Announcement

HW3 will be out today. Get started ASAP!
* There will be additional TA office hours hold by the creators of this homework: Amanda and Emmy

* Itis due Nov 30, two weeks from now, excluding Thanksgiving holiday

Final Project Presentation will be a Conference Poster like session at GHC 7107 Atrium

e More instructions on the course website

1 Fall 2023 11-667 CMU

Scaling Up LLM Pretraining: Parallel Training

Chenyan Xiong
11-667

Fall 2023 11-667 CMU

Outline

Parallel Training

Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Combination of Parallelism

ZeRO Optimizer

3 Fall 2023 11-667 CMU

Parallel Training: Overview

As scale grows, training with one GPU is not enough

* There are many ways to improve efficiency on single-GPU training
* Checkpointing: moving part of the operations to CPU memory
e Quantizing different part of the optimization to reduce GPU memory cost

e Eventually more FLOPs are needed

Different setups of parallel training:

 When model training can fit into single-GPU
—Data parallelism

* When model training cannot fit into single-GPU

— Model parallelism: pipeline or tensor

il Fall 2023 11-667 CMU

Parallel Training: Data Parallelism

Split training data batch into different GPUs
e Each GPU maintains its own copy of model and optimizer

* Each GPU gets a different local data batch, calculates its gradients

GPU 1 GPU 2 GPU 3

Forward Pass 1 $ | $ | $ |

Backward Pass | - 3 3

5 Fall 2023 11-667 CMU

Parallel Training: Data Parallelism

Split training data batch into different GPUs
e Each GPU maintains its own copy of model and optimizer
* Each GPU gets a different local data batch, calculates its gradients

* Gather local gradients together to each GPU for global updates
GPU 1 GPU 2 GPU 3

Forward Pass 1 $ | $ | $ |

Backward Pass | - 3 3

All Gather |

Global Gradients:

6 Fall 2023 11-667 CMU

Parallel Training: Data Parallelism

Split training data batch into different GPUs
e Each GPU maintains its own copy of model and optimizer
* Each GPU gets a different local data batch, calculates its gradients

* Gather local gradients together to each GPU for global updates
GPU 1 GPU 2 GPU 3

Communication:

Forward Pass 1 | ! I * The full gradient tensor
between every pair of GPUs,
at each training batch.

* Not an issue between GPUs in
the same machine or
machines with infinity band

v y v * Will need work around

without fast cross-GPU

connection

Backward Pass | - 3 3

All Gather |

Global Gradients:

7 Fall 2023 11-667 CMU

Parallel Training: Model Parallelism

LLM size grew quickly and passed the limit of single GPU memory

Cost of 10B Model Function to parameter count (¥)

Parameter Bytes 20GB 2¥
Gradient Bytes 20GB 2¥
Optimizer State: 1st Order Momentum 20GB 2¥
Optimizer State: 2nd Order Momentum 20GB A Y
Total Per Model Instance 80GB 8¥

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized ¥

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

8 Fall 2023 11-667 CMU

Parallel Training: Model Parallelism

Two ways of splitting network parameters

Pipeline Parallelism Tensor Parallelism

1 ! GPU 1 1 ! GPU 2

GPU 2

GPU 1

Split by Layers Split Tensors

9 Fall 2023 11-667 CMU

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Pipeline Parallelism

Loss

/ \
Device 3 F. - Bs

f ‘ A il
Device 2 F. — B.

; : GPU 2
Device 1 F1 > B1 2

T J \ 4
Device 0 Fg —> Bo GPU 1

Gradients

(a)

Figure 7: lllustration of Pipeline Parallelism [7] Split by Layers

7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
17] Huang pe: Easy Scaling P Fall 2023 11-667 CMU

NeurlPS 2019

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

F[l Bu Update
Loss
/ \ FU BO Update
Device 3 F. - B, F. B, Update
! * Fs B | e Split batches for
Device 2 F. — B. ;
; : b) more fine-
Device 1 F - B Fso | Fas | Faz [Fas| Bss | Baz | Bas | Bao Update grained pipelines
T Jv Fa0 | F21 | F22 | Fz3 B2z | B2z | Bzt Bzo Update
Device 0 FU — B,
Fio | F11 | Fiz | Fis B1s Bz B Bi.o Update
\ / Foo | Fo1 | Foz | Fos Bubble Bos | Boz | Boi | Boo | Update
Gradients
(a) (c)

Figure 7: lllustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.

