Carnegie |
Mellmig Language Model Basics

University

11-667: LARGE LANGUAGE MODELS:
METHODS AND APPLICATIONS

Agenda

1. Whatis a Language Model?

2. Building Blocks of Language Models
3. Decoding Strategies

4. Language Model Architectures

1. What is a Language Model?

What is a Language Model?

A language model is any model that outputs a probability distribution over the next token™ in a sequence
given the previous tokens in the sequence, that is: P(y¢|y1.t—1)-

Historically, language models were statistical n-gram models. Instead of taking into account the full history
of the sequence, they approximated this history by just looking back a few words.

Example: Suppose we are building a statistical language model using a text corpus, C. We note that the
word “apple” follows the words “eat the” 2% of the times that “eat the” occurs in C. This means we'd set

P(“apple” | “eat the”) = 0.02.

Since “eat the apple” is three words, we'd call this a 3-gram model.

*For now, let's assume token = word. We'll come back this.

Language models are not

inherently generative.

Computing Sequence Likelihood

Language models output the likelihood of the next word: P(y¢|y1.t—1)-

Often we will talk about the likelihood of an entire sequence P(Y) = P(y1, V1,) YT)-

Computing Sequence Likelihood

Sequence likelihood can be computed from an LM using the chain rule:

P([“I”, “eat”’ “.the”, “apple”]) =

P(“apple” | [“I”’ “eat”’ “.the”]) %k P(“the” | [“I”, “eat”]) k P(“eat” | [“I”]) k P(“I”])

In math:
P(Y)=PWy.y2 Y1) = Prlyrr-1)X P(yr-1ly1.7-2) X ---XP(y;|start of sequence)

Neural Language Models: Conditioned v. Unconditionead

Neural language models can either be designed to just predict the next word given the
previous ones, or they can be designed to predict the next word given the previous ones and
some additional conditioning sequence.

Unconditioned: P(Y) Conditioned: P(Y | X)

At each step the LM predicts: AL each step the LM predicts:
P(ye |yv1:6-1) P(ye Y11, X1.1)

Examples: ExaTrT;ples

« GPT-2/GPT-3

« Most machine translation models
e LLaMA

Sometimes called sequence-to-sequence or
seqgZseq models.

2. Building Blocks of Language Models

Neural Language Models: Conditioned v. Unconditionead

Unconditioned neural language models only have a decoder. Conditioned ones
have an encoder and a decoder.

Unconditioned Language Model

Vi, ... ayt—IP(Yt — l)

Conditioned Language Model

X1y oo s XT w =D

yla ayt—l

Neural Language Models: Conditioned v. Unconditionead

Unconditioned neural language models only have a decoder. Conditioned ones
have an encoder and a decoder.

Unconditioned Language Model

yla ayt—IP(Yt - l)
There are also encoder-

only models, but they Conditioned Language Model
aren't traditional

language models. X1y ee s XT w P(Y, = i)

yla ayl‘—l

Neural Language Models: Conditioned v. Unconditionead

Theoretically, any task designed for a decoder-only architecture can be turned into
one for an encoder-decoder architecture, and vice-versa.

TASK: Continue the sequence.

Decoder-only version:

P(Y=0Once upon a time there lived a dreadful ogre.”)

Encoder-decoder version:

P(Y=%1l1ved a dreadful ogre.” | X=“Once upon a time there”)

Neural Language Models: Conditioned v. Unconditionead

Theoretically, any task designed for a decoder-only architecture can be turned into
one for an encoder-decoder architecture, and vice-versa.

TASK: Translate from English to French.

Decoder-only version:

P(Y=“English: The hippo ate my homework. French: L"'hippopotame

a mangé mes devoirs.”)

Encoder-decoder version:

P(Y=“L"hippopotame a mangé mes devoirs.” | X=“The hippo ate my
homework.”)

Summary of Terms You Should Know

Input sequence: x4, ..., Xt
Target sequence: yq, ..., yr

Encoder Decoder |—> P(Y; = i)

Viseeo s YVi—1

Summary of Terms You Should Know

Input sequence: x4, ..., Xt
Target sequence: yq, ..., yr

Encoder Decoder

—> P(Y; = i)

Or sometimes...

Po(Y; = 1)

Viseeo s YVi—1

Represents the
parameters of the
neural network.

Summary of Terms You Should Know

Input sequence: x4, ..., Xt

Target sequence: yq, ..., yr

Encoder

Decoder |—> P(Y; = i)

Or sometimes...
Po(Y; = 1)

Or sometimes...

P(Yt — ilyl, v YVe—1, X1y ey X, @)

Viseeo s YVi—1

Summary of Terms

Input sequence: x4, ..., Xt
Target sequence: yq, ..., yr

Encoder Decoder |—> P(Y; = i)

Viseeo s YVi—1

/

What are x; and y;?

Tokenizing Text

Tokenization is the task of taking text (or code or music) and turning it
iNnto a sequence of discrete items, called tokens.

Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.
A vocabulary is the list of all available tokens.

Let's tokenize: “A hippopotamus ate my homework.”

Character'level [lAl , ! 1 , ! h 1 , 1 .i 1 , 1 p 1 , 1 p 1 , 1 0 1 , 1 p 1 , 1 0 1 , 1 t ! , 1 a ! , 1 m ! , 1 u 1 , 1 S ! , 1 ! , 1 a 1 , 31
! tl , lel , ! 1 , lml , lyl ,] 1 , lh 1 , |Ol , |ml , Iel , IWI , IOI , 1 r.l , 1 kl , ' X ’]
subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', "homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

Tokenizing Text

A tokenizer takes text and turns it into a sequence of discrete tokens.
A vocabulary is the list of all available tokens.

