TensorFlow & Keras

An Introduction

(Some of the contents on these slides, along with the template, have been adopted from William
Guss (ex TA) and CS 224 and CS20 at Stanford)

Deep Learning Frameworks

e Scale ML code
e Compute Gradients!

e Standardize ML applications for sharing

e Interface with GPUs for parallel processing

TensorFlow

What is TensorFlow?

TensorFlow is a graph
computation framework for
deep learning.

Originally developed by
Google Brain Team to conduct
ML research

ReLu Layer 3
Rectified
Linear

D
shape = [784,1]
Input

What is TensorFlow?

TensorFlow allows for the
specification and optimization
of complex feed-forward
models.

In particular, TensorFlow
automatically differentiates
a specified model.

RelLu Layer _— /
Rectified /
Linear

B G

Input

shape = [784,1]

Why TensorFlow?

e Python API

e Portability: deploy computation to one or more CPUs or
GPUs in a desktop, server, or mobile device with a single API

e Visualization: TensorBoard
e Auto-differentiation

e Large community (> 10,000 commits and > 3000 TF-related
reposin 1 year)

e Awesome projects already using TensorFlow

intel)

QuALCOMWW

@ArsUS ARM

JD.COM 7R7R

m Movidius %

Ceetoty

Why TensorFlow?

® tensorflow tutorial ® torch tutorial theano tutorial ® caffe tutorial

Search term Search term Search term Search term

Past 12 months ¥ All categories ¥ Web Search ¥

Interest over time @

A motivating example

The NumPy approach

netl = W1 @ x + bl
h = s(netl)

net2 = W2 h + b2
output = s(net2)

Manually compute derivative for W2

b _ (output - label)

doutput
dL = _dL @ _ds (net) @ h
dW, doutput dnet
. dL
W2 -= learning rate * =
& aw;

Repeat for all other variables :\

The TensorFlow approach

netl = W1 @ x + bl

h = tf.nn.sigmoid(netl)

net2 = W2 @ h + b2

output = tf.nn.sigmoid(net2)

Let tensorflow do the heavy Lifting

optimizer = tf.train.AdamOptimizer(learning_rate)

train = optimizer. (L)

Done :)

Programming Model

Big idea: express a numeric computation as a

e Graph nodes are which have any number of inputs and outputs

e Graph edges are which flow between nodes

Programming Model

h =RelLU (Wx + b)

TensorFlow Basics

SGD Trainer

SGD Trainer
: - W ; :
Updated,, Updatew,

Joarringfote » (0.00)

Updated,, Upgatew,
Gradients

Toarming_rate » (0.00

Relu Layer

shage (1841

Construction

Execution

TensorFlow Basics: Construction

Placeholders (
e Allow data to be into the
computation graph at
(e.g. features, labels)

x = tf.Placeholder
(float)

y = tf.constant(5.9)

Variables (
e Store
e Canbe
backprop) or
e Variety of

w = tf.random _normal
(mean=1, stddev=2)

)

in graph
(optimized during

(e.g. constant, normal)

TensorFlow Basics: Construction

Operations (tf.0Operation)

e Takesinvariable and/or outputs from other operations.
e (Can be fed into other operations and linked in the graph.
e This includes linear algebraic operations and optimizers.

x = tf.Placeholder
(float)

w = tf.random_normal
(mean=1, stddev=2)

y = tf.constant(5.9)

In Code

import tensorflow as tf

tf.Variable(tf.zeros((100,)))
1. Create Weights, inc|uding tf.Variable(tf.random_uniform((784, 100), -1, 1))

initialization

tf.placeholder(tf.float32, (100, 784))

W ~ Uniform(-1,1); b =0 tf.nn.relu(tf.matmul(x, W) + b)
2. Create input placeholder x

m * 784 input matrix

3. Build flow graph h = ReLUWz+b)

How do we run it?

So far we only talked about defining a

We can deploy this graph with a
- a binding to a particular
execution context (e.g. CPU, GPU)

TensorFlow Basics: Execution

Sessions (tf.Session)

e Handles post-construction interactions with the graph
e (all the run method to evaluate tensors

sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(mult, feed_dict={

X: 3.0}) # 13.44

1.68
3.0
w = tf.random _normal
x = tf.Placeholder (mean=1, stddev=2)
(float)
5.0 8.0

y = tf.constant(5.9)

Getting Output

numpy as np

sess.run(fetches, feeds) tensorflow as tf

.Variable(tf.zeros((100,)))
.Variable(tf.random_uniform((784, 100),

Fetches: List of graph nodes. Return -1, 1))
the outputs of these nodes.

.placeholder(tf.float32, (100, 784))
.nn.relu(tf.matmul(x, W) + b)

Feeds: Dictionary mapping from
graph nodes to concrete values.