NeurIPS 2019 Fall 2023 11-667 CMU

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

F[l Bu Update
Loss = B "
[Pkl . .
7 T - : : " Communication:
Devi 3 > 0 0 Update . .
evice Fs B. i Activations between nearby
f * F0 BO Update . .
_ devices in forward pass
Device 2 F. — B. . .
¥ I (b) * Partial gradients between
Device 1 F1 . B1 Fso | Fa1 | Fs2 | Fas| Bss | Bsz | Bsa Bso Update nearby deVices in baCkwa rd
T Jv Fa0 | F21 | F22 | Fz3 B2z | B2z | Bzt Bzo Update
Device 0 FU — B,
Fio | F11 | Fiz | Fis B1s Bz B Bi.o Update
\ / Foo | Fo1 | Foz | Fos Bubble Bos | Boz | Boi | Boo | Update
Gradients
(a) (c)

Figure 7: lllustration of Pipeline Parallelism [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.

NeurIPS 2019 Fall 2023 11-667 CMU

Parallel Training: Pipeline Parallelism

Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

F[l Bu Update
Loss = B "
[Pkl . .
7 T - : : " Communication:
Devi 3 > 0 0 Update . .
evice Fs B. i Activations between nearby
f * F0 BO Update . .
_ devices in forward pass
Device 2 F. — B. . .
¥ I (b) * Partial gradients between
Device 1 F1 . B1 Fso | Fa1 | Fs2 | Fas| Bss | Bsz | Bsa Bso Update nearby deVices in baCkwa rd
T Jv Fa0 | F21 | F22 | Fz3 B2z | B2z | Bzt Bzo Update
Device 0 FU — B,
Fio | F11 | Fiz | Fis B1s Bz B Bi.o Update
\ / Foo | Fo1 | Foz | Fos Bubble Bos | Boz | Boi | Boo | Update
Gradients
(a) (c)

Figure 7: lllustration of Pipeline Parallelism [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.

NeurIPS 2019 Fall 2023 11-667 CMU

Outline

Parallel Training

Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Combination of Parallelism

ZeRO Optimizer

14

Fall 2023 11-667 CMU

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

o o o o o o . .

~

—

1B,

inodoig

Y2B;

[

,__________if_______
| |

. .

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
18] Shoey 8 g guag J Fall 2023 11-667 CMU

Parallelism”. arXiv 2019

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

=

Y = Self-Attention(X) N

—

!' [= W] \‘: i Z = Dropout(Y B) h
| R I
i ' (@] (B 1 —.
. ® =x=[@a]x |g g o
: =| X || XA4; 2|2 1B, =|5 =8 w®:o}’1«=:lm Y, B, @E:’
| = o - BT B .
HX|= _— - S L IX = - 1 ~[8|=|z
i o s o) : - — /™ H 2
| o B, = | - 2| 8| @l «
: =X = X4; =2 =) 'Tw%:’ Y2B, ®r:>§:>-g >RV |=p | YaBy |=|Z5|—=
; S gl L | o
' B a2 | o it :
| 1 1
t b [A o]) '\\ REES l\\ B = [1331] /
Q k222 N \ Q = [Q1,Q2] | 2 >
_________________________ R _ split attention heads — ¢ K = [K;, K3] y
. V=W,V i

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model

Parallelism”. arXiv 2019 Fall 2023 11-667 CMU

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

Y =Sclf-Attention(X)

\ // - \\\\

= ﬁ ‘i "l 7z = Dropout(YB) b
— — Vi
x-Ca,_[g -

~

—

i — .
l o m =
: =X = X4; P2 =i Y1 B, =|3|=8 =@= | 5 YiB, 2% =
! c ! o =K | 2| |5 = 1 o
-l - | : ii -1
_— , o _— | 2
| ol m! £ = BB mi
: =X = X4z P& =) 'Tw%:’ Y2B, ®r:>§:>-g >RV |=p | YaBy |=|Z5|—=
; o BT = -mm _
| el i | : i S :
| I
.\ T B =[] \ B [gl]
% = |A1, A2 yV Q = [Q1, Qo] | 2 4
——————————————————————— e ——. . split attention heads — ¢ K = [K, K] /
3 V = [V, V5] 4