Let's tokenize: “A hippopotamus ate my homework.”

Character'level [lAl , ! I’ lhl , l.il’ lpl , lpl , IOI , lpl , lOI , |tl , Ial , Iml , Iul , ISI , 1 l, Ial , 31
ltl’ lel’ ! I, lml, lyl’] I’ lhl’ |0', |ml, Iel, ‘W', ‘O', Ir.l, Ikl, I.’]

subword-level ['A', 'hip', '##pop', '##ota', '##mus', 'ate', 'my', "homework’, '.'] 9

word-level ['A', 'hippopotamus', 'ate', 'my', 'homework'] 5

What are the pros and cons of different tokenizers?

More on this next lecture!

Turning Discrete Tokens into Continuous Vectors

Neural networks cannot operate on discrete tokens.

Instead, we build an embedding matrix which associates each token in the vocabulary
with a vector embedding.

Vocabulary » Embedding matrix

the |] | \
a [
ny

l]
embedding dimension

vocab size

kitten]]

Encoder Inputs and Outputs |™™ == o=

yl""7yt—1

The encoder takes as input the vector
representations of each token in the input
sequence.

Vocabulary » Embedding matrix
the |]

a I / Encoder \

ny
l |
embedding dimension

0 2

1 432 2019 1234

kitten] | T T T T T

The hippo ate my homework

vocab size
1

Encoder Inputs and Outputs |™™ == o=

yl""7yt—1

The encoder outputs a sequence of
embeddings called hidden states.

h?HC h?HC
Vocabulary » Embedding matrix I H I H I
the |] 0
a I §|: = / Enooder \
| |
embedding dimension

0 2

1 432 2019 1234

kitten] | T T T T T

The hippo ate my homework

Decoder Inputs and Outputs | ™1 == o=

Vis oo Vi1
The decoder takes as input the hidden states from
the encoder as well as the embeddings for the
tokens seen so far in the target sequence. A
yi
It outputs an embedding ¥;. H

henC henc

1
I H I H I Decoder /
/ Encoder \ I]] I I

ey B

75 2421
‘ (Emped) Cnted) /\. (Cooet) ? A
432 2019 1234 Le hippotame
TIe hino aIe mT homeTwork

Decoder Inputs and Qutputs |~ W PO =)

Yiseoes Yi-1

Ideally, ¥, would be as close as possible to the
embedding of the true next token.

A\

\ £

Decoder /

@@

2421

A |

Le hippotame

Decoder Inputs and Outputs

We multiply the predicted embedding ¥, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

A\

\ £

|:| 0 logits
Decoder / = = | ,'
vocab size

I]] I I embedding ||
matrix E S
Yt

@@

2421

A |

Le hippotame

Decoder Inputs and Outputs

We multiply the predicted embedding ¥, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

A\

\ £

|:| 0 logits
—_ -
Decoder / = = 1
vocab size

I]] I I embedding ||
matrix E S
Yt

@@

2421

A |

Le hippotame

Decoder Inputs and Outputs

We multiply the predicted embedding ¥, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

exp(Ey¢[i])
2.jexp(Ey:[j])

P(Y: = i|X1.1,V1:6-1) =

Decoder Inputs and Outputs

We multiply the predicted embedding ¥, by our vocabulary embedding matrix to get a
score for each vocabulary word. These scores are referred to as logits.

The softmax function is used to turn the logits into probabilities.

exp(Ey¢[i])
2.jexp(Ey:[j])

P(Y: = i|X1.1,V1:6-1) =

Example: Suppose we are trying to predict the 5" word in the sequence “the dog chased
the”. We want to know the probability the next word is “cat”.

exp(score in logits for “cat”)

P(Ys = “cat”|“the dog chase the”) = —— = 0.321
normalization term

Loss Function: Negative Log Likelihood

T
L = —tZ:llOgP(Yt = 1"|X1.7,V1:6-1)

Loss Function: Negative Log Likelihood

T
= -3 O)
t=1

The probability the language model assigns to the true tth
word in the target sequence.

Loss Function: Negative Log Likelihood

T
L= —tZ:llOgP(Yt =@|X1:T; Vi:it—1)

The index of the true tth
word in the target
sequence.

Loss Function: Negative Log Likelihood

T
L = —t2110gP(Yt = 1"|X1.7,V1:6-1)

g‘,log exp(Ey:[i"])
i=1 2jexp(Ey¢[j])

rm B0 [
P(Y; = i|X1.1,V1:t-1) = Zizzl()(]);;’[:g])])

Loss Function: Negative Log Likelihood

T
L = —tZ:llOgP(Yt = 1"|X1.7,V1:6-1)

°h logits
vocab size eXp (Eyt [l])
i P(Y:ilx:rY:—): A [
Tt E £ DI T Y exp (B9, [/])

Loss Function: Negative Log Likelihood

L

—

embedding
matrix E

T
—tgllogP(Yt = i"|X1.7, Y1:t-1)

Score for word at index i *

|P(Yt = i|X1.7,V1:t-1) =

exp (Ey.[i])

2. jexp(EY:[j])

Loss Function: Negative Log Likelihood

T
L= —tgllogP(Yt = i"|X1.7, Y1:t-1)

§ log exp(Eye[i"])
=1 2jeXp(EY¢[j])

1 Fl.
EG. [
P(Yt = i|X1;T; Y1:t—1) = Ