtr1 r2 r3



Model-based control - derivative-free

Optimize over action selection using CMA-ES or CEM (sample actions, 
unroll, compute error, survival of the fittest, repeat)

a*1 a*2

s1 s2 s3

min
a1⋯aT

. ∥sT − s*∥

s.t.  . ∀t, st+1 = f(st, at; ϕ)

a*3

∥s4 − s*∥

max
a1⋯aT

.
T

∑
t=1

rt

s.t.  . ∀t, (st+1, rt+1) = f(st, at; ϕ)
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•  Model-based control: given an initial state s_0 estimate action sequence  
to reach a desired goal or maximize reward by unrolling the model forward 
in time

•  Model-based RL: train policies using: 
1. a model-free RL method using simulated experience (experience 

sampled from the model) 
2. an imitation learning method  by imitating the MB planner

•  Efficient Exploration guided by model uncertainty (later lecture)



Model-Based Reinforcement Learning

Optimize
Policy

Execute
Policy

Train Dynamics 
Model 

Alternating between model and policy learning
Initialize policy            and D={}. 

1. Run the policy and update experience tuples dataset D.
2. Train a dynamic model using D: 
3. Update the policy using 

1. model-free RL method on simulated experience sampled from the 
model

2. Immitating a model-based controller
4. GOTO 1.

π(s; θ)

(s′�, r′�) = f(s, a; ϕ)



Model-based RL
Initialize policy            and D={}. 

1. Run the policy and update experience tuples dataset D.
2. Train a dynamic model using D: 
3. Update the policy using 

1. model-free RL method on simulated experience sampled from the 
model

2. Immitating a model-based controller
4. GOTO 1.

π(s; θ)

(s′�, r′�) = f(s, a; ϕ)



Challenges in model learning

• Under-modelling: If the model class is restricted (e.g., linear function or 
gaussian process) we have under-modeling: we cannot represent complex 
dynamics, e.g., contact dynamics that are not smooth. As a result, though we 
learn faster than model free in the beginning, MBRL ends up having worse 
asymptotic performance than model-free methods, that do not suffer from 
model bias.

• Over-fitting: If the model class is very expressive (e.g., neural networks) the 
model will overfit, especially in the beginning of training, where we have very 
few samples

• Errors compound through unrolling
• Need to capture different futures (stochasticity of the environment)
• Need to represent uncertainty outside of the training data
• Action selection on top of model unrolling will surely exploit mistakes of the 

model, if the model is mistakenly optimistic



Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., images:

a

s
s′�

state  can be 3D locations and 3D 
velocities of agent joints, actions 

can be torques

ϕ

e.g., Atari game playing

a
h′�
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Model Learning
Where a low dimensional state is observed and given:

Where we only have access to (high dim) sensory input, e.g., image or touch:

a

s
s′�

state  can be 3D locations and 3D 
velocities of agent joints, actions 

can be torques

ϕ

e.g., Atari game playing

a
h′�

o h ϕ

a
o′�

o ϕ

This now works! It outperforms model-free RL methods: reaches same final 
performance with much fewer samples! :-)

Still an open problem :-(



Model-based RL in a low-dim state space



Comparative Performance 
on HalfCheetah

slide from Sergey Levine
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Why model-based RL (even in a low-dim state space) is 
not easy

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.



Model-based RL

Collect a dataset D of random experience tuples (s,a,s’)
1. Train transition dynamics
2. Optimize action sequences using MPC with random search
3. Aggregate experience dataset with the inferred (s,a) sequences
4. GOTO 1

s′� = s + f(s, a; ϕ)

π(s; θ)

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.



Model-based RL

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

Training a model based controller allows to 
follow arbitrary trajectories at test time: the 
model allows you to optimize different 
reward function for different tasks, without 
any retraining.
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Model-based RL

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

Training a model based controller 
allows to follow arbitrary trajectories at 
test time: the model allows you to 
optimize different reward function for 
different tasks, without any retraining.



