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1. What is a Language Model?



What is a Language Model?
A language model is any model that outputs a probability distribution over the next token* in a sequence 
given the previous tokens in the sequence, that is: 𝑃 𝑦! 𝑦":!$" .

Historically, language models were statistical n-gram models. Instead of taking into account the full history 
of the sequence, they approximated this history by just looking back a few words. 

Example: Suppose we are building a statistical language model using a text corpus, C. We note that the 
word “apple” follows the words “eat the” 2% of the times that “eat the” occurs in C. This means we’d set

P(“apple” | “eat the”) = 0.02.

Since “eat the apple” is three words, we’d call this a 3-gram model. 

*For now, let’s assume token = word. We’ll come back this.



Language models are not
inherently generative.



Computing Sequence Likelihood
Language models output the likelihood of the next word: 𝑃 𝑦! 𝑦":!$" .

Often we will talk about the likelihood of an entire sequence 𝑃 𝑌 = 𝑃 𝑦", 𝑦", … , 𝑦% .



Computing Sequence Likelihood
Sequence likelihood can be computed from an LM using the chain rule:

P([“I”, “eat”, “the”, “apple”]) = 

P(“apple” | [“I”, “eat”, “the”]) * P(“the” | [“I”, “eat”]) * P(“eat” | [“I”]) * P(“I”])

In math:
𝑃 𝑌 = 𝑃 𝑦", 𝑦&, … , 𝑦% = 𝑃 𝑦% 𝑦":%$" × 𝑃 𝑦%$" 𝑦":%$& ×⋯×𝑃 𝑦" start of sequence



Neural Language Models: Conditioned v. Unconditioned

Unconditioned: 𝑃(𝑌)
At each step the LM predicts:
𝑃(𝑦! |𝑦":!$")

Examples:
• GPT-2 / GPT-3
• LLaMA

Conditioned: 𝑃(𝑌|𝑋)
At each step the LM predicts: 
𝑃(𝑦! |𝑦":!$", 𝑥":%)

Examples
• T5
• Most machine translation models

Sometimes called sequence-to-sequence or 
seq2seq models.

Neural language models can either be designed to just predict the next word given the 
previous ones, or they can be designed to predict the next word given the previous ones and 
some additional conditioning sequence.



2. Building Blocks of Language Models



Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder. Conditioned ones 
have an encoder and a decoder.



Neural Language Models: Conditioned v. Unconditioned

Unconditioned neural language models only have a decoder. Conditioned ones 
have an encoder and a decoder.

There are also encoder-
only models, but they 

aren’t traditional 
language models.



Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into 
one for an encoder-decoder architecture, and vice-versa.

TASK: Continue the sequence.

Decoder-only version:

P(Y=“Once upon a time there lived a dreadful ogre.”)

Encoder-decoder version:

P(Y=“lived a dreadful ogre.” | X=“Once upon a time there”)



Neural Language Models: Conditioned v. Unconditioned

Theoretically, any task designed for a decoder-only architecture can be turned into 
one for an encoder-decoder architecture, and vice-versa.

TASK: Translate from English to French.

Decoder-only version:

P(Y=“English: The hippo ate my homework. French: L'hippopotame
a mangé mes devoirs.”)

Encoder-decoder version:

P(Y=“L'hippopotame a mangé mes devoirs.” | X=“The hippo ate my 
homework.”)



Summary of Terms You Should Know
Input sequence: 𝑥", … , 𝑥%
Target sequence: 𝑦", … , 𝑦%



Summary of Terms You Should Know
Input sequence: 𝑥", … , 𝑥%
Target sequence: 𝑦", … , 𝑦%

𝑃:(𝑌; = 𝑖)

Represents the 
parameters of the 
neural network.

Or sometimes…



Summary of Terms You Should Know
Input sequence: 𝑥", … , 𝑥%
Target sequence: 𝑦", … , 𝑦%

𝑃(𝑌; = 𝑖|𝑦<, … 𝑦;=<, 𝑥<, … , 𝑥>; Θ)

𝑃:(𝑌; = 𝑖)
Or sometimes…

Or sometimes…



Summary of Terms
Input sequence: 𝑥", … , 𝑥%
Target sequence: 𝑦", … , 𝑦%

What are 𝑥! and 𝑦!?



Tokenizing Text

Tokenization is the task of taking text (or code or music) and turning it 
into a sequence of discrete items, called tokens.



Tokenizing Text
A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 
't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o', 'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5



Tokenizing Text
A tokenizer takes text and turns it into a sequence of discrete tokens.

