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Optimization: Recap of Stochastic Gradient Descent

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
0 =0i_1 —ag; Updating with step size a

Compared to classic convex optimization:
* Each step only uses a small sub sample of data: stochastic sampling

* Non-convex optimization has many local optimal with different effectiveness
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Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
O =01 —ag; Updating with step size a

Challenge: How to select the right step size?

* Different parameters have different behaviors:
* norm, sensitivity, influence to optimization process, etc. % :)
* thus have different preferences on step size

* No way to manually tune step size per parameter

e Millions or billions of hyperparameters to tune Figure 1: SGD on two parameter loss contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. Fall 2023 11-667 CMU
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Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
O =01 —ag; Updating with step size a

Challenge: How to select the right step size?

—Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

agt Reweight per parameter step size by

¢ o its accumulated past norm
i=1 gl

Op = 0r1 —

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization” Fall 2023 11-667 CMU

JMLR 2011



Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
O =01 —ag; Updating with step size a

Challenge: How to select the right step size?

—Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

agt Reweight per parameter step size by

¢ o its accumulated past norm
i=1 gl

* The more a parameter has been updated previously /Zle gi2 T, the less its step size

Op = 0r1 —

» Sparse features with fewer past gradients / le giz | get boosted

2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”
[2] Duchi ptive Subgradi ! ing lc Optimizat Fall 2023 11-667 CMU
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Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
0

Or-1 — ag: Updating with step size a

Challenge: Local updates

* Only uses information from current mini-batch
* Can easily stuck in local optima

Figure 2: Optimization with Local Optima [3]

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum- Fall 2023 11-667 CMU

adagrad-rmsprop-adam-f898b102325¢c



Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
0 =0i_1 —ag; Updating with step size a

Challenge: Local updates

— Solution: Momentum [4]

my = Bimy_q + (1 = B1)Vofe(0r-1) Momentum of Gradient

0, =01 —am; Updating with gradient momentum

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. Fall 2023 11-667 CMU

arXiv 2017



Optimization: Challenge of SGD

In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

9t = Vofi(0t_1) Gradient at step t of loss function f ()
0 =0i_1 —ag; Updating with step size a

Challenge: Local updates

— Solution: Momentum [4]

my = Bimy_q + (1 = B1)Vofe(0r-1) Momentum of Gradient

0, =01 —am; Updating with gradient momentum
= E
|7
(a) SGD without momentum (b) SGD with momentum

Figure 3: SGD with and without Momentum [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”. Fall 2023 11-667 CMU
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Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~ 8. All operations on vectors are element-wise. With 3% and /3%
we denote 37 and (35 to the power t.

Require: «: Stepsize
Require: (31,2 € [0,1): Exponential decay rates for the moment estimates
Require: f(0): Stochastic objective function with parameters 6
Require: 6;: Initial parameter vector
mg < 0 (Initialize 15 moment vector)
vo < 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0, not converged do
t+—1+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < 81 -me—1 + (1 — 51) - g+ (Update biased first moment estimate)
vy + B2 - vi_1 + (1 — B2) - g2 (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
0y < vy /(1 — BE) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — a - Mz /(V/; + €) (Update parameters)
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.

ICLR 2015 Fall 2023 11-667 CMU
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Require: f(0): Stochastic objective function with parameters 6
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[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.

ICLR 2015 Fall 2023 11-667 CMU



Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~ 8. All operations on vectors are element-wise. With 3% and /3%
we denote 37 and (35 to the power t.

Require: «: Stepsize
Require: (31,2 € [0,1): Exponential decay rates for the moment estimates } Hyperparameters that you can/should tune
Require: f(0): Stochastic objective function with parameters 6

Require: 6;: Initial parameter vector
myg < 0 (Initialize 1°' moment vector) Initializations

vo < 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0, not converged do
t+—t+1 . .
g: + Vo fi(0;_1) (Get gradients w.r.t. stochastic objective at timestep t) Standard back-propagation for raw gradients
my < P71 -my—1 + (1 — B1) - g« (Update biased first moment estimate)
vy + B2 - vi_1 + (1 — B2) - g2 (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
0y < vy /(1 — BE) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — a - Mz /(V/; + €) (Update parameters)
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.

ICLR 2015 Fall 2023 11-667 CMU



Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~ 8. All operations on vectors are element-wise. With 3% and /3%
we denote 37 and (35 to the power t.