Model-based RL

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.



Model-based RL

Neural network dynamics for model-based Deep Rl with model-free finetuning, Nagabandi et al.

Large random initial dataset helps
Aggregation helps



Model-based RL with model-free finetuning

Initialize a policy             by imitating the MPC planner using DAGGER
Finetune the policy using any model-free method, e.g., TRPO.

π(s; θ)

Collect a dataset D of random experience tuples (s,a,s’)
1. Train transition dynamics
2. Optimize action sequences using MPC with random search
3. Aggregate experience dataset with the inferred (s,a) sequences
4. GOTO 1

s′� = s + f(s, a; ϕ)



Experiments

Note: Model-based RL alone looks hopeless!
Q: Can model-based RL outperform model-free in terms of both sample 
complexity and asymptotic performance?



It’s all about representing uncertainty. Two types of uncertainty:
1. Epistemic uncertainty: uncertainty due to lack of data (that ‘d permit to uniquely 

determine the underline system exactly) 
2. Aleatoric uncertainty: uncertainty due to inherit stochasticity of the system



Aleatoric uncertainty in model learning

• We will use a neural network that outputs a distribution over the 
next state s_{t+1}.

• Specifically, a Gaussian distribution, where the NN predicts the 
mean and covariance matrix

Probabilistic Neural Nets as ModelsDeterministic Neural Nets as Models

deterministic neural network

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ =
N

∑
i=1

∥f(si, ai; ϕ) − s′�i∥

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ)))
+

1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}



Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

We want to train a model, i.e., the state transition function (let’s forget the 
reward for now). What can I do?

The environment can be stochastic

s, a

s′� s′�′�

• This means our state does not capture enough information to help us 
dileneate  the possible future outcomes. 

• What is stochastic under one state representation, may not be stochastic 
under another.

• We will always have part of the information hidden, so stochasticity will 
always be there



Aleatoric uncertainty in model learning

Deterministic Neural Nets as Models
pϕ(s′�|s, a) = f (s, a; ϕ) =

exp (− 1
2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))

(2π)ddetΣ(s, a; ϕ)

ℒϕ =
N

∑
i=1

∥f(si, ai; ϕ) − s′�i∥
ℒϕ = −

1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

Training a deterministic regressor! If the environment is stochastic, 
regression fails

s, a

s′� s′�′�
̂s

Failing means: not only we cannot capture the 
distribution, but we  output a solution that doeas 

not agree with any of the modes



Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

Training a probabilistic NN! Given a (s,a) as input, the NN outputs a mean 
vector and a set of variances, one for each dimension of the state vector. We 
train by maximizing log likelihood of our training set. 

Probabilistic Neural Nets as Models
pϕ(s′�|s, a) =

exp (− 1
2 (s′ �− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))

(2π)ddetΣ(s, a; ϕ) ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ)))
+

1
2

log(detΣ(si, ai; ϕ)) +  const.
μϕ(st, at; ϕ)
Σ(st, at; ϕ)

Probabilistic Neural Nets as Models



Probabilistic Neural Nets as Models

μϕ(st, at; ϕ)
Σ(st, at; ϕ)

Probabilistic Neural Nets as Models

Aleatoric uncertainty in model learning

pϕ(s′�|s, a) = f (s, a; ϕ) =
exp (− 1

2 (s′�− μ(s, a; ϕ)⊤(Σ(s, a; ϕ))−1(s′�− μ(s, a; ϕ))
(2π)ddetΣ(s, a; ϕ)

ℒϕ = −
1
N

N

∑
i=1

log p(s′�i |si, ai; ϕ)

= ( 1
2

(s′�i − μ(si, ai; ϕ))TΣ(si, ai; ϕ)−1(s′�i − μ(si, ai; ϕ))) +
1
2

log(detΣ(si, ai; ϕ)) +  const.