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model

Parallelism”. arXiv 2019 Fall 2023 11-667 CMU

Parallel Training: Tensor Parallelism

Split the parameter tensors of network layers into different devices for parallel matrix operations

----------------- %
<
£ R
[
[
|
|
| - -
|

—| f > \i -)
S| FEESe 2| o (]
X3 =23 a3 [FB 0SS =3 2823 [¢8 ~d= <

I R I B R

3] | | 3] | |

§ Model i i Model ;
_Parallel \.__Parallel
2 All-Reduce 2 All-Reduce

(forward + backward) (forward + backward)

Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
e All-gather of partial activations and gradients for each split tensor

8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
18] Shoey 8 g guag J Fall 2023 11-667 CMU

Parallelism”. arXiv 2019

Parallel Training: Combining Different Parallelism

Often data parallelism and model parallelism are used together.

* No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

Transformer Iayer #1 Transformer Iayer #2

r—————————"- S — —————————"*-

__________, -——————————J ‘___________/ - _ =S oW "=

\ Pipeline MP partition #1 / \ Pipeline MP partition #2 /

Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. 19
SC 2021.

Fall 2023 11-667 CMU

Outline

Parallel Training

e Data Parallelism

Pipeline Parallelism

Tensor Parallelism

Combination of Combination
ZeRO Optimizer

20

Fall 2023 11-667 CMU

/eR0O: Redundancy in Data Parallelism

Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B Model Function to parameter count (W)

Parameter Bytes 20GB 2¥
Gradient Bytes 20GB A Y
Optimizer State: 1st Order Momentum 20GB 2¥
Optimizer State: 2nd Order Momentum 20GB A Y
Total Per Model Instance 80GB 8W¥

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized W

21 Fall 2023 11-667 CMU

/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism
gPUq gPu; gPUN_4

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Parameters Gradients Optimizer States

Figure 11: ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 22

2019. Fall 2023 11-667 CMU

/eR0O: Redundancy in Data Parallelism

ZeRO Stage 1 and 2: reducing memory redundancy

GPU 1 GPU 2 GPU 3
ForwardPass t | t | t |
Backward Pass | f I 7 I ; I Observation:
Al Gather | * |In data parallelism, each
device only has access to local
i | i | i ! :
gradient

e All gather operation required
on all gradients anyway

Global Gradients: o o

23 Fall 2023 11-667 CMU

/eR0O: Redundancy in Data Parallelism

An example way to implement ZeRO Stage 1
GPU 1 GPU 2 GPU 3

Forward Pass 1 $ 1 $ $

Backward Pass | -

All Gather |

Sharded 1t Momentum m(x, 0)

Sharded 2" Momentum p(x, 6,)

Adam Parameter Updates F(\.../ﬁ

24 Fall 2023 11-667 CMU

/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

gPUg

gPy;

gPUn_1

Parameters

Gradients

Optimizer States

Figure 11: ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 25

Communication

Free ride with data parallelism

Free ride with data parallelism

2019.

Fall 2023 11-667 CMU

/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

gPUg

gPy;

gPUn_1

Parameters

Gradients

Optimizer States

Figure 11: ZeRO Optimizer Stages [10]

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 26

Communication

Free ride with data parallelism

Free ride with data parallelism

2019.

Fall 2023 11-667 CMU

/eR0O: Redundancy in Data Parallelism

Sharding parameters and passing them when needed
GPU 1 GPU 2 GPU 3

Forward Pass 1 1 $ $

Backward Pass | -

All Gather |

Sharded 1t Momentum m(x, 0)

Sharded 2" Momentum p(x, 6,)

Adam Parameter Updates F(\.../ﬁ

27 Fall 2023 11-667 CMU

/eR0O: Reduce Memory Redundancy

ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

gPUq gPu; gPUN.1 |
Communication
Stage 1: Split Optimizer States Free ride with data parallelism
Stage 2: +Split Gradients Free ride with data parallelism
Stage 3: +Split Parameters All-gather parameters
Parameters Gradients Optimizer States

Figure 11: ZeRO Optimizer Stages [10]
Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings

Cons: Open-source support not as good

Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 28 Fall 2023 11-667 CMU

2019.