A vocabulary is the list of all available tokens.

Let’s tokenize: “A hippopotamus ate my homework.”

Vocab Type Example Ex. length

character-level ['A', ' ', 'h', 'i', 'p', 'p', 'o', 'p', 'o', 't', 'a', 'm', 'u', 's', ' ', 'a', 
't', 'e', ' ', 'm', 'y', ' ', 'h', 'o', 'm', 'e', 'w', 'o', 'r', 'k', '.’]

31

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', 'homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

What are the pros and cons of different tokenizers?

More on this next lecture!



Turning Discrete Tokens into Continuous Vectors
Neural networks cannot operate on discrete tokens.

Instead, we build an embedding matrix which associates each token in the vocabulary 
with a vector embedding.



Encoder Inputs and Outputs
The encoder takes as input the vector 
representations of each token in the input 
sequence.



Encoder Inputs and Outputs
The encoder outputs a sequence of 
embeddings called hidden states.

𝐡"enc 𝐡#enc



Decoder Inputs and Outputs
The decoder takes as input the hidden states from 
the encoder as well as the embeddings for the 
tokens seen so far in the target sequence.

It outputs an embedding ?𝐲!.

𝐡"enc 𝐡#enc

(𝐲$



Decoder Inputs and Outputs
Ideally, ?𝐲! would be as close as possible to the 
embedding of the true next token.

(𝐲$



Decoder Inputs and Outputs
We multiply the predicted embedding ?𝐲! by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 (𝐲$

(𝐲$



Decoder Inputs and Outputs
We multiply the predicted embedding ?𝐲! by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

embedding
matrix 𝐄 (𝐲$

(𝐲$

Score for “dog” Score for “apple”



Decoder Inputs and Outputs
We multiply the predicted embedding ?𝐲! by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌! = 𝑖|𝐱":%, 𝐲":!$") =
exp(𝐄?𝐲![𝑖])
∑'exp(𝐄?𝐲![𝑗])



Decoder Inputs and Outputs
We multiply the predicted embedding ?𝐲! by our vocabulary embedding matrix to get a 
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

𝑃(𝑌! = 𝑖|𝐱":%, 𝐲":!$") =
exp(𝐄?𝐲![𝑖])
∑'exp(𝐄?𝐲![𝑗])

𝑃 𝑌( = “𝑐𝑎𝑡” “𝑡ℎ𝑒 𝑑𝑜𝑔 𝑐ℎ𝑎𝑠𝑒 𝑡ℎ𝑒” =
exp score in logits for “𝑐𝑎𝑡”

normalization term
= 0.321

Example: Suppose we are trying to predict the 5th word in the sequence “the dog chased 
the”. We want to know the probability the next word is “cat”. 



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

Loss Function: Negative Log Likelihood



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

The probability the language model assigns to the true 𝑡th
word in the target sequence.

Loss Function: Negative Log Likelihood



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

The index of the true 𝑡th
word in the target 
sequence.

Loss Function: Negative Log Likelihood



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

= − ∑
;^<

>
log

exp(𝐄6𝐲;[𝑖∗])
∑`exp(𝐄6𝐲;[𝑗])

𝑃(𝑌$ = 𝑖|𝐱":# , 𝐲":$&") =
exp(𝐄(𝐲$[𝑖])
∑'exp(𝐄(𝐲$[𝑗])

Recall:

Loss Function: Negative Log Likelihood



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

Loss Function: Negative Log Likelihood

𝑃(𝑌$ = 𝑖|𝐱":# , 𝐲":$&") =
exp(𝐄(𝐲$[𝑖])
∑'exp(𝐄(𝐲$[𝑗])
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embedding
matrix 𝐄

= − ∑
;^<

>
log

exp(𝐄6𝐲;[𝑖∗])
∑`exp(𝐄6𝐲;[𝑗])

(𝐲$



ℒ = − ∑
!"#

$
log𝑃(𝑌! = 𝑖∗|𝐱#:$, 𝐲#:!'#)

embedding
matrix 𝐄

Score for word at index 𝑖∗

= − ∑
;^<

>
log

exp(𝐄6𝐲;[𝑖∗])
∑`exp(𝐄6𝐲;[𝑗])

Loss Function: Negative Log Likelihood

𝑃(𝑌$ = 𝑖|𝐱":# , 𝐲":$&") =
exp(𝐄(𝐲$[𝑖])
∑'exp(𝐄(𝐲$[𝑗])

