Scaling Up LLM Pretraining: Parallel Training

Chenyan Xiong

11-667

Fall 2023 11-667 CMU

Outline

Optimization

- Optimization Basics
- Numerical Types

Parallel Training

- Data Parallelism
- Pipeline Parallelism
- Tensor Parallelism
- Combination of Parallelism
- ZeRO Optimizer

Optimization: Recap of Stochastic Gradient Descent

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Compared to classic convex optimization:

- Each step only uses a small sub sample of data: stochastic sampling
- Non-convex optimization has many local optimal with different effectiveness

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

- Different parameters have different behaviors:
	- norm, sensitivity, influence to optimization process, etc.
	- thus have different preferences on step size
- No way to manually tune step size per parameter
	- Millions or billions of hyperparameters to tune

 $g_t = \nabla_\theta f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

Figure 1: SGD on two parameter loss contours [1]

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

- Challenge: How to select the right step size?
- \rightarrow Solution: Dynamic learning rate per parameter
- Adaptive gradient methods (AdaGrad [2])

$$
\theta_t = \theta_{t-1} - \frac{\alpha g_t}{\sqrt{\sum_{i=1}^t g_i^2}}
$$

Reweight per parameter step size by its accumulated past norm

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

- Challenge: How to select the right step size?
- \rightarrow Solution: Dynamic learning rate per parameter
- Adaptive gradient methods (AdaGrad [2])

$$
\theta_t = \theta_{t-1} - \frac{\alpha g_t}{\sqrt{\sum_{i=1}^t g_i^2}}
$$

Reweight per parameter step size by its accumulated past norm

- The more a parameter has been updated previously $\sqrt{\sum_{i=1}^t g_i^2}$ 1, the less its step size
- Sparse features with fewer past gradients $\sqrt{\sum_{i=1}^t g_i^2} \downarrow$ get boosted

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

-
- Challenge: Local updates
- Only uses information from current mini-batch
	- Can easily stuck in local optima

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

Figure 2: Optimization with Local Optima [3]

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_\theta f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

Challenge: Local updates

 \rightarrow Solution: Momentum [4]

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} f_t(\theta_{t-1})$ Momentum of Gradient

 $\theta_t = \theta_{t-1} - \alpha m_t$ Updating with gradient momentum

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

 $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ Gradient at step t of loss function $f()$ $\theta_t = \theta_{t-1} - \alpha g_t$ Updating with step size α

Challenge: Local updates

 \rightarrow Solution: Momentum [4]

$$
m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} f_t(\theta_{t-1})
$$

$$
\theta_t = \theta_{t-1} - \alpha m_t
$$

Momentum of Gradient Updating with gradient momentum

(a) SGD without momentum

(b) SGD with momentum

Figure 3: SGD with and without Momentum [1]

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize

Require: $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate)

 $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters)

end while

return θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) **Initializations** $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)

 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while

return θ_t (Resulting parameters)

Hyperparameters that you can/should tune

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Hyperparameters that you can/should tune Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) **Initializations** $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)
 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Hyperparameters that you can/should tune Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) **Initializations** $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)
 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) **Get 1st and 2nd order momentum of gradient** $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)
 $\overline{\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)}$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Hyperparameters that you can/should tune Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) **Initializations** $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)
 $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) **Get 1st and 2nd order momentum of gradient** $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)
 $\overline{\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)}$ (Compute bias-corrected first moment estimate) **Correct momentum bias** $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t. **Require:** α : Stepsize **Hyperparameters that you can/should tune Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) **Initializations** $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ **Standard back-propagation for raw gradients** $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) **Get 1st and 2nd order momentum of gradient** $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)
 $\overline{\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)}$ (Compute bias-corrected first moment estimate) **Correct momentum bias** $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while **Dynamic per-parameter step size by 2nd order momentumreturn** θ_t (Resulting parameters)

Update by 1st order momentum

Optimization: Illustrations

Figure 4: SGD optimization on loss surface contours [1] Figure 5: SGD optimization on saddle point [1]

Optimization: Extensions of Adams

- Adam is the go-to optimizer for deep learning now
- Combines two effective idea: momentum and dynamic learning rates
- Works very well in a large range of network work architectures and tasks
- Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Optimization: Extensions of Adams

- Adam is the go-to optimizer for deep learning now
- Combines two effective idea: momentum and dynamic learning rates
- Works very well in a large range of network work architectures and tasks
- Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.) Notable Extensions:
- Reducing the memory footprint of momentum states:
	- AdaFactor
	- 8-Bit Adam
- Better warmup optimizer stage:
	- RAdam
- More information in dynamic learning rate:
	- AdamSAGE (Sensitivity)
	- Sophia (2nd order optimizer approximation)

