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Announcement
HW3 will be out today. Get started ASAP!

• There will be additional TA office hours hold by the creators of this homework: Amanda and Emmy

• It is due Nov 30th, two weeks from now, excluding Thanksgiving holiday

Final Project Presentation will be a Conference Poster like session at GHC 7107 Atrium

• More instructions on the course website
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Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Parallelism

• ZeRO Optimizer
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Parallel Training: Overview
As scale grows, training with one GPU is not enough

• There are many ways to improve efficiency on single-GPU training
• Checkpointing: moving part of the operations to CPU memory

• Quantizing different part of the optimization to reduce GPU memory cost

• Eventually more FLOPs are needed

Different setups of parallel training:

• When model training can fit into single-GPU

→Data parallelism

• When model training cannot fit into single-GPU

→ Model parallelism: pipeline or tensor
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Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

Parallel Training: Data Parallelism
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Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism
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Global Gradients:



Fall 2023 11-667 CMU7

Split training data batch into different GPUs

• Each GPU maintains its own copy of model and optimizer

• Each GPU gets a different local data batch, calculates its gradients

• Gather local gradients together to each GPU for global updates

Parallel Training: Data Parallelism
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Global Gradients:

Communication:
• The full gradient tensor 

between every pair of GPUs, 
at each training batch.

• Not an issue between GPUs in 
the same machine or 
machines with infinity band

• Will need work around 
without fast cross-GPU 
connection
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Parallel Training: Model Parallelism
LLM size grew quickly and passed the limit of single GPU memory

Solution: Split network parameters (thus their gradients and corresponding optimizer states) to different GPUs

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ
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Parallel Training: Model Parallelism
Two ways of splitting network parameters
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Split batches for 
more fine-
grained pipelines
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby 

devices in forward pass
• Partial gradients between 

nearby devices in backward
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Parallel Training: Pipeline Parallelism
Split network by layers, aligning devices by layer order to a pipeline, and pass data through devices  [7]

Pros: Conceptually simple and not coupled with network architectures. All networks have multiple layers.

Cons: Waste of compute in the Bubble. Bubble gets bigger with more devices and bigger batches.

[7] Huang et al. “GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism”.
NeurIPS 2019

Figure 7: Illustration of Pipeline Parallelism [7]

Communication:
• Activations between nearby 

devices in forward pass
• Partial gradients between 

nearby devices in backward
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Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Parallelism

• ZeRO Optimizer
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Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

Pros: No bubble

Cons: Different blocks are better split differently, lots of customizations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 8: Tensor Parallelism of MLP blocks and Self-attention Blocks [8]
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Parallel Training: Tensor Parallelism
Split the parameter tensors of network layers into different devices for parallel matrix operations

[8] Shoeybi et al. “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model 
Parallelism”. arXiv 2019  

Figure 9: Communication of Tensor Papalism for a Transformer Layer [8]

Communication:
• All-gather of partial activations and gradients for each split tensor
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Parallel Training: Combining Different Parallelism
Often data parallelism and model parallelism are used together.

• No need not to use data parallelism

Pipeline Parallelism and Tensor Parallelism can also be used together.

[9] Narayanan et al. “Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM”. 
SC 2021.

Figure 10: Combination of Tensor Parallelism and Pipeline Parallelism [9]
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Outline
Parallel Training

• Data Parallelism

• Pipeline Parallelism

• Tensor Parallelism

• Combination of Combination

• ZeRO Optimizer
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ZeRO: Redundancy in Data Parallelism
Majority of GPU memory consumption is on the optimization side: gradients and optimizer momentums

Cost of 10B Model Function to parameter count (𝚿)
Parameter Bytes 20GB 2Ψ
Gradient Bytes 20GB 2Ψ
Optimizer State: 1st Order Momentum 20GB 2Ψ
Optimizer State: 2nd Order Momentum 20GB 2Ψ
Total Per Model Instance 80GB 8Ψ

Table 1: Memory Consumption of Training Solely with BF16 (Ideal case) of a model sized Ψ
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients
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ZeRO: Redundancy in Data Parallelism
ZeRO Stage 1 and 2: reducing memory redundancy

Observation:
• In data parallelism, each 

device only has access to local 
gradient

• All gather operation required 
on all gradients anyway
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ZeRO: Redundancy in Data Parallelism
An example way to implement ZeRO Stage 1
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Communication

Free ride with data parallelism

Free ride with data parallelism
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism
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ZeRO: Redundancy in Data Parallelism
Sharding parameters and passing them when needed
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ZeRO: Reduce Memory Redundancy
ZeRO Optimizer: Split GPU memory consumption into multiple GPUs during data parallelism

Pros: Stage 1 and 2 free ride with data parallelism with huge GPU memory savings

Cons: Open-source support not as good

Notes: Stage 3 is different with tensor parallelism. It passes parameters when needed but still performs 
computations of the full layer/network in one GPU. It is data parallelism with GPU memory sharding

[10] Rajbhandari et al. “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”. arXiv 
2019.

Figure 11: ZeRO Optimizer Stages [10]

Stage 1: Split Optimizer States

Stage 2: +Split Gradients

Stage 3: +Split Parameters

Communication

Free ride with data parallelism

Free ride with data parallelism

All-gather parameters 
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A peek into real large scale pretraining workflow
Lots of first hand information released through the FAIR OPT pretraining run:

https://github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles
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Background
A group of researchers and engineers are tasked with the goal of pretraining a large-scale model like GPT-3

• 1024 A100 80GBs to use. Yes!

Constraints:

• Task given at around Beginning of Nov 2021

• Goal is to pretrain a 175 Billion scale model by end of the year

• Which at minimum require 33 days on 1K A100s

• With no previous experience on large scale pretraining at all
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Challenge #1: Many Research Work Don’t Scale
Hope: We started with high hopes that all our research improvements at Small will give us a better GPT

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md
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Challenge #1: Many Research Work Don’t Scale
Reality: Short timeline, Big money on the line, Nothing too fancy

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/10_percent_update.md
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Challenge #2: Hardware Failures
GPU machines are not very reliable. With 1024 A100s, it is guaranteed to have bad nodes.

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md
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Challenge #2: Hardware Failures
Solution? Hopefully better tooling in the future, but right now:

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/27_percent_update.md
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Challenge #2: Hardware Failures
Forming an on-call group to watch OPT training

Alchemy Furnace 
of the LLM Era

We Watching 
LLM Training
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Challenge #3: Optimization Stability
Lots of optimization stability issues:

• Loss explodes, gradients overflows/underflows, training stagers…
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Challenge #3: Optimization Stability
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Challenge #3: Optimization Stability
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Challenge #3: Optimization Stability
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The Importance of Scaling Law
Essential to determine what to do at large scale using observations at smaller scale
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Final Remarks from OPT
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Other Notable Literatures in Scaling Up
Different configurations of layer normalization: pre layernorm, post layernorm and their combination

• Xiong et al. “On Layer Normalization in the Transformer Architecture”. ICML 2020

• Zhang and Sennrich. “Root Mean Square Layer Normalization”. NeurIPS 2019

Position embeddings for longer contexts and expressiveness

• Su et al. “Roformer: Enhanced transformer with rotary position embedding.” arXiv 2021

Stability improvement from adaptive initialization

• Liu et al. “Understanding the Difficulty of Training Transformers”. EMNLP 2020
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Quiz: What can we do to reduce communication 
overhead if only slow network connection is 
available in between GPUs?
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