
Fall 2023 11-667 CMU1

Announcement
HW3 will be out today. Get started ASAP!

• There will be additional TA office hours hold by the creators of this homework: Amanda and Emmy

• It is due Nov 30th, two weeks from now, excluding Thanksgiving holiday

Final Project Presentation will be a Conference Poster like session at GHC 7107 Atrium

• More instructions on the course website

Fall 2023 11-667 CMU

Scaling Up LLM Pretraining: Parallel Training
Chenyan Xiong

11-667

Fall 2023 11-667 CMU3

Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Parallelism

• ZeRO Optimizer

Fall 2023 11-667 CMU4

Parallel Training: Overview
As scale grows, training with one GPU is not enough

• There are many ways to improve efficiency on single-GPU training
• Checkpointing: moving part of the operations to CPU memory

• Quantizing different part of the optimization to reduce GPU memory cost

• Eventually more FLOPs are needed

Different setups of parallel training:

• When model training can fit into single-GPU

→Data parallelism

• When model training cannot fit into single-GPU

→ Model parallelism: pipeline or tensor

Fall 2023 11-667 CMU5

Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer
Layer

Transformer
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

Fall 2023 11-667 CMU6

Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer
Layer

Transformer
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃)

All Gather

Global Gradients:

Fall 2023 11-667 CMU7

Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

GPU 1 GPU 2 GPU 3

Transformer
Layer

Transformer
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer
Layer

Transformer
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃) 𝑔(𝑥1:3, 𝜃)

All Gather

Global Gradients:

Communication:
• The full gradient tensor

between every pair of GPUs,
at each training batch.

• Not an issue between GPUs in
the same machine or
machines with infinity band

• Will need work around
without fast cross-GPU
connection

Fall 2023 11-667 CMU8

Parallel Training: Model Parallelism
LLM size grew quickly and passed the limit of single GPU memory

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ

Fall 2023 11-667 CMU9

Parallel Training: Model Parallelism
Two ways of splitting network parameters

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Tensor Parallelism

GPU 1 GPU 2

Split Tensors

Fall 2023 11-667 CMU10

Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Pipeline Parallelism

GPU 1

GPU 2

Split by Layers

Fall 2023 11-667 CMU11

Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Split batches for
more fine-
grained pipelines

Fall 2023 11-667 CMU12

Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby

devices in forward pass
• Partial gradients between

nearby devices in backward

Fall 2023 11-667 CMU13

Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby

devices in forward pass
• Partial gradients between

nearby devices in backward

Fall 2023 11-667 CMU14

Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Parallelism

• ZeRO Optimizer

Fall 2023 11-667 CMU15

Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”. arXiv 2019

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Fall 2023 11-667 CMU16

Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”. arXiv 2019

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Fall 2023 11-667 CMU17

Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”. arXiv 2019

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]

Fall 2023 11-667 CMU18

Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism”. arXiv 2019

Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
• All-gather of partial activations and gradients for each split tensor

Fall 2023 11-667 CMU19

Parallel Training: Combining Different Parallelism
Often data parallelism and model parallelism are used together.

• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”.
SC 2021.

Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]

Fall 2023 11-667 CMU20

Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Combination

• ZeRO Optimizer

Fall 2023 11-667 CMU21

ZeRO: Redundancy in Data Parallelism
Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ

Fall 2023 11-667 CMU22

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Fall 2023 11-667 CMU23

ZeRO: Redundancy in Data Parallelism
ZeRO Stage 1 and 2: reducing memory redundancy

Observation:
• In data parallelism, each

device only has access to local
gradient

• All gather operation required
on all gradients anyway

Fall 2023 11-667 CMU24

ZeRO: Redundancy in Data Parallelism
An example way to implement ZeRO Stage 1

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

Transformer
Layer

Transformer
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer
Layer

Transformer
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

All Gather

Sharded 1st Momentum 𝒎(𝒙, 𝜽𝟏) 𝒎(𝒙, 𝜽𝟐)

GPU 1 GPU 2 GPU 3

𝒎(𝒙, 𝜽𝟑)

𝒗(𝒙, 𝜽𝟏) 𝒗(𝒙, 𝜽𝟐) 𝒗(𝒙, 𝜽𝟑)Sharded 2nd Momentum

Adam Parameter Updates

Fall 2023 11-667 CMU25

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Communication

Free ride with data parallelism

Free ride with data parallelism

Fall 2023 11-667 CMU26

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

Fall 2023 11-667 CMU27

ZeRO: Redundancy in Data Parallelism
Sharding parameters and passing them when needed

Transformer
Layer

Transformer
Layer

𝑓(𝑥1, 𝜃)

𝑥1 𝑔(𝑥1, 𝜃)

Forward Pass

Backward Pass

Transformer
Layer

Transformer
Layer

𝑓(𝑥2, 𝜃)

𝑥2 𝑔(𝑥2, 𝜃)

Transformer
Layer

Transformer
Layer

𝑓(𝑥3, 𝜃)

𝑥3 𝑔(𝑥3, 𝜃)

All Gather

Sharded 1st Momentum 𝒎(𝒙, 𝜽𝟏) 𝒎(𝒙, 𝜽𝟐)

GPU 1 GPU 2 GPU 3

𝒎(𝒙, 𝜽𝟑)

𝒗(𝒙, 𝜽𝟏) 𝒗(𝒙, 𝜽𝟐) 𝒗(𝒙, 𝜽𝟑)Sharded 2nd Momentum

Adam Parameter Updates

Fall 2023 11-667 CMU28

ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings

Cons: Open-source support not as good

Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters

Fall 2023 11-667 CMU

A peek into real large scale pretraining workflow
Lots of first hand information released through the FAIR OPT pretraining run:

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles

Fall 2023 11-667 CMU30

Background
A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3

• 1024 A100 80GBs to use. Yes!