Outline

Optimization

- Optimization Basics
- **Numerical Types**

Parallel Training

- Data Parallelism
- Pipeline Parallelism
- Tensor Parallelism
- Combination of Combination
- ZeRO Optimizer

Numerical Types: Basic Types

Floating point formats supported by acceleration hardware

Figure 6: Floating Point Formats [5]

- BF16 is supported on TPU before LLM (2019 or earlier)
- FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
- BF16 was first supported in GPUs around 2021

Numerical Types: Neural Network Preferences

Neural networks prefer bigger range than better precision

Figure 6: Histogram of gradient values in a FP32 training [6]

• Many computation needs bigger range than FP16

Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process

- Parameters, activations, and gradients often use FP16
- Optimizer states often needs FP32
- Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process

- Parameters, activations, and gradients often use FP16
- Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

Figure 7: An Example Mixed Precision Training Set up [6]

Numerical Types: BF16

BF16 is the preferred numerical type on A100 and H100

- Same range as FP32: eliminated the needs for mixed precision training while being way more stable
- Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Outline

Optimization

- Optimization Basics
- Numerical Types

Parallel Training

- Data Parallelism
- Pipeline Parallelism
- Tensor Parallelism
- Combination of Parallelism
- ZeRO Optimizer

Parallel Training: Overview

As scale grows, training with one GPU is not enough

- There are many ways to improve efficiency on single-GPU training
	- Checkpointing: moving part of the operations to CPU memory
	- Quantizing different part of the optimization to reduce GPU memory cost
- Eventually more FLOPs are needed

Different setups of parallel training:

- When model training can fit into single-GPU
- →Data parallelism
- When model training cannot fit into single-GPU
- \rightarrow Model parallelism: pipeline or tensor

Parallel Training: Data Parallelism

Split training data batch into different GPUs

- Each GPU maintains its own copy of model and optimizer
- Each GPU gets a different local data batch, calculates its gradients
- Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Split training data batch into different GPUs

- Each GPU maintains its own copy of model and optimizer
- Each GPU gets a different local data batch, calculates its gradients
- Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Split training data batch into different GPUs

- Each GPU maintains its own copy of model and optimizer
- Each GPU gets a different local data batch, calculates its gradients
- Gather local gradients together to each GPU for global updates

Communication:

- The full gradient tensor between every pair of GPUs, at each training batch.
- Not an issue between GPUs in the same machine or machines with infinity band
- Will need work around without fast cross-GPU connection

Parallel Training: Model Parallelism

LLM size grew quickly and passed the limit of single GPU memory

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Parallel Training: Model Parallelism

Two ways of splitting network parameters

Split by Layers

Tensor Parallelism

Split Tensors

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Figure 7: Illustration of Pipeline Parallelism [7]

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:

- Activations between nearby devices in forward pass
- Partial gradients between nearby devices in backward
- Full gradients from Device 0 to All others

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Communication:

- Activations between nearby devices in forward pass
- Partial gradients between nearby devices in backward
- Full gradients from Device 0 to All others

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

Split the parameter tensors of target layers into different devices

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Split the parameter tensors of target layers into different devices

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Split the parameter tensors of target layers into different devices

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

Split the parameter tensors of target layers into different devices

Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:

• All-gather of partial activations and gradients for each split tensor

Parallel Training: Combining Different Parallelism

Often data parallelism and model parallelism are used together.

• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]

Outline

Optimization

- Optimization Basics
- Numerical Types

Parallel Training

- Data Parallelism
- Pipeline Parallelism
- Tensor Parallelism
- Combination of Combination
- **ZeRO Optimizer**

ZeRO: Redundancy in Data Parallelism

Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ

Observation:

- In data parallelism, each device only has access to local gradient
- All gather operation required on all gradients anyway

ZeRO: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

ZeRO: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

ZeRO: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Figure 11: ZeRO Optimizer Stages [10]

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings

Notes: Stage 3 is a variant of tensor parallelism, but passing parameters instead of activations and gradients Cons: Open-source support not as good

Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination

- Xiong et al. "On Layer Normalization in the Transformer Architecture". ICML 2020
- Zhang and Sennrich. "Root Mean Square Layer Normalization". NeurIPS 2019

Position embeddings for longer contexts and expressiveness

• Su et al. "Roformer: Enhanced transformer with rotary position embedding." arXiv 2021

Stability improvement from adaptive initialization

• Liu et al. "Understanding the Difficulty of Training Transformers". EMNLP 2020