D = {(si, ai, s′�i), i = 1⋯N}Assume we collected a dataset of experience tuples

Training a probabilistic NN! Given a (s,a) as input, the NN outputs a mean 
vector and a set of variances, one for each dimension of the state vector. We 
train by maximizing log likelihood of our training set. 
Q: variance should be always positive, what do we do?
A: we output logvar and we exponentiate



Epistemic uncertainty

• The principled way to handle such uncertainty is with Bayesian 
models, e.g., Gaussian processes, or Bayesian neural networks

• We will use neural network ensembles. It turns out they are a very 
good and efficient approximation to Bayesian neural networks.



Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

(s, a)

s′�



Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

Red are observed data points (s,a,s’)

(s, a)

s′�



Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

(s, a)

s′�

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′�



Deterministic Neural Nets as Models

Epistemic uncertainty in Model Learning

There is a unique answer for s’ (no stochasticity) but I do not know it 
due to lack of data!

(s, a)

s′�

Fitting a deterministic neural network

Deterministic Neural Nets as Models

(s, a) s′�

Model errors!



Probabilistic Neural Nets as Models

Epistemic uncertainty in Model Learning

Fitting a neural network that parametrizes a distribution

(s, a)

s′�

Model errors!

There is a unique answer for s’ (no stochasticity) but I do not know it due to 
lack of data!
Predicting a distribution won’t help! The predictions will suffer from lack of 
data and will be wrong.



Probabilistic Neural Nets as Models

Epistemic uncertainty in Model Learning

Fitting a neural network that parametrizes a distribution

(s, a)

s′�

There is a unique answer for s’ (no stochasticity) but I do not know it due to lack 
of data!
Predicting a distribution won’t help! The predictions will suffer from lack of data 
and will be wrong.
How can I represent my uncertainty about my predictions?E.g., having high 
entropy when no data and low entropy close to data?

Model errors!



Bayesian Inference!



BAYES RULE

P(hypothesis|data) =
P(hypothesis)P(data|hypothesis)P

h P(h)P(data|h)

I Bayes rule tells us how to do inference
about hypotheses (uncertain quantities)
from data (measured quantities).

I Learning and prediction can be seen as
forms of inference.

Reverend Thomas Bayes (1702-1761)

Zoubin Ghahramani 9 / 39

Bayes Rule

Hypotheses here are weights for our learning model, 
i.e., weights of our neural networks that learns the 
transition dynamics

Q: Is this still usefull when our prior over parameters is 
uniform?
A: Yes! The point is to keep all the hypotheses that fit 
equally well the training set instead of committing to 
one, so that I can represent my uncertainty.



P(w |𝒟)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away of the training data :-(

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))



Having a posterior distribution over my neural weights
I can quantify my uncertainty by sampling networks and measuring  the entropy of 
their predictions :-)
Inference of such posterior is intractable :-( but there are some nice recent 
variational approximations (later lecture)

P(w |𝒟)

Committing to a single solution for my neural weights
I cannot quantify my uncertainty away of the training data :-(

regression network
ϕMAP = arg max

ϕ
log P(ϕ |D) = arg max

ϕ
(P(D |ϕ) + log P(ϕ))

 Bayesian regression network

P(y |x, D) = ∫ P(y |x, ϕ)P(ϕ |D)dϕ

P(ϕ |D)



Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′�

• Neural network Ensembles are a good approximation to Bayesian Nets.
• Instead of having explicit posteriors distributions for each neural net parameter, 

you just have a small set of neural nets, each trained on separate data. 
• On the data they have seen, they all agree (low entropy of predictions)



Probabilistic Ensembles as Models

NN Ensembles for representing Epistemic uncertainty

Probabilistic Ensembles as Models

(s, a)

s′�

• Neural network Ensembles are a good approximation to Bayesian Nets.
• Instead of having explicit posteriors distributions for each neural net parameter, 

you just have a small set of neural nets, each trained on separate data. 
• On the data they have seen, they all agree (low entropy of predictions)
• On the data they have not seen, each fails in its own way (high entropy of 

predictions)



