
TensorFlow & Keras
An Introduction

(Some of the contents on these slides, along with the template, have been adopted from William
Guss (ex TA) and CS 224 and CS20 at Stanford)

Deep Learning Frameworks

● Scale ML code

● Compute Gradients!

● Standardize ML applications for sharing

● Interface with GPUs for parallel processing

TensorFlow

What is TensorFlow?

TensorFlow is a graph
computation framework for
deep learning.

Originally developed by
Google Brain Team to conduct
ML research

What is TensorFlow?

TensorFlow allows for the
specification and optimization
of complex feed-forward
models.

In particular, TensorFlow
automatically differentiates
a specified model.

Why TensorFlow?

● Python API

● Portability: deploy computation to one or more CPUs or
GPUs in a desktop, server, or mobile device with a single API

● Visualization: TensorBoard

● Auto-differentiation

● Large community (> 10,000 commits and > 3000 TF-related
repos in 1 year)

● Awesome projects already using TensorFlow

Why TensorFlow?

Manually compute derivative for W2

 = (output - label)

 = @ (net) @ h

W2 -= learning_rate *

Repeat for all other variables :\

A motivating example

The NumPy approach
net1 = W1 @ x + b1

h = s(net1)

net2 = W2 @ h + b2

output = s(net2)

The TensorFlow approach
net1 = W1 @ x + b1

h = tf.nn.sigmoid(net1)

net2 = W2 @ h + b2

output = tf.nn.sigmoid(net2)

Let tensorflow do the heavy lifting

optimizer = tf.train.AdamOptimizer(learning_rate)

train = optimizer.minimize()

Done :)

Programming Model

Big idea: express a numeric computation as a graph

● Graph nodes are operations which have any number of inputs and outputs

● Graph edges are tensors which flow between nodes

Programming Model

h = ReLU (Wx + b)

TensorFlow Basics

Construction Execution

TensorFlow Basics: Construction
Placeholders (tf.Placeholder)

y = tf.constant(5.0)

x = tf.Placeholder
(float)

w = tf.random_normal
(mean=1, stddev=2)

● Allow data to be fed into the
computation graph at execution
time (e.g. features, labels)

Variables (tf.Variable)
● Store parameters in graph
● Can be trainable (optimized during

backprop) or untrainable
● Variety of initializers (e.g. constant, normal)

TensorFlow Basics: Construction
Operations (tf.Operation)

y = tf.constant(5.0)

x = tf.Placeholder
(float)

w = tf.random_normal
(mean=1, stddev=2)

z = tf.add(x,y)

mult = tf.mul(z,w)

● Takes in variable and/or outputs from other operations.
● Can be fed into other operations and linked in the graph.
● This includes linear algebraic operations and optimizers.

In Code

1. Create weights, including
initialization

W ~ Uniform(-1, 1); b = 0

2. Create input placeholder x

m * 784 input matrix

3. Build flow graph

How do we run it?

So far we only talked about defining a graph

We can deploy this graph with a
session - a binding to a particular
execution context (e.g. CPU, GPU)

TensorFlow Basics: Execution
Sessions (tf.Session)

y = tf.constant(5.0)

x = tf.Placeholder
(float)

w = tf.random_normal
(mean=1, stddev=2)

z = tf.add(x,y)

mult = tf.mul(z,w)

● Handles post-construction interactions with the graph
● Call the run method to evaluate tensors

5.0

3.0

8.0

1.68

13.44

sess = tf.Session()

sess.run(tf.global_variables_initializer())

sess.run(mult, feed_dict={

 x: 3.0}) # 13.44

Getting Output

sess.run(fetches, feeds)

Fetches: List of graph nodes. Return
the outputs of these nodes.

Feeds: Dictionary mapping from
graph nodes to concrete values.
Specifies the value of each graph
node given in the dictionary.

So far

We first built a graph using variables and placeholders

We then deployed the graph onto a session, which is the execution environment

Next we will see how to train a model

Define Loss?

Use placeholder for labels

Build loss node using labels and prediction

Compute Gradients?

● tf.train.GradientDescentOptimizer is an Optimizer object

● tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds optimization
operation to computation graph

Compute Gradients?

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with backpropagation

… automatically

So far

Training the Model

1. Create session

2. Create training schedule

3. Run train_step

TensorFlow for Deep Learning

TensorFlow has first class
support for high and
low-level deep learning
tf.Operations.

In Summary

1. Build a graph
a. Feedforward / Prediction
b. Optimization (gradients and train_step operation)

2. Initialize a session

3. Train with session.run(train_step, feed_dict)

Demo

https://www.youtube.com/watch?v=_NMI8peAmNA

Visualizing Learning: TensorBoard

TensorBoard provides a visual
representation of the graph and
the performance of optimizers.

Keras

Keras is the official high-level API of TensorFlow

● tensorflow.keras (tf.keras) module

● Part of core TensorFlow since v1.4

● Full Keras API

● Better optimized for TF

● Better integration with TF-specific features

What’s special about Keras?

● A focus on user experience.

● Large adoption in the industry and research
community.

● Multi-backend, multi-platform.

● Easy productization of models.

Industry Use

User Experience

Using Keras

Three API Styles

● The Sequential Model
○ Dead simple
○ For single-input, single-output, sequential layer stacks
○ Good for 70+% of use cases

● The functional API
○ Like playing with Lego bricks
○ Multi-input, multi-output, arbitrary static graph

topologies
○ Good for 95% of use cases

● Model Subclassing
○ Maximum flexibility
○ Larger potential error surface

The Sequential API

The functional API

Model Subclassing

Demo

https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/