Specifies the value of each graph tf.Session()
node given in the dictionary. run(tf.initialize_all variables())
run(h, {x: np.random.random(100, 784)})

So far

We first built a graph using variables and placeholders

We then deployed the graph onto a session, which is the execution environment

Next we will see how to train a model

Define Loss?

Use for

Build loss node using labels and

prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

Compute Gradients?

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

° is an Optimizer object

° adds optimization
operation to computation graph

Compute Gradients?

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

TensorFlow graph have

Gradient with respect to parameters computed with backpropagation

So far

prediction = tf.nn.softmax(...)
label = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(label * tf.log(prediction),
reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

Training the Model

1. Create session sess = tf.Session()
sess.run(tf.initialize all variables())

2. Create training schedule

for i in range(1000):

batch_x, batch_label = data.next_batch()
sess.run(train_step, feed dict={x: batch _x,
label: batch_label}

3. Run train_step

TensorFlow for Deep Learning

TensorFlow has first class
support for high and
low-level deep learning
tf.Operations.

conv 5x5 (relu)
max pool 2x2
conv 5x5 (relu)
max pool 2x2
dense (relu)
dropout 0.5

dense (linear)

tf.layers.
tf.layers.
tf.layers.
tf.layers.
tf.layers.
tf.layers.

tf.layers.

conv2d(x, kernel_size=[5,5], ...)

max_pooling2d(x, kernel_size=[2,2], ...

conv2d(x, kernel_size=[5,5], ...)

max_pooling2d(x, kernel_size=[2,2], ...

dense(x, activation_fn=tf.nn.relu)
dropout(x, 0.5)

dense(x)

In Summary

1. Build a graph
a. Feedforward / Prediction
b. Optimization (gradients and train_step operation)

2. Initialize a session

3. Train with

Demo

https://www.youtube.com/watch?v=_NMI8peAmNA

Visualizing Learning: TensorBoard

TensorBoard provides a visual
representation of the and
oy the

Keras

Keras is the official high-level APl of TensorFlow

e tensorflow.keras (tf.keras) module
e Part of core TensorFlow since v1.4
e Full Keras API

e Better optimized for TF

e Better integration with TF-specific features

What's special about Keras?

22 633 contributors = MicrOSOft

e Afocus on user experience.

e Large adoption in the industry and research GO gle

community.

NVIDIA.
adWs

e Multi-backend, multi-platform.

e Easy productization of models.

250,000> 2x

Keras developers

Industry Use

NETFLIX UBER Google

* instacart g@HUAWEI NVIDIA.

() Square @Expediac 7 Zocdoc yelpat

etc...

User Experience

Keras is an API designed for human beings, not machines. Keras follows best
practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of
user actions required for common use cases, and it provides clear and actionable feedback upon user
error.

This makes Keras easy to learn and easy to use. As a Keras user, you are more
productive, allowing you to try more ideas than your competition, faster -- which in turn helps you win
machine learning competitions.

This ease of use does not come at the cost of reduced flexibility: because
Keras integrates with lower-level deep learning languages (in particular TensorFlow), it enables you to
implement anything you could have built in the base language. In particular, as tf.keras, the Keras API
integrates seamlessly with your TensorFlow workflows.

Using Keras

Three API Styles

e The Sequential Model
o Dead simple
o For single-input, single-output, sequential layer stacks
o Good for 70+% of use cases

e The functional API
o Like playing with Lego bricks
o Multi-input, multi-output, arbitrary static graph
topologies
o Good for 95% of use cases

e Model Subclassing
o Maximum flexibility
o Larger potential error surface

The Sequential API

import keras
from keras import layers

model = keras.Sequential()
model.add(layers.Dense(20, activation='relu',

model.add(layers.Dense(20, activation="'relu'))
model.add(layers.Dense(10, activation='softmax'))

model.fit(x, y, epochs=10, batch_size=32)

The functional API

import keras
from keras import layers

inputs = keras.Input(shape=(10,))
layers.Dense(20, activation='relu')(x)

layers.Dense(20, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax') (x)

model = keras.Model(inputs, outputs)
model.fit(x, y, epochs=10, batch_size=32)

Model Subclassing

import keras
from keras import layers

class MyModel(keras.Model):

def __init__ (self):
super(MyModel, self).__init_ ()

self.densel = layers.Dense(20,

self.dense2 = layers.Dense(20, :
self.dense3 = layers.Dense(10, activa

def call(self, inputs):
x = self.densel(x)
x = self.dense2(x)
return self.dense3(x)

model = MyModel()
model.fit(x, y, epochs=10, batch

='relu')
='relu')
='softmax"')

Demo

https://pythonprogramming.net/introduction-deep-learning-python-tensorflow-keras/