Trajectory Sampling for State Propagation

Propagating Particles
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Trajectory Sampling for State Propagation

Propagating Particles
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Trajectory Sampling for State Propagation
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Trajectory Sampling for State Propagation

Propagating Particles



Trajectory Sampling for State Propagation

Propagating Particles



Trajectory Sampling for State Propagation

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Propagating Particles
I compute the reward of an action sequence by averaging across particles 

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8


https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8

Results

https://www.youtube.com/watch?time_continue=86&v=3d8ixUMSiL8


Model-based RL in sensory space



Model Learning - 3 Qs always in mind

a

o h h′�



Model Learning - 3 Qs always in mind
• What shall we be predicting?

a

o h h′�

• What is the architecture of the model, what structural biases should we add to 
get it to generalize?

a
h′�

o h

• What is the action representation?

h′�

o h



Model learning in image space

s

a
rCNN

o o′�

MANY different rewards can be 
computed from the future visual 
observation, e.g., make Mario jump, 
make Mario move to the right, to the left, 
lie down, make Mario jump on the well 
and then jump back down again etc.. 

Unroll the model by 
feeding the prediction 
back as input!



• Train a neural network that given an image (sequence) and an action, 
predict the pixels of the next frame

• Unroll it forward in time to predict multiple future frames
• (Use this frame prediction to come up with an exploratory behavior in 

DQN: choose the action that leads to frames that are most dissimilar 
to a buffer of recent frames)

s

a
rCNN

o o′�



Progressively increase k (the length of the conditioning history) so that we do not feed garbage predictions 
as input to the predictive model:

Unroll the model by 
feeding the prediction 
back as input!

Multiplicative interactions 
between action and hidden 
state (not concatenation):

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

Model learning in image space



Solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
mistakes:

Q: Can I train my model using tupples (o,a,o’) and I test time unroll it in time?
A: no, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the model 
to diverge

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
1, oi

1; ϕ) − oi
2∥



Solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
mistakes:

Q: Can I train my model using tupples (o,a,o’) and I test time unroll it in time?
A: no, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the model 
to diverge

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ

ℒ =
1
N

N

∑
i=1

∥ ̂oi
2 − oi

2∥

̂o3 ∥s4 − s*∥

a3

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
2, f (ai

1, oi
1; ϕ); ϕ) − oi
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Solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
mistakes:

Q: Can I train my model using tupples (o,a,o’) and I test time unroll it in time?
A: no, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the model 
to diverge

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ

ℒ =
1
N

N

∑
i=1

∥ ̂oi
2 − oi

2∥

̂o3
a2

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
2, f (ai

1, oi
1; ϕ); ϕ) − oi

3∥ + ∥f (ai
1, oi

1; ϕ) − oi
2∥



Solution: Progressively increase the unroll length k at training time so that the model learns to correct its 
mistakes:

Q: Can I train my model using tupples (o,a,o’) and I test time unroll it in time?
A: no, we will have distribution shift, same as in imitation learning: tiny mistakes will soon cause the model 
to diverge

Action-Conditional Video Prediction using Deep Networks in Atari Games, Oh et al.

How to train our model so that unrolling works

a1

o1 ̂o2ϕ a3a2

̂o3

ℒ(ϕ) =
1
N

N

∑
i=1

∥f (ai
3, f (ai

2, f (ai
1, oi
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Small objects are missed, e.g., the bullets. 
Q: Why?
A:They induce a tiny mean pixel prediction loss (despite the fact they 
may be task-relevant)



Similar architecture as before but..



Reward-aware loss!

• We train the dynamics model to generate a future sequence so that the 
rewards obtained from the simulated sequence agree with the rewards 
obtained in the ``real” (videogame) world. I put L2 on the rewards as opposed 
to just on pixels. This encourages to focus  on objects that are too small and 
incur a tiny L2 pixel loss, but may be important for the game. 