A peek into real large scale pretraining workflow

Lots of first hand information released through the FAIR OPT pretraining run:

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles

Fall 2023 11-667 CMU

Background

A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3
* 1024 A100 80GBs to use. Yes!

Constraints:
* Task given at around Beginning of Nov 2021

* Goalis to pretrain a 175 Billion scale model by end of the year
* Which at minimum require 33 days on 1K A100s

* With no previous experience on large scale pretraining at all

30 Fall 2023 11-667 CMU

Challenge #1: Many Research Work Don’t Scale

Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

We began this experiment lineage with the following settings:

e Batch-size of 2M
FP32 Adam

8x Tensor Parallelism

New data from Experiment 29

LPE with sinusoidal initialization

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md 3 1

Normformer

Fall 2023 11-667 CMU

Challenge #1: Many Research Work Don’t Scale

Reality: Short timeline, Big money on the line, Nothing too fancy

By this point, even though we made it past 1k updates without grad norms exploding or nans everywhere, it appeared as if training was going
to stagnate (see the pink line above of the training ppl from update 4750 to ~6700 with experiment 11.10). We decided to follow through with
our "plan B" that we set for ourselves on October 18 before starting any of these runs, where we would abort from these configurations
(derived from the lineage of all the previous dense experiments conducted with the Fairseq codebase) and adopt as much of the
Megatron/OpenAl GPT-3 settings as possible.

e We chose this path due to the fact that we need 33 days to fully train at this scale with 1024 80GB A100s, and time was running out before
EQY hit. We also needed to buffer in time to evaluate this model on downstream tasks before EOY as well.

¢ We could keep going down the path of tweaking the experiment 11.xx lineage, but we have no pre-existing knowledge we would be able
to make consistent progress in that time.

¢ Megatron/OpenAl GPT-3 settings are consistent with each other and have both been supposedly used to successfully train a 175B model
(and above).

From all the things we changed in 11.xx, the main set of changes that were left to bridge the gap with Megatron/OpenAl settings were:

¢ Overall weight initialization

¢ Removing Normformer, removing embedding scaling, and changing LPE initialization to standard embedding init and not sinusoidal init

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md 3 2

Fall 2023 11-667 CMU

Challenge #2: Hardware Failures

GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.

Update on 175B Training Run: 27% through »

Written by: Susan Zhang, Stephen Roller, Naman Goyal, Sam Shleifer, Myle Ott

Posted on: December 3, 2021

It's been really rough for the team since the November 17th update. Since then, we've had 40+ restarts in the 175B experiment for a variety of

hardware, infrastructure, or experimental stability issues.

The vast majority of restarts have been due to hardware failures and the lack of ability to provision a sufficient number of "buffer" nodes to
replace a bad node with once it goes down with ECC errors. Replacement through the cloud interface can take hours for a single machine, and
we started finding that more often than not we would end up getting the same bad machine again. Nodes would also come up with NCCL/IB
issues, or the same ECC errors, forcing us to start instrumenting a slew of automated testing and infrastructure tooling ourselves. Some of these

include:

e Replacing nodes through a script
e Adding GPU burn-in testing to detect memory errors
* Automating IB testing

* Monitoring train.log

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicIes/27_percent_update.md33 Fall 2023 11-667 CMU

Challenge #2: Hardware Failures

Solution? Hopefully better tooling in the future, but right now:

All in all, working around infrastructure issues has dominated the last two weeks of the team's time, given that these hardware issues can take
the experiment down for hours at any time of the day. While we were fully aware that these issues would come up during training at this scale,
given the time crunch of shipping a trained 175B model by end of H2 2021, we had no choice but to launch and see how far we would get
without this additional tooling. Thanksgiving break was a painful reminder that automation on this front is necessary when training at this scale,
and that cloud infrastructure instability is something to always prepare for, given lack of control over the underlying hardware.

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md 34

Fall 2023 11-667 CMU

Challenge #2: Hardware Failures

Forming an on-call group to watch OPT training

We are also happily inviting people to join our on-call. We have established runbooks and some tooling for dealing with the most common
issues. Those who join this on-call will get firsthand experience at training a model at this scale, which will be valuable for all future large-scale
efforts. However, each hour the experiment stagnates or goes down costs us $$, so the goal of the on-call is to minimize this downtime.