Constraints:

• Task given at around Beginning of Nov 2021

• Goal is to pretrain a 175 Billion scale model by end of the year

• Which at minimum require 33 days on 1K A100s

• With no previous experience on large scale pretraining at all

Fall 2023 11-667 CMU31

Challenge #1: Many Research Work Don’t Scale
Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

Fall 2023 11-667 CMU32

Challenge #1: Many Research Work Don’t Scale
Reality: Short timeline, Big money on the line, Nothing too fancy

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md

Fall 2023 11-667 CMU33

Challenge #2: Hardware Failures
GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md

Fall 2023 11-667 CMU34

Challenge #2: Hardware Failures
Solution? Hopefully better tooling in the future, but right now:

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md

Fall 2023 11-667 CMU35

Challenge #2: Hardware Failures
Forming an on-call group to watch OPT training

Alchemy Furnace
of the LLM Era

We Watching
LLM Training

Fall 2023 11-667 CMU36

Challenge #3: Optimization Stability
Lots of optimization stability issues:

• Loss explodes, gradients overflows/underflows, training stagers…

Fall 2023 11-667 CMU37

Challenge #3: Optimization Stability

Fall 2023 11-667 CMU38

Challenge #3: Optimization Stability

Fall 2023 11-667 CMU39

Challenge #3: Optimization Stability

Fall 2023 11-667 CMU40

The Importance of Scaling Law
Essential to determine what to do at large scale using observations at smaller scale

Fall 2023 11-667 CMU41

Final Remarks from OPT

Fall 2023 11-667 CMU42

Other Notable Literatures in Scaling Up
Different configurations of layer normalization: pre layernorm, post layernorm and their combination

• Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

• Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

• Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

• Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020

Fall 2023 11-667 CMU

Quiz: What can we do to reduce communication
overhead if only slow network connection is
available in between GPUs?

	Intro
	Slide 1: Announcement
	Slide 2: Scaling Up LLM Pretraining: Parallel Training
	Slide 3: Outline

	Parallel Training
	Slide 4: Parallel Training: Overview
	Slide 5: Parallel Training: Data Parallelism
	Slide 6: Parallel Training: Data Parallelism
	Slide 7: Parallel Training: Data Parallelism
	Slide 8: Parallel Training: Model Parallelism
	Slide 9: Parallel Training: Model Parallelism
	Slide 10: Parallel Training: Pipeline Parallelism
	Slide 11: Parallel Training: Pipeline Parallelism
	Slide 12: Parallel Training: Pipeline Parallelism
	Slide 13: Parallel Training: Pipeline Parallelism
	Slide 14: Outline
	Slide 15: Parallel Training: Tensor Parallelism
	Slide 16: Parallel Training: Tensor Parallelism
	Slide 17: Parallel Training: Tensor Parallelism
	Slide 18: Parallel Training: Tensor Parallelism
	Slide 19: Parallel Training: Combining Different Parallelism

	ZeRO
	Slide 20: Outline
	Slide 21: ZeRO: Redundancy in Data Parallelism
	Slide 22: ZeRO: Reduce Memory Redundancy
	Slide 23: ZeRO: Redundancy in Data Parallelism
	Slide 24: ZeRO: Redundancy in Data Parallelism
	Slide 25: ZeRO: Reduce Memory Redundancy
	Slide 26: ZeRO: Reduce Memory Redundancy
	Slide 27: ZeRO: Redundancy in Data Parallelism
	Slide 28: ZeRO: Reduce Memory Redundancy

	Bonus
	Slide 29: A peek into real large scale pretraining workflow
	Slide 30: Background
	Slide 31: Challenge #1: Many Research Work Don’t Scale
	Slide 32: Challenge #1: Many Research Work Don’t Scale
	Slide 33: Challenge #2: Hardware Failures
	Slide 34: Challenge #2: Hardware Failures
	Slide 35: Challenge #2: Hardware Failures
	Slide 36: Challenge #3: Optimization Stability
	Slide 37: Challenge #3: Optimization Stability
	Slide 38: Challenge #3: Optimization Stability
	Slide 39: Challenge #3: Optimization Stability
	Slide 40: The Importance of Scaling Law
	Slide 41: Final Remarks from OPT

	Add ons
	Slide 42: Other Notable Literatures in Scaling Up
	Slide 43: Quiz: What can we do to reduce communication overhead if only slow network connection is available in between GPUs?