• (Nonetheless, they made the ball larger :-( )

results

doesn’t this require super long unrolls?

https://sites.google.com/view/modelbasedrlatari/home


Results

• Number of frames required to reach human performance

results

https://sites.google.com/view/modelbasedrlatari/home


Predicting Raw Sensory Input (Pixels)

Curiosity reward: ∥T(E(s; ϕ), a; θ) − E(s′�; ϕ)∥

Should our prediction model be predicting the input observations?
• Observation prediction is difficult especially for high dimensional 

observations, such as images. 
• Observation contains a lot of information unnecessary for planning, 

e.g., dynamically changing backgrounds that the agent cannot 
control and/or are irrelevant to the reward. 



a

Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 

o h h′� hg

r = exp( −∥h′�− hg∥)

Prediction in a latent space 



Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 
One such feature encoding we have seen is the one that keep from the 
observation ONLY whatever is controllable by the agent.

min
θ,ϕ

. ∥T(h(s), a; θ) − h(s′�)∥ + ∥Inv(h(s), h(s′�); ψ) − a∥

T(h; θ)
h(s)

h(s′�)

s

s′ �

a

h(s)s
a

Prediction in a latent space 



s

a

Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 

Learning machine 
(random forest, 

deep neural 
network, linear 

(shallow predictor)

o
h

h′� r hg

r = exp( −∥h′�− hg∥)

Prediction in a latent space 



Prediction in a latent space 

s

a

Our model tries to predict a (potentially latent) embedding, from which 
rewards can be computed, e.g., by matching the embedding from my 
desired goal image to the prediction. 

Learning machine 
(random forest, 

deep neural 
network, linear 

(shallow predictor)

o
h

h′�

Unroll the model by 
feeding the prediction 
back as input!

hg

r = exp( −∥h′�− hg∥)



Avoid or minimize unrolling

s

a

Unrolling quickly causes errors to accumulate. We can instead consider 
coarse models, where we input a long sequences of actions and predict 
the final embedding in one shot, without unrolling.

Learning machine 
(random forest, 

deep neural 
network, linear 

(shallow predictor)

o
h

h′� hg

r = exp( −∥h′�− hg∥)



Why model learning

•  Online Planning at test time - Model predictive Control
•  Model-based RL: training policies using simulated experience
•  Efficient Exploration



Challenges
• Errors accumulate during unrolling
• Policy learnt on top of an inaccurate model is upperbounded by the accuracy of the 

model
• Policies exploit model errors be being overly optimistic
• With lots of experience, model-free methods would always do better 

Answers:
• Use model to pre-train your polic, finetune while being model-free
• Use model to explore fast, but always try actions not suggested by the model so 

you do not suffer its biases
• Build a model on top of a latent space which is succinct and easily predictable
• Abandon global models and train local linear models, which do not generalize but 

help you solve your problem fast, then distill the knowledge of the actions to a 
general neural network policy (next week)
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Malik

How do we learn to play Billiards?

• First, we tranfer all knowledge about how objects move, that we have 
accumulated so far.

• Second, we watch other people play and practise ourselves, to finetune such 
model knowledge
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Malik

How do we learn to play Billiards?
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 92Predictive Visual Models of Physics for Playing Billiards, K.F. et al. ICLR 2016

Learning Action-Conditioned Billiard Dynamics
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Q: will our model be able to generalize across different number of balls present?

Force field

Learning Action-Conditioned Billiard Dynamics

CNN
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F

World-Centric Prediction Object-Centric Prediction

Learning Action-Conditioned Billiard Dynamics

Q: will our model be able to generalize across different number of balls present?
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F

Object-centric Billiard Dynamics

CNN

ball displacement
dx

The object-centric CNN is shared across all objects in the scene. 
We apply it one object at a time to predict the object’s  future displacement.
We then copy paste the ball at the predicted location, and feed back as input.