Alchemy Furnace
of the LLM Era

We Watching
LLM Training

Fall 2023 11-667 CMU

Challenge #3: Optimization Stability

Lots of optimization stability issues:

* Loss explodes, gradients overflows/underflows, training stagers...

Since the sleepless night of Thanksgiving break, this past week has been filled with gradient overflow errors / loss scale hitting the minimum
threshold (which was put in place to avoid underflowing) which also causes training to grind to a halt. We restarted from previous checkpoints
a couple of times, and found that occasionally training would get a bit further (~100 or more steps) before hitting the same issue again. At this
point, we tried something a bit more drastic by testing out "SGD"-like settings for Adam (by setting betal to 0, and epsilon to 1), only to realize
that reinitializing the Adam optimizer from a checkpoint also reloaded the previously saved betas. We tried switching to true vanilla SGD then,
which required implementing an FP16-friendly version immediately, only to find that our learning rate might have been set too low for SGD to
actually make progress.

As of this morning, we have made the decision to continue with Adam but instead try lowering the LR, which seems to have a surprising effect
on reducing gradient and activation norms and allowing perplexity to continue dropping steadily. We had chosen initially to start with a much
higher LR than GPT-3 175B, given ablations at smaller scale showing that GPT-3 LR settings were too low when trained in the fairseq codebase.

However, now that we are later in training, it seems like the LR may not be decaying fast enough to keep training stable.

36 Fall 2023 11-667 CMU

Challenge #3: Optimization Stability

Infrastructure issues aside, there have also been a few close calls with training stability. On run 12.43, we noticed grad norm and activation
norm starting to spike/drift (light blue curve):

Run * Pinned 4 cards

d®

run12.23/train_inner

ppl : actv_norm
run12.31/train_inner

4200

run12.33/train_inner

run12.39/train_inner

®@ & @

run12.42/train_inner

® O

run12.43/train_inner

run12.44/train_inner

run12.45/train_inner

run12.45.2/train_inner

run12.46/train_inner

run12.46.2/train_inner

[BN BECORN BECRN

run12.47/train_inner

run12.47.myle_rerun/train_inner

run12.47.myle_rerun2/train_inner

run12.47.myle_rerun3/train_inner

0 5 0 5 5 e S 5 4

® ® 0O

run12.48/train_inner

37 Fall 2023 11-667 CMU

Challenge #3: Optimization Stability

In response, we lowered our learning rate by 10%, which was sufficient for stabilizing our grad norm and activation norm. This happened again
on run 12.45.2 (below), where our training perplexity started to diverge (light blue) after a few large grad norm spikes. We lowered our learning
rate at this point to 2/3 of what OpenAl 175B GPT-3 used, and managed to continue training.

Run * Pinned 4 cards

run12.23/train_inner

ppl actv_norm
run12.31/train_inner

?\\ S

run12.33/train_inner M;‘?Q
o ol

"y
!

(BN BN BN I

run12.39/train_inner

run12.42/train_inner

® O

run12.43/train_inner

run12.44/train_inner

run12.45/train_inner

run12.45.2/train_inner

run12.46/train_inner

run12.46.2/train_inner

run12.47/train_inner

® ® ©O0 OO

run12.47.myle_rerun/train_inner

run12.47.myle_rerun2/train_inner

run12.47.myle_rerun3/train_inner

® ® OO0

run12.48/train_inner

38 Fall 2023 11-667 CMU

Challenge #3: Optimization Stability

We managed to hit our top three record long runs of the experiment these past two weeks, lasting 1.5, 2.8, and 2 days each! If we were to look

at only the runs that have contributed to pushing training further and plot training perplexity against wall clock time, we get the following:

Mon 15 Wed 17 Fri 19 Nov 21 Tue 23 Thu 25 Sat 27 Mon 29 December Fri 03 Dec 05 Tue 07 Thu 09 Sat 11 Mon 13

39 Fall 2023 11-667 CMU

The Importance of Scaling Law

Essential to determine what to do at large scale using observations at smaller scale

® DeepMind just released details last week on their 280B Gopher model (GPT-style) that was trained a year ago (for reference, OpenAl
released GPT-3 details on May 2020).
© What goes unmentioned in all of these large-scale efforts is the amount of compute needed to run all of the experiments that help
inform decisions about how/what to scale. This will be something we need account for in the future as well, if we want to continue
pushing the limits of these large-scale models. In other words, allocating just enough compute budget to train a large-scale model

won't be enough to guarantee a better model.

40 Fall 2023 11-667 CMU

Final Remarks from OPT

As of yesterday, at 12:46pm PST on January 6, our 175B model finally completed its training run on 300B tokens. This required ~4.30E+23
FLOPs of compute, or roughly ~33 days of continuous training on 1024 80GB A100s (assuming no hardware issues, no numerical instabilities,

etc.).

To frame this:

® The 175B GPT-3 model trained by OpenAl required 14.8 days of compute on 10,000 V100s, and consumed 3.14+23 FLOPs. The code to do

so is not open-sourced.

* This was not a benchmarking exercise. The model was trained to "completion" with a corpus of 180B tokens. We did not have time to
curate a larger dataset before training started, given a tight deadline to deliver by the end of H2 2021.

e Scaling to 1024 A100s to handle a real workload of this size is highly nontrivial. We will discuss infrastructure pain-points below.

* Ensuring training converges at this scale is also highly nontrivial without sufficient ablations at "medium" scale. Results obtained from
training at "small" scale (< ~13B params) also do not necessarily hold when "scaled-up". We will cover these learnings in a note to be

released in the upcoming weeks.

41 Fall 2023 11-667 CMU

Other Notable Literatures in Scaling Up

Different configurations of layer normalization: pre layernorm, post layernorm and their combination

e Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

e Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

* Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

* Liu et al. “Understanding the Difficulty of Training Transformers”. EMINLP 2020

42

Fall 2023 11-667 CMU

Quiz: What can we do to reduce communication
overhead if only slow network connection is
available in between GPUs?

Fall 2023 11-667 CMU

	Intro
	Slide 1: Announcement
	Slide 2: Scaling Up LLM Pretraining: Parallel Training
	Slide 3: Outline

	Parallel Training
	Slide 4: Parallel Training: Overview
	Slide 5: Parallel Training: Data Parallelism
	Slide 6: Parallel Training: Data Parallelism
	Slide 7: Parallel Training: Data Parallelism
	Slide 8: Parallel Training: Model Parallelism
	Slide 9: Parallel Training: Model Parallelism
	Slide 10: Parallel Training: Pipeline Parallelism
	Slide 11: Parallel Training: Pipeline Parallelism
	Slide 12: Parallel Training: Pipeline Parallelism
	Slide 13: Parallel Training: Pipeline Parallelism
	Slide 14: Outline
	Slide 15: Parallel Training: Tensor Parallelism
	Slide 16: Parallel Training: Tensor Parallelism
	Slide 17: Parallel Training: Tensor Parallelism
	Slide 18: Parallel Training: Tensor Parallelism
	Slide 19: Parallel Training: Combining Different Parallelism

	ZeRO
	Slide 20: Outline
	Slide 21: ZeRO: Redundancy in Data Parallelism
	Slide 22: ZeRO: Reduce Memory Redundancy
	Slide 23: ZeRO: Redundancy in Data Parallelism
	Slide 24: ZeRO: Redundancy in Data Parallelism
	Slide 25: ZeRO: Reduce Memory Redundancy
	Slide 26: ZeRO: Reduce Memory Redundancy
	Slide 27: ZeRO: Redundancy in Data Parallelism
	Slide 28: ZeRO: Reduce Memory Redundancy

	Bonus
	Slide 29: A peek into real large scale pretraining workflow
	Slide 30: Background
	Slide 31: Challenge #1: Many Research Work Don’t Scale
	Slide 32: Challenge #1: Many Research Work Don’t Scale
	Slide 33: Challenge #2: Hardware Failures
	Slide 34: Challenge #2: Hardware Failures
	Slide 35: Challenge #2: Hardware Failures
	Slide 36: Challenge #3: Optimization Stability
	Slide 37: Challenge #3: Optimization Stability
	Slide 38: Challenge #3: Optimization Stability
	Slide 39: Challenge #3: Optimization Stability
	Slide 40: The Importance of Scaling Law
	Slide 41: Final Remarks from OPT

	Add ons
	Slide 42: Other Notable Literatures in Scaling Up
	Slide 43: Quiz: What can we do to reduce communication overhead if only slow network connection is available in between GPUs?

