Announcements

HW3 will be out next Tuesday

Project midpoint meetings should be concluded now

Final project presentation will be a poster session. More details: https://cmu-llms.org/project/#final-deliverables-instructions

- Prepare your project poster like conference posters
- Peer feedback: Each of you go through all other posters
- May have a different location, will announce

Final project report due in one month. Start working towards the finish line!

Scaling Up LLM Pretraining: Parallel Training

Chenyan Xiong

11-667

Outline

Optimization

- Optimization Basics
- Numerical Types

Optimization: Recap of Stochastic Gradient Descent

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

$g_t = \nabla_{\theta} f_t(\theta_{t-1})$	Gradient at step t of loss function $f()$
$\theta_t = \theta_{t-1} - \alpha g_t$	Updating with step size α

Compared to classic convex optimization:

- Each step only uses a small sub sample of data: stochastic sampling
- Non-convex optimization has many local optimal with different effectiveness

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

- $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} \underline{\alpha} g_t$
- Challenge: How to select the right step size?
- Different parameters have different behaviors:
 - norm, sensitivity, influence to optimization process, etc.
 - thus have different preferences on step size
- No way to manually tune step size per parameter
 - Millions or billions of hyperparameters to tune

Gradient at step t of loss function f()Updating with step size α

Figure 1: SGD on two parameter loss contours [1]

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} - \underline{\alpha} g_t$

Gradient at step t of loss function f()Updating with step size α

- Challenge: How to select the right step size?
- →Solution: Dynamic learning rate per parameter Adaptive gradient methods (AdaGrad [2])

$$\theta_t = \theta_{t-1} - \frac{\alpha g_t}{\sqrt{\sum_{i=1}^t g_i^2}}$$

Reweight per parameter step size by its accumulated past norm

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} - \underline{\alpha} g_t$

Gradient at step t of loss function f()Updating with step size α

- Challenge: How to select the right step size?
- →Solution: Dynamic learning rate per parameter Adaptive gradient methods (AdaGrad [2])
 - $\theta_t = \theta_{t-1} \frac{\alpha g_t}{\sqrt{\sum_{i=1}^t g_i^2}}$

Reweight per parameter step size by its accumulated past norm

- The more a parameter has been updated previously $\sqrt{\sum_{i=1}^{t} g_i^2}$ \uparrow , the less its step size
- Sparse features with fewer past gradients $\sqrt{\sum_{i=1}^{t} g_i^2} \downarrow$ get boosted

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

- $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} \alpha \underline{g_t}$
- Challenge: Local updates
- Only uses information from current mini-batch
 - Can easily stuck in local optima

Gradient at step t of loss function f()Updating with step size α

Figure 2: Optimization with Local Optima [3]

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} - \alpha g_t$

Gradient at step t of loss function f()Updating with step size α

Challenge: Local updates

 \rightarrow Solution: Momentum [4]

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1-\beta_1) \nabla_\theta f_t(\theta_{t-1}) \\ \theta_t &= \theta_{t-1} - \alpha m_t \end{split}$$

Momentum of Gradient Updating with gradient momentum

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ $\theta_t = \theta_{t-1} - \alpha \underline{g_t}$

Gradient at step t of loss function f()Updating with step size α

Challenge: Local updates

 \rightarrow Solution: Momentum [4]

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} f_t(\theta_{t-1})$$
$$\theta_t = \theta_{t-1} - \alpha m_t$$

Momentum of Gradient Updating with gradient momentum

(a) SGD without momentum

(b) SGD with momentum

Figure 3: SGD with and without Momentum [1]

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ

Require: θ_0 : Initial parameter vector

 $m_0 \leftarrow 0$ (Initialize 1st moment vector)

 $v_0 \leftarrow 0$ (Initialize 2nd moment vector)

 $t \leftarrow 0$ (Initialize timestep)

while θ_t not converged **do**

 $t \leftarrow t + 1$

 $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\widehat{v}_t \leftarrow v_t/(1 - \beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while

return θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $m_0 \leftarrow 0$ (Initialize 1st moment vector)

 $v_0 \leftarrow 0$ (Initialize 2nd moment vector)

 $t \leftarrow 0$ (Initialize timestep)

while
$$\theta_t$$
 not converged **do**

 $t \leftarrow t + 1$

 $\begin{array}{l} g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) \text{ (Get gradients w.r.t. stochastic objective at timestep } t) \\ m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t \text{ (Update biased first moment estimate)} \\ v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \text{ (Update biased second raw moment estimate)} \\ \widehat{m}_t \leftarrow m_t / (1 - \beta_1^t) \text{ (Compute bias-corrected first moment estimate)} \\ \widehat{v}_t \leftarrow v_t / (1 - \beta_2^t) \text{ (Compute bias-corrected second raw moment estimate)} \\ \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) \text{ (Update parameters)} \end{array}$ end while

return θ_t (Resulting parameters)

do Get gradients w.r.t. stochastic objective at timestep t)

Hyperparameters that you can/should tune

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize Hyperparameters that you can/should tune **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) Initializations $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) **Standard back-propagation for raw gradients** $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize Hyperparameters that you can/should tune **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) Initializations $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) Get 1st and 2nd order momentum of gradient $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize Hyperparameters that you can/should tune **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) Initializations $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) Get 1st and 2nd order momentum of gradient $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) **Correct momentum bias** $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9, \beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize Hyperparameters that you can/should tune **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) Initializations $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged **do** $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) Get 1st and 2nd order momentum of gradient $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) **Correct momentum bias** $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while Dynamic per-parameter step size by 2nd order momentum **return** θ_t (Resulting parameters)

Update by 1st order momentum

Optimization: Illustrations

Figure 4: SGD optimization on loss surface contours [1]

Figure 5: SGD optimization on saddle point [1]

Optimization: Extensions of Adams

- Adam is the go-to optimizer for deep learning now
- Combines two effective idea: momentum and dynamic learning rates
- Works very well in a large range of network work architectures and tasks
- Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Optimization: Extensions of Adams

Adam is the go-to optimizer for deep learning now

- Combines two effective idea: momentum and dynamic learning rates
- Works very well in a large range of network work architectures and tasks
- Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.) Notable Extensions:
- Reducing the memory footprint of momentum states:
 - AdaFactor
 - 8-Bit Adam
- Better warmup optimizer stage:
 - RAdam
- More information in dynamic learning rate:
 - AdamSAGE (Sensitivity)
 - Sophia (2nd order optimizer approximation)

Outline

Optimization

- Optimization Basics
- Numerical Types

Parallel Training

- Data Parallelism
- Pipeline Parallelism
- Tensor Parallelism
- Combination of Combination
- ZeRO Optimizer

Numerical Types: Basic Types

Floating point formats supported by acceleration hardware

Figure 6: Floating Point Formats [5]

- BF16 is supported on TPU before LLM (2019 or earlier)
- FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
- BF16 was first supported in GPUs around 2021

Numerical Types: Neural Network Preferences

Neural networks prefer bigger range than better precision

Figure 6: Histogram of gradient values in a FP32 training [6]

• Many computation needs bigger range than FP16

Numerical Types: Mixed Precision Training

- Using different numerical types at different part of the training process
- Parameters, activations, and gradients often use FP16
- Optimizer states often needs FP32
- Maintaining main copies of FP32 for calculations
- Dynamically scaling up loss to fit gradients etc. in FP16 range

Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process

- Parameters, activations, and gradients often use FP16
- Optimizer states often needs FP32
- Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

Figure 7: An Example Mixed Precision Training Set up [6]

Numerical Types: BF16

BF16 is the preferred numerical type on A100 and H100

- Same range as FP32: eliminated the needs for mixed precision training while being way more stable
- Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Quiz: What layers/operations in Transformers needs FP32 precisions instead of BF16?