 102

file:///.file/
id=6571367.7967880



Playing Billiards

 103

How should I push the red ball so that it collides with the green on?
Cme for searching in the force space



Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across 

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change, 

predicting motion suffices. Let’s predict only the dynamic properties and keep 
the static one fixed. 



Billiards
• We predicted object displacement trajectories

s

a

o
h

h′�

• We had one CNN per object in the scene, shared the weights across objects

s

a

o
h

h′�

a

• A force applied to each object

so
h

h′�



Graph Encoding
In the Billiard case, object computations were coordinated by using a large enough 
context around each object (node). What if we explicitly send each node’s 
computations to neighboring nodes to be taken account when computing their 
features?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

We will encode a robotic agent as a graph, where nodes are the different bodies of 
the agent and edges are the joints, links between the bodies



Graph Encoding
In the Billiard case, object computations were coordinated by using a large enough 
context around each object (node). What if we explicitly send each node’s 
computations to neighboring nodes to be taken account when computing their 
features?

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints



Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference. 
Train with regression.

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints
• No visual input here, much easier!



Robots as graphs
• We predicted dynamic only node features

s
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• Our CNN is a Graph network, the node update function is shared across all 
nodes (thus we can generalize across different number of nodes)
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• Forces applied to each node
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Graph Forward Dynamics

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.

Predictions: I predict only the dynamic features, their temporal difference:

Node features
• Observable/dynamic: 3D position, 4D quaternion orientation, linear and angular 

velocities 
• Unobservable/static: mass, inertia tensor
• Actions: forces applied on the joints



Graph Model Predictive Control

Graph Networks as Learnable Physics Engines for Inference and Control, Gonzalez et al.



Learning Dynamics

Two good ideas so far:
1) object graphs instead of images. Such encoding allows to generalize across 

different number of entities in the scene.
2) predict motion instead of appearance. Since appearance does not change, 

predicting motion suffices. Let’s predict only the dynamic properties and keep 
the static one fixed. 



Visual dynamics using motion transformation

Differentiable warping



green: input,  red: sampled future motion field and 
corresponding frame completion 

Visual dynamics using motion transformation



Visual dynamics using motion transformation

Goal representation: move certain pixel of the initial 
image to desired locations

We will learn a model of pixel motion displacements



Visual dynamics using motion transformation

Differentiable warping

Can I use this model?



Visual dynamics using motion transformation



Visual dynamics using motion transformation

Self-Supervised Visual Planning with Temporal Skip Connections, Ebert et al.



Visual dynamics using motion transformation

https://sites.google.com/view/sna-visual-mpc

https://sites.google.com/view/sna-visual-mpc


What should we be predicting?

Do we really need to be predicting observations?

What if we knew what are the quantities that matter for the goals i care about?
For example, I care to predict where the object will end up during pushing but I 
do not care exactly where it will end up, when it falls off the table, or I do not 
care about its intensity changes due to lighting. 

Let’s assume we knew this set of important useful to predict features. Would we do 
better?
Yes! we would win the competition in Doom the minimum.



Visual dynamics using motion transformation

Main idea: You are provided with a set of measurements m paired with input 
visual (and other sensory) observations. 
Measurements can be health, ammunition levels, enemies killed. 
Your goal can be expressed as a combination of those measurements.

measurement offsets are the prediction targets: f = (mt+τ1
− mt, ⋯, mt+τn

− mt)

(multi) goal representation: u(f, g) = g⊤f



Visual dynamics using motion transformation

Train a deep predictor. No unrolling! One shot prediction of future values:

No policy, direct action selection:



Learning dynamics of goal-related measurements

Action selection:

Training: we learn the model using \epsilon-greedy exploration policy over the 
current best chosen actions.



Learning dynamics of goal-related measurements



Learning dynamics of goal-related measurements


