
Fall 2023 11-667 CMU1

Announcements
HW3 will be out next Tuesday

Project midpoint meetings should be concluded now

Final project presentation will be a poster session. More details: https://cmu-llms.org/project/#final-deliverables-
instructions

• Prepare your project poster like conference posters

• Peer feedback: Each of you go through all other posters

• May have a different location, will announce

Final project report due in one month. Start working towards the finish line!



Fall 2023 11-667 CMU

Scaling Up LLM Pretraining: Parallel Training
Chenyan Xiong

11-667



Fall 2023 11-667 CMU3

Outline
Optimization

• Optimization Basics

• Numerical Types



Fall 2023 11-667 CMU4

Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Compared to classic convex optimization:

• Each step only uses a small sub sample of data: stochastic sampling

• Non-convex optimization has many local optimal with different effectiveness

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼



Fall 2023 11-667 CMU5

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

• Different parameters have different behaviors: 

• norm, sensitivity, influence to optimization process, etc.

• thus have different preferences on step size

• No way to manually tune step size per parameter
• Millions or billions of hyperparameters to tune

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

Figure 1: SGD on two parameter loss contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017



Fall 2023 11-667 CMU6

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

→Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”
JMLR 2011

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑔𝑡

σ𝑖=1
𝑡 𝑔𝑖

2

Reweight per parameter step size by 
its accumulated past norm



Fall 2023 11-667 CMU7

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

→Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

• The more a parameter has been updated previously σ𝑖=1
𝑡 𝑔𝑖

2 ↑, the less its step size

• Sparse features with fewer past gradients σ𝑖=1
𝑡 𝑔𝑖

2 ↓ get boosted

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”
JMLR 2011

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑔𝑡

σ𝑖=1
𝑡 𝑔𝑖

2

Reweight per parameter step size by 
its accumulated past norm



Fall 2023 11-667 CMU8

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

• Only uses information from current mini-batch

• Can easily stuck in local optima

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

Figure 2: Optimization with Local Optima [3]

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c



Fall 2023 11-667 CMU9

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

→ Solution: Momentum [4]

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝑓𝑡(𝜃𝑡−1) Momentum of Gradient

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑚𝑡 Updating with gradient momentum

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017



Fall 2023 11-667 CMU10

Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

→ Solution: Momentum [4]

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝑓𝑡(𝜃𝑡−1) Momentum of Gradient

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑚𝑡 Updating with gradient momentum

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017

Figure 3: SGD  with and without Momentum [1]



Fall 2023 11-667 CMU11

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015



Fall 2023 11-667 CMU12

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations



Fall 2023 11-667 CMU13

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients



Fall 2023 11-667 CMU14

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient



Fall 2023 11-667 CMU15

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient

Correct momentum bias



Fall 2023 11-667 CMU16

Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient

Correct momentum bias

Update by 1st order momentum

Dynamic per-parameter step size by 2nd order momentum



Fall 2023 11-667 CMU17

Optimization: Illustrations

Figure 4: SGD optimization on loss surface contours [1] Figure 5: SGD optimization on saddle point [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017



Fall 2023 11-667 CMU18

Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now

• Combines two effective idea: momentum and dynamic learning rates

• Works very well in a large range of network work architectures and tasks

• Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)



Fall 2023 11-667 CMU19

Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now

• Combines two effective idea: momentum and dynamic learning rates

• Works very well in a large range of network work architectures and tasks

• Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Notable Extensions:

• Reducing the memory footprint of momentum states: 

• AdaFactor

• 8-Bit Adam

• Better warmup optimizer stage: 
• RAdam

• More information in dynamic learning rate: 
• AdamSAGE (Sensitivity)

• Sophia (2nd order optimizer approximation)



Fall 2023 11-667 CMU20

Outline
Optimization

• Optimization Basics

• Numerical Types

Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Combination

• ZeRO Optimizer



Fall 2023 11-667 CMU21

Numerical Types: Basic Types
Floating point formats supported by acceleration hardware

• BF16 is supported on TPU before LLM (2019 or earlier)

• FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level

• BF16 was first supported in GPUs around 2021

Figure 6: Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-
on-cloud-tpus 



Fall 2023 11-667 CMU22

Numerical Types: Neural Network Preferences
Neural networks prefer bigger range than better precision

• Many computation needs bigger range than FP16

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

Figure 6: Histogram of gradient values in a FP32 training [6]



Fall 2023 11-667 CMU23

Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process

• Parameters, activations, and gradients often use FP16

• Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018



Fall 2023 11-667 CMU24

Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process

• Parameters, activations, and gradients often use FP16

• Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

Figure 7: An Example Mixed Precision Training Set up [6]

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018



Fall 2023 11-667 CMU25

Numerical Types: BF16
BF16 is the preferred numerical type on A100 and H100

• Same range as FP32: eliminated the needs for mixed precision training while being way more stable

• Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Figure 6: Floating Point Formats [5]

Same Range

Coarse Precision



Fall 2023 11-667 CMU

Quiz: What layers/operations in Transformers 
needs FP32 precisions instead of BF16?


	Intro
	Slide 1: Announcements
	Slide 2: Scaling Up LLM Pretraining: Parallel Training
	Slide 3: Outline

	Optimizer basic
	Slide 4: Optimization: Recap of Stochastic Gradient Descent
	Slide 5: Optimization: Challenge of SGD
	Slide 6: Optimization: Challenge of SGD
	Slide 7: Optimization: Challenge of SGD
	Slide 8: Optimization: Challenge of SGD
	Slide 9: Optimization: Challenge of SGD
	Slide 10: Optimization: Challenge of SGD
	Slide 11: Optimization: Adam Optimizer
	Slide 12: Optimization: Adam Optimizer
	Slide 13: Optimization: Adam Optimizer
	Slide 14: Optimization: Adam Optimizer
	Slide 15: Optimization: Adam Optimizer
	Slide 16: Optimization: Adam Optimizer
	Slide 17: Optimization: Illustrations
	Slide 18: Optimization: Extensions of Adams
	Slide 19: Optimization: Extensions of Adams

	Numerical Types
	Slide 20: Outline
	Slide 21: Numerical Types: Basic Types
	Slide 22: Numerical Types: Neural Network Preferences
	Slide 23: Numerical Types: Mixed Precision Training
	Slide 24: Numerical Types: Mixed Precision Training
	Slide 25: Numerical Types: BF16

	Add ons
	Slide 26: Quiz: What layers/operations in Transformers needs FP32 precisions instead of BF16?