Require: «: Stepsize
Require: (31,2 € [0,1): Exponential decay rates for the moment estimates } Hyperparameters that you can/should tune
Require: f(0): Stochastic objective function with parameters 6

Require: 6;: Initial parameter vector
mg < 0 (Initialize 1** moment VGCtOI‘)} Initializations
vo < 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0, not converged do
t+—t+1 . .
g: + Vo fi(0;_1) (Get gradients w.r.t. stochastic objective at timestep t) Standard back-propagation for raw gradients
my < 31 -my—1 + (1 — (1) - g; (Update biased first moment estimate) ]
Vg & Bo v + (1(— B2) -)gf (Update biased second raw moment estimate) Get 15 and 2"? order momentum of gradient
my <— my¢/(1 — [7) (Compute bias-corrected first moment estimate)
0y < vy /(1 — BE) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — a - Mz /(V/; + €) (Update parameters)
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.

ICLR 2015 Fall 2023 11-667 CMU



Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~ 8. All operations on vectors are element-wise. With 3% and /3%
we denote 37 and (35 to the power t.

Require: «: Stepsize
Require: (31,2 € [0,1): Exponential decay rates for the moment estimates } Hyperparameters that you can/should tune
Require: f(0): Stochastic objective function with parameters 6

Require: 6;: Initial parameter vector
myg < 0 (Initialize 1°' moment vector) Initializations

vo < 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0, not converged do
t+—t+1 . .
g: + Vo fi(0;_1) (Get gradients w.r.t. stochastic objective at timestep t) Standard back-propagation for raw gradients
my < 31 -my—1 + (1 — (1) - g; (Update biased first moment estimate) ]
Vg & Bo v + (1(— B2) -)gf (Update biased second raw moment estimate) Get 15 and 2"? order momentum of gradient
my <— my¢/(1 — [7) (Compute bias-corrected first moment estimate) )
vy < v /(1 — ) (Compute bias-corrected second raw moment estimate) :I' Correct momentum bias
0; < 0;_1 — a - My /(v + €) (Update parameters) B
end while
return 6; (Resulting parameters)

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.

ICLR 2015 Fall 2023 11-667 CMU



Optimization: Adam Optimizer

Adam: Adaptive Moment Estimation [4]

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are o« = 0.001,
B1 = 0.9, B2 = 0.999 and € = 10~ 8. All operations on vectors are element-wise. With 3% and /3%
we denote 37 and (35 to the power t.

Require: «: Stepsize h hould
Require: (31,2 € [0,1): Exponential decay rates for the moment estimates Hyperparameters that you can/should tune
Require: f(0): Stochastic objective function with parameters 6

Require: 6;: Initial parameter vector
mg < 0 (Initialize 1** moment VGCtOI‘)} Initializations
vo < 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0, not converged do
t+—t+1 . .
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Update by 15t order momentum

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”.
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Optimization: lllustrations

\\ — SGD ¥
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Figure 4: SGD optimization on loss surface contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
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Figure 5: SGD optimization on saddle point [1]
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Optimization: Extensions of Adams

Adam is the go-to optimizer for deep learning now
* Combines two effective idea: momentum and dynamic learning rates

* Works very well in a large range of network work architectures and tasks

* Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

17 Fall 2023 11-667 CMU




Optimization: Extensions of Adams

Adam is the go-to optimizer for deep learning now
* Combines two effective idea: momentum and dynamic learning rates
* Works very well in a large range of network work architectures and tasks

* Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Notable Extensions:

* Reducing the memory footprint of momentum states:
* AdaFactor
e 8-Bit Adam

* Better warmup optimizer stage:
 RAdam

* More information in dynamic learning rate:
* AdamSAGE (Sensitivity)
* Sophia (2" order optimizer approximation)

18 Fall 2023 11-667 CMU
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Numerical Types: Basic Types

Floating point formats supported by acceleration hardware

(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e™ to ~3e™

Exponent: 8 bils = Manlissa (Significand): 23 bils _
HEEEEEEEEHHHHHHHHH“H“H“HHHHHHHHH

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96e"® to 65504

Exponent; S bils __ Mantissa (Significand); 10 bits
nEEEEEHHHHHHHHHH

(c) bfloat16: Brain Floating Point Format Range: ~1e7* to ~3e*

Exponent: § bits Mantissa (Significand); 7 bits
EEEEEEEEEHHHHHHH

Figure 6: Floating Point Formats [5]

e BF16 is supported on TPU before LLM (2019 or earlier)

* FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level
* BF16 was first supported in GPUs around 2021

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance- 20

on-cloud-tpus
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Numerical Types: Neural Network Preferences

Neural networks prefer bigger range than better precision

) FP16 Representable range -
 Become zero in FP16 R ‘FP16 deuo;ms

2
1
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Percentage of all activation gradient values

Figure 6: Histogram of gradient values in a FP32 training [6]

 Many computation needs bigger range than FP16

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

Fall 2023 11-667 CMU



Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process
* Parameters, activations, and gradients often use FP16

e Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

Fall 2023 11-667 CMU



Numerical Types: Mixed Precision Training

Using different numerical types at different part of the training process
* Parameters, activations, and gradients often use FP16

e Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

G

. F16
—
Activations ——

\ 4

( \ F16 4

- F16 ———

Activation Grad «<—— BWD-Actv F16 Wel.ght.s
%f—Actlvatlon Grad

( \ F16 L
i F16 «—— Activat
Weight Grad BWD-Weight | 11 C Alva ‘|ons
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.-

Master-Weights (F32) i{Weight Update}iz——» Updated Master-Weights

Figure 7: An Example Mixed Precision Training Set up [6]

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018
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Numerical Types: BF16

BF16 is the preferred numerical type on A100 and H100

(a) fp32: Single-precision IEEE Floating Point Format Range: ~1e™ to ~3e™

Exponent: 8 bils = Manlissa (Significand): 23 bils _
HEEEEEEEEHHHHHHHHH“H“H“HHHHHHHHH

(b) fp16: Half-precision IEEE Floating Point Format Range: ~5.96e"® to 65504

Exponent; S bils __ Mantissa (Significand); 10 bits
nEEEEEHHHHHHHHHH

(c) bfloat16: Brain Floating Point Format Range: ~1e7* to ~3e*

Exponent 8bits  Mantissa (Significand); 7 bits Same Range
HEEEEEEEEHHHHHHH

Coarse Precision
Figure 6: Floating Point Formats [5]

* Same range as FP32: eliminated the needs for mixed precision training while being way more stable

* Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

24

Fall 2023 11-667 CMU



Outline

Optimization
* Optimization Basics

* Numerical Types

Parallel Training

e Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Combination of Parallelism
ZeRO Optimizer

25

Fall 2023 11-667 CMU




Parallel Training: Overview

As scale grows, training with one GPU is not enough

* There are many ways to improve efficiency on single-GPU training
* Checkpointing: moving part of the operations to CPU memory
e Quantizing different part of the optimization to reduce GPU memory cost

e Eventually more FLOPs are needed

Different setups of parallel training:

 When model training can fit into single-GPU
—Data parallelism

* When model training cannot fit into single-GPU

— Model parallelism: pipeline or tensor

26
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Parallel Training: Data Parallelism

Split training data batch into different GPUs
* Each GPU maintains its own copy of model and optimizer
* Each GPU gets a different local data batch, calculates its gradients

* Gather local gradients together to each GPU for global updates

GPU 1 GPU 2 GPU 3

Forward Pass 1 $ $ $

Backward Pass |

27 Fall 2023 11-667 CMU




Parallel Training: Data Parallelism

Split training data batch into different GPUs
* Each GPU maintains its own copy of model and optimizer
* Each GPU gets a different local data batch, calculates its gradients

* Gather local gradients together to each GPU for global updates
GPU 1 GPU 2 GPU 3

Forward Pass 1

Backward Pass |

All Gather |

Global Gradients:
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Parallel Training: Data Parallelism

Split training data batch into different GPUs
* Each GPU maintains its own copy of model and optimizer
* Each GPU gets a different local data batch, calculates its gradients

* Gather local gradients together to each GPU for global updates
GPU 1 GPU 2 GPU 3

Communication:

Forward Pass 1 v v !  The full gradient tensor
between every pair of GPUs,
Backward Pass | . . . at each training batch.

v v v * Not anissue between GPUs in
the same machine or
machines with infinity band

v v v * Will need work around
without fast cross-GPU
connection

All Gather |

Global Gradients:

29 Fall 2023 11-667 CMU




Parallel Training: Model Parallelism

LLM size grew quickly and passed the limit of single GPU memory

Cost of 10B Model Function to parameter count (¥)

Parameter Bytes 20GB 2¥Y
Gradient Bytes 20GB A Y
Optimizer State: 1st Order Momentum 20GB 2¥
Optimizer State: 2nd Order Momentum 20GB A Y
Total Per Model Instance 80GB 8¥

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized W

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

30 Fall 2023 11-667 CMU




Parallel Training: Model Parallelism

Two ways of splitting network parameters

Pipeline Parallelism Tensor Parallelism

3 I GPU1 t v GPU 2

GPU 2

GPU 1

Split by Layers Split Tensors

31 Fall 2023 11-667 CMU




Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

FU BO Update
Loss
/ \ FO B0 Update
Device 3 F. - B, Fo B. Update
* ‘ F0 B0 Update
Device 2 F. — B.
t : ®)
Device 1 F1 ” B1 Fso | Fa1 | Faz | Fas| Bas Baz Bs.1 Bso Update
T ‘ Fzo | F21 | Fa2 | F2s B:a B2z | Bzt B:o Update
Device 0 F. — B,
Fio| Fi1 | Fi2 | Faa Bis | Bi2 B4 Bio Update
\ / Foo | Fo1 | Foz | Fos Bubble Bos | Boz | Boi | Boo | Update
Gradients
(a) (c)