Recall:

(𝐲$
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log
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;^<

>
𝐄6𝐲;[𝑖∗]

Loss Function: Negative Log Likelihood

𝑃(𝑌$ = 𝑖|𝐱":# , 𝐲":$&") =
exp(𝐄(𝐲$[𝑖])
∑'exp(𝐄(𝐲$[𝑗])

Recall:



Now how do we do generation?
To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌! = 𝑖|𝑦":!$"). 
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Now how do we do generation?
To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌! = 𝑖|𝑦":!$"). 

decoding
method

decoding
method



Now how do we do generation?
To do generation, we need a sampling algorithm that selects a word given the predicted 
probability distribution 𝑃(𝑌! = 𝑖|𝑦":!$"). 

decoding
strategy

decoding
strategy



Questions so far?

44



3. Decoding Strategies



How can we sample from  
𝑃(𝑌! = 𝑖|𝐲":!$")?



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$") TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃(𝑌' = banana|𝑌" = apple, 𝑌( = apple) = 0.65
𝑃(𝑌' = orange|𝑌" = apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌" = apple, 𝑌( = apple) = 0.1

If we sample with argmax, what word would get 
selected?

(a) apple   (b) banana    (c) orange    (d) plum



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌" = apple, 𝑌( = apple) = 0.2
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How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

With random sampling, what is the probability 
we’ll pick “banana”?

(a) 0%   (b) 5%    (c) 65%   (d) 100%

Option 1: Take argmax
)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.

TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and want 
to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

With random sampling, what is the probability 
we’ll pick “banana”?

(a) 0%   (b) 5%    (c) 65%   (d) 100%



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned 
very low probabilities but cumulatively, 
choosing any one of these low-probability 
tokens is pretty likely. In the example on the 
right, there is over a 29% chance of 
choosing a token v with P(Y* = v) ≤ 0.01.



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned 
very low probabilities but cumulatively, 
choosing any one of these low-probability 
tokens is pretty likely. In the example on the 
right, there is over a 29% chance of 
choosing a token v with P(Y* = v) ≤ 0.01.

floor bed monkeyWeb



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.

Problem with Random Sampling

Most tokens in the vocabulary get assigned 
very low probabilities but cumulatively, 
choosing any one of these low-probability 
tokens is pretty likely. In the example on the 
right, there is over a 29% chance of 
choosing a token v with P(Y* = v) ≤ 0.01.

floor bed

Solution: modify the distribution returned by the 
model to make the tokens In the tail less likely.

monkeyWeb



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.

𝑃(𝑌! = 𝑖) =
exp(𝑧(/𝑇)
∑)exp(𝑧)/𝑇)



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.

TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = ∞?

(a) 0%   (b) 25%   (c) 65%   (d) 100%

𝑃(𝑌! = 𝑖) =
exp(𝑧)/𝑇)
∑'exp(𝑧'/𝑇)



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.

TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = ∞?

(a) 0%   (b) 25%   (c) 65%   (d) 100%



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.

TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = 0.00001?

(a) 0%   (b) 25%   (c) 65%   (d) 100%

𝑃(𝑌! = 𝑖) =
exp(𝑧)/𝑇)
∑'exp(𝑧'/𝑇)



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.

TYPE YOUR ANSWER INTO CHAT
Suppose our vocab consists of 4 words:
𝒱 = {apple,banana,orange,plum}

We have primed our LM with “apple apple” and 
want to generate the next word in the sequence.

Our language model predicts:
𝑃 𝑌' = apple 𝑌" = apple, 𝑌( = apple) = 0.05
𝑃 𝑌' = banana 𝑌" = apple, 𝑌( = apple) = 0.65
𝑃 𝑌' = orange 𝑌"= apple, 𝑌( = apple) = 0.2
𝑃 𝑌' = plum 𝑌"= apple, 𝑌( = apple) = 0.1

What would the probability of selecting 
“banana” be if we use temperature sampling 
and set T = 0.00001?

(a) 0%   (b) 25%   (c) 65%   (d) 100%

𝑃(𝑌! = 𝑖) =
exp(𝑧)/𝑇)
∑'exp(𝑧'/𝑇)

As T approaches 0, random sampling with 
temperature looks more and more like argmax.



How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.
Option 4: Introduce sparsity by 
reassigning all probability mass to the 
𝑘 most likely tokens. This is referred to 
as top-𝑘 sampling.

