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Optimization: Recap of Stochastic Gradient Descent
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Compared to classic convex optimization:

• Each step only uses a small sub sample of data: stochastic sampling

• Non-convex optimization has many local optimal with different effectiveness

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

• Different parameters have different behaviors: 
• norm, sensitivity, influence to optimization process, etc.

• thus have different preferences on step size

• No way to manually tune step size per parameter
• Millions or billions of hyperparameters to tune

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

Figure 1: SGD on two parameter loss contours [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

→Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”
JMLR 2011

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑔𝑡

σ𝑖=1
𝑡 𝑔𝑖

2

Reweight per parameter step size by 
its accumulated past norm
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: How to select the right step size?

→Solution: Dynamic learning rate per parameter

Adaptive gradient methods (AdaGrad [2])

• The more a parameter has been updated previously σ𝑖=1
𝑡 𝑔𝑖

2 ↑, the less its step size

• Sparse features with fewer past gradients σ𝑖=1
𝑡 𝑔𝑖

2 ↓ get boosted

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

[2] Duchi et al. “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”
JMLR 2011

𝜃𝑡 = 𝜃𝑡−1 −
𝛼𝑔𝑡

σ𝑖=1
𝑡 𝑔𝑖

2

Reweight per parameter step size by 
its accumulated past norm
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

• Only uses information from current mini-batch
• Can easily stuck in local optima

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

Figure 2: Optimization with Local Optima [3]

[3] https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-
adagrad-rmsprop-adam-f898b102325c
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

→ Solution: Momentum [4]

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝑓𝑡(𝜃𝑡−1) Momentum of Gradient

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑚𝑡 Updating with gradient momentum

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017
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Optimization: Challenge of SGD
In deep learning, mini-batch learning is the norm and Stochastic Gradient Descent (SGD) is the basis optimizer

Challenge: Local updates

→ Solution: Momentum [4]

𝑔𝑡 = ∇𝜃𝑓𝑡(𝜃𝑡−1) Gradient at step t of loss function 𝑓()

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑔𝑡 Updating with step size 𝛼

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝜃𝑓𝑡(𝜃𝑡−1) Momentum of Gradient

𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝑚𝑡 Updating with gradient momentum

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017

Figure 3: SGD  with and without Momentum [1]
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient

Correct momentum bias
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Optimization: Adam Optimizer
Adam: Adaptive Moment Estimation [4]

[4] Kingma and Ba. “Adam: A Method for Stochastic Optimization”. 
ICLR 2015

Hyperparameters that you can/should tune

Initializations

Standard back-propagation for raw gradients

Get 1st and 2nd order momentum of gradient

Correct momentum bias

Update by 1st order momentum

Dynamic per-parameter step size by 2nd order momentum
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Optimization: Illustrations

Figure 4: SGD optimization on loss surface contours [1] Figure 5: SGD optimization on saddle point [1]

[1] Sebastian Ruder. “An overview of gradient descent optimization Algorithms”.
arXiv 2017
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Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now

• Combines two effective idea: momentum and dynamic learning rates

• Works very well in a large range of network work architectures and tasks

• Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)
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Optimization: Extensions of Adams
Adam is the go-to optimizer for deep learning now

• Combines two effective idea: momentum and dynamic learning rates

• Works very well in a large range of network work architectures and tasks

• Many of LLMs are pretrained using Adam or its extensions. (Almost all common ones.)

Notable Extensions:

• Reducing the memory footprint of momentum states: 
• AdaFactor

• 8-Bit Adam

• Better warmup optimizer stage: 
• RAdam

• More information in dynamic learning rate: 
• AdamSAGE (Sensitivity)

• Sophia (2nd order optimizer approximation)
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Numerical Types: Basic Types
Floating point formats supported by acceleration hardware

• BF16 is supported on TPU before LLM (2019 or earlier)

• FP32 and FP16 was the only option before A100. BF16 was not supported at hardware level

• BF16 was first supported in GPUs around 2021

Figure 6: Floating Point Formats [5]

[5] https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-
on-cloud-tpus 
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Numerical Types: Neural Network Preferences
Neural networks prefer bigger range than better precision

• Many computation needs bigger range than FP16

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018

Figure 6: Histogram of gradient values in a FP32 training [6]
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Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process

• Parameters, activations, and gradients often use FP16

• Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018
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Numerical Types: Mixed Precision Training
Using different numerical types at different part of the training process

• Parameters, activations, and gradients often use FP16

• Optimizer states often needs FP32

Maintaining main copies of FP32 for calculations

Dynamically scaling up loss to fit gradients etc. in FP16 range

Figure 7: An Example Mixed Precision Training Set up [6]

[6] Narang et al. “Mixed Precision Training ”. ICLR 2018
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Numerical Types: BF16
BF16 is the preferred numerical type on A100 and H100

• Same range as FP32: eliminated the needs for mixed precision training while being way more stable

• Coarse precision: mostly fine, only a few places in neural network need more fine-grained precision

Figure 6: Floating Point Formats [5]

Same Range

Coarse Precision
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Parallel Training: Overview
As scale grows, training with one GPU is not enough

• There are many ways to improve efficiency on single-GPU training
• Checkpointing: moving part of the operations to CPU memory

• Quantizing different part of the optimization to reduce GPU memory cost

• Eventually more FLOPs are needed

Different setups of parallel training:

• When model training can fit into single-GPU

→Data parallelism

• When model training cannot fit into single-GPU

→ Model parallelism: pipeline or tensor
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Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)
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Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃)

All Gather 

Global Gradients:
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Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃)

All Gather 

Global Gradients:

Communication:
• The full gradient tensor 

between every pair of GPUs, 
at each training batch.

• Not an issue between GPUs in 
the same machine or 
machines with infinity band

• Will need work around 
without fast cross-GPU 
connection
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Parallel Training: Model Parallelism
LLM size grew quickly and passed the limit of single GPU memory

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ
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Parallel Training: Model Parallelism
Two ways of splitting network parameters

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers

Transformer 
Layer

Transformer 
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Tensor Parallelism

GPU 1 GPU 2

Split Tensors
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby 

devices in forward pass
• Partial gradients between 

nearby devices in backward
• Full gradients from Device 0 to 

All others



Fall 2023 11-667 CMU34

Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby 

devices in forward pass
• Partial gradients between 

nearby devices in backward
• Full gradients from Device 0 to 

All others
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Parallel Training: Tensor Parallelism
Split the parameter tensors of target layers into different devices

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of target layers into different devices

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of target layers into different devices

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of target layers into different devices

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
• All-gather of partial activations and gradients for each split tensor
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Parallel Training: Combining Different Parallelism
Often data parallelism and model parallelism are used together.

• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. 
SC 2021.

Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]
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ZeRO: Redundancy in Data Parallelism
Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ

Observation:
• In data parallelism, each 

device only has access to local 
gradient

• All gather operation required 
on all gradients anyway
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Communication

Free ride with data parallelism

Free ride with data parallelism
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters 
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings

Notes: Stage 3 is a variant of tensor parallelism, but passing parameters instead of activations and gradients

Cons: Open-source support not as good

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters 
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Other Notable Literatures in Scaling Up
Different configurations of layer normalization: pre layernorm, post layernorm and their combination

• Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

• Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

• Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

• Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020
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