Figure 7: lllustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
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Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]
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pegie . .
7 T ’ ’ Communication:
D i 3 > 0 o Update . .
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Figure 7: lllustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
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Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

FU BO Update
Loss = B »
pegie . .
7 T ’ ’ Communication:
D i 3 > 0 o Update . .
eviee Fs B. > = i  Activations between nearby
* ‘ F0 B0 Update . .
_ devices in forward pass
Device 2 F. — B, ) )
5 I (b) * Partial gradients between
Device 1 F1 > B1 Fso| Fa1 | Faz | Faa| Bss Ba2 Bs.1 Bso Update nearby deViceS In baCkwa rd
§ ] * Full gradients from Device 0 to
Foo | F21 | Faz2 | F2a B2s B22 B2 B2o Update
Device 0 F. — B, All others
Fio| F11 | Fi2 | F1s Bis Bi2 Bia Bio Update
\ / Foo | Fo1 | Foz | Fos Bubble Bos | Boz | Bot | Boo | Update
Gradients
(a) (c)

Figure 7: lllustration of Pipeline Parallelism [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
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Parallel Training: Tensor Parallelism

Split the parameter tensors of target layers into different devices

o e o o o e

PR

= | X 1’131

nodoiq

Y2B,

[

,-_________;E.-_-____
| |

N R I e

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”. arXiv 2019
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Parallel Training: Tensor Parallelism

Split the parameter tensors of target layers into different devices

Y = Self-Attention(X) b
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Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model

Parallelism”. arXiv 2019 Fall 2023 11-667 CMU



Parallel Training: Tensor Parallelism

Split the parameter tensors of target layers into different devices
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Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model

Parallelism”. arXiv 2019 Fall 2023 11-667 CMU



Parallel Training: Tensor Parallelism

Split the parameter tensors of target layers into different devices
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Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
e All-gather of partial activations and gradients for each split tensor

8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
(8] ybi g Ining Multi-Bill guag Ing Fall 2023 11-667 CMU

Parallelism”. arXiv 2019



Parallel Training: Combining Different Parallelism

Often data parallelism and model parallelism are used together.

* No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

Transformer layer #1 Transformer layer #2
Tensor MP partltlon 1 V\\ (e T _— TenS(;r_MP partltlon_#1 ]\
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Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. 39

Fall 2023 11-667 CMU

SC 2021.



Outline

Optimization
* Optimization Basics

* Numerical Types

Parallel Training

e Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Combination of Combination
ZeRO Optimizer
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/eR0O: Redundancy in Data Parallelism

Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B Model Function to parameter count (V)

Parameter Bytes 20GB 2¥
Gradient Bytes 20GB A Y
Optimizer State: 1st Order Momentum 20GB 2
Optimizer State: 2nd Order Momentum 20GB 2V
Total Per Model Instance 80GB 8¥

Table 1: Memory Consumption of Training Solely with BF16 (ldeal case) of a model sized ¥

GPU 1 GPU 2 GPU 3
ForwardPass t | t | t |
BackwardPass | 7 I i I = I Observation:
* |n data parallelism, each
All Gather | .
: l T I ; I device only has access to local
| gradient

* All gather operation required
on all gradients anyway

Global Gradients: * | o

41 Fall 2023 11-667 CMU




/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

gPUg

gPy;

gPUn-1

Parameters

Gradients

Optimizer States

Figure 11: ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 42

Communication

Free ride with data parallelism

Free ride with data parallelism

2019.
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/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

gPUg

gPy;

gPUn-1

Parameters

Gradients

Optimizer States

Figure 11: ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 43

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters

2019.
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/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

8PUy gpu; 8PUny
Communication
Stage 1: Split Optimizer States Free ride with data parallelism
Stage 2: +Split Gradients Free ride with data parallelism
Stage 3: +Split Parameters All-gather parameters
Parameters Gradients Optimizer States

Figure 11: ZeRO Optimizer Stages [10]
Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings
Notes: Stage 3 is a variant of tensor parallelism, but passing parameters instead of activations and gradients

Cons: Open-source support not as good

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 44 Fall 2023 11-667 CMU

2019.



Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination

e Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

* Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurlPS 2019

Position embeddings for longer contexts and expressiveness

* Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

* Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020
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