Usually 𝒌 between 10 and 50 is selected.
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How can we sample from  𝑃 𝑌! = 𝑖 𝐲":!$" ?
Option 1: Take argmax

)
𝑃(𝑌! = 𝑖|𝐲":!$")

Option 2: Randomly sample from the 
distribution returned by the model.
Option 3: Randomly sample with 
temperature.
Option 4: Introduce sparsity by 
reassigning all probability mass to the 
𝑘 most likely tokens. This is referred to 
as top-𝑘 sampling.

Option 5: Introduce sparsity by reassigning 
all probability mass to the k* tokens which 
form 𝑝% of the probability mass.
At each step, k* is chosen such that the total 
probability of the k* most likely tokens is no 
greater than the desired probability p.This is 
referred to as nucleus sampling.
Option 6: Use some version of beam search.



Beam Search
Assumption: the best possible sequence to generate is the one with highest overall 
sequence likelihood (according to themodel).

It is computationally intractable to search all possible sequences for the most likely one, so 
instead we use beam search.

Beam search is a search algorithm that approximates finding the overall most likely 
sequence to generate.



Problems with Beam Search
It turns out for open-ended tasks like 
dialog or story generation, optimizing 
for the sequence with the highest 
possible 𝑃(𝑥", … , 𝑥%) isn’t actually a 
great idea.

• Beam search generates text that 
is much for likely than human-
written text



Problems with Beam Search
It turns out for open-ended tasks like 
dialog or story generation, optimizing 
for the sequence with the highest 
possible 𝑃(𝑥", … , 𝑥%) isn’t actually a 
great idea.

• Beam search generates text that 
is much for likely than human-
written text

• When sequence likelihood is too 
high, humans rate text as bad.



When to Use Beam Search
• Your task is very narrow, i.e., there is only ~1 “correct” sequence your model should 

generate.

o Example task: question answering, machine translation

• You are using a language model that isn’t very good, and you don’t trust its predicted 
probabilities.





Other generation parameters you’ll encounter
• Frequency penalty: Reduce the likelihood the model generates a token based on 

how often it has occurred already.

• The more likely a token has occurred, the less likely it will be to occur in the future.

• Presence penalty: Reduce the likelihood the model generates a token based on 
whether or not it has occurred already.

• If a token occurs any number of times, it will be less likely to occur in the future.

• Stopping criteria

• Stop after generating k tokens.

• Stop when a certain token is generated (for example, a period or a newline).



Questions so far?

76



4. Language Model Architectures
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What are these encoder/decoder things?
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Circa 2013: Recurrent neural networks



Recurrent Neural Networks

1. The decoder inputs a sequence of 
embeddings.
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Recurrent Neural Networks

1. The decoder inputs a sequence of 
embeddings.

2. The RNN inputs the previous hidden 
state and the embedding for the token 
being processed.

3. The RNN outputs a predicted 
embedding, and an updated hidden 
state.

4. The first hidden state is typically 
initialized with the zero vector.



Computing the next hidden state:

For the first layer:

𝐡!" = RNN(𝐖#$!𝐲𝐭 + 𝐖$!$!𝐡!&"" + 𝐛$" )

For all subsequent layers:

𝐡!' = RNN(𝐖#$"𝐲𝐭 + 𝐖$"#!$"𝐡!
'&" + 𝐖$"$"𝐡!&"

' + 𝐛$' )

Predicting an embedding for the next token in 
the sequence:

?𝐞! = 𝐛( + ∑
')"

*
𝐖$"(𝐡!

'

Each of the 𝐛 and 𝐖 are learned bias and 
weight matrices.

Recurrent Neural Networks



What did the generated text look like?
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How did RNN-based language models connect the encoder with 
the decoder?

Simplest approach: Use the final hidden 
state from the encoder to initialize the first 
hidden state of the decoder.
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When predicting the 
next English word, how 
much weight should the 
model put on each 
French word in the 
source sequence?

[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]

Better approach: an attention mechanism.

How did RNN-based language models connect the encoder with 
the decoder?



[The, hippopotamus, ...

[L’, hippopotame, a, mangé, mes, devoirs]Tr
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When predicting the 
next English word, how 
much weight should the 
model put on each 
French word in the 
source sequence?

Better approach: an attention mechanism.

How did RNN-based language models connect the encoder with 
the decoder?

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation 
by jointly learning to align and translate." (2014).



Attention Mechanism
At each step 𝑡 in the decoder, a context vector is computed which contains all the 
information from the encoder that is relevant to the decoder making a prediction at 
this position.

The context vector is a linear sum of the encoder hidden states, i.e., 𝒄! = 𝐇enc𝜶! .

The decoder’s predicted embedding for position 𝑡 is a function of the context vector 
and the decoder’s hidden state for this position.

?𝐞! = 𝑓+(, 𝐡!,-.; 𝛼",!𝐡"-0. + 𝛼1,!𝐡1-0. + ⋯𝛼2,!𝐡2-0.)



Computing the Attention Weights
The 𝛼#,3 are scores that indicate how important the encoder hidden state at position 𝑖
is to the model’s prediction at position 𝑗. They are typically normalized to sum to 1.

𝛼#,3 =
exp 𝑒#,3

∑4)"2 exp 𝑒#,4

𝑒#,3 = score(𝐡#-0. , 𝐡3&",-.)

Softmax function



Computing the Attention Weights
The 𝛼#,3 are scores that indicate how important the encoder hidden state at position 𝑖
is to the model’s prediction at position 𝑗. They are typically normalized to sum to 1.

𝛼#,3 =
exp 𝑒#,3

∑4)"2 exp 𝑒#,4

𝑒#,3 = score(𝐡#-0. , 𝐡3&",-.)

In dot-product attention, we use a very simple scoring function: score 𝐪, 𝐤 = 𝐪 ⋅ 𝐤

Softmax function
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“At the core of an attention-based approach is the 
ability to compare an item of interest to a collection 
of other items in a way that reveals their relevance 

in the current context.”
-Jurafsky and Martin, Chapter 10
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Circa 2017: Transformers

Encoder-decoder attention:

[L’, 

[L’, 

Self-attention:
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Why drop the recurrence and only use attention?
• Recurrent neural networks are slow to train. Computation cannot be parallelized.

• The computation at position t is dependent on first doing the computation at 
position t-1.

• Recurrent neural networks do poorly with long contexts.

• If two tokens are K positions apart, there are K opportunities for knowledge of 
the first token to be erased from the hidden state before a prediction is made at 
the position of the second token.

• Transformers solve both these problems.



Components of a Generic Attention Mechanism
• A sequence of <key, value> embeddings pairs

• The values are always the hidden states from a previous layer of the neural 
network. The attention mechanism outputs a weighted sum of these.

• For encoder-decoder attention, the values are the final hidden states of the 
encoder (as we so in the previous slide) and the keys are the hidden states from 
the target sequence.

• A sequence of query embeddings

• The query is the current focus of the attention.
• We choose weights for each of the values by computing a score between the 

current query and each of the keys.

attention output at position 𝑗 = U
#)"

2

score 𝐪3 , 𝐤 # ⋅ 𝐯#

score 𝐪3 , 𝐤 # =
𝐪3 ⋅ 𝐤 #
𝑑4



Components of a Generic Attention Mechanism
Since the attention computations at each position j are completely independent, we can 
actually parallelize all these computations and think in terms of matrix multiplications.

For example, instead of thinking of a sequence of embedding vectors 𝐱" , ⋯ , 𝐱2 we can think 
of a matrix X ∈ ℝ2×6$ .

This gives us the attention equation which appear in the “Attention is All You Need” paper.

attention 𝐐, 𝐊, 𝐕 = softmax
𝐐𝐊7

𝑑4
𝐕



Transformers: “Attention is All You Need”



Encoder

Transformers: “Attention is All You Need”



Decoder

Transformers: “Attention is All You Need”



embedding
matrix 𝐄

𝑃(𝑌! = 𝑖|𝐱":$ , 𝐲":!%") =
exp(𝐄/𝐲![𝑖])
∑&exp(𝐄/𝐲![𝑗])

(𝐲!

Transformers: “Attention is All You Need”



The input into the encoder looks like:

+
Position Embeddings Token Embeddings

Transformers: “Attention is All You Need”



Transformers: “Attention is All You Need”

Encoder-decoder 
attention



Transformers: “Attention is All You Need”

Self-attention



Transformers: “Attention is All You Need”

Masked
Self-attention



Transformers: “Attention is All You Need”

Multi-head

Each attention layer consists 
of multiple attention heads.



Quiz Question

In a sentence or two, explain why the Transformer architecture 
tends to work better than recurrent approaches.
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If you are enrolled in the class, log into 
Canvas and check the “Quizzes” tab.

If you are on the waitlist, complete the 
quiz at cmu-llms.org/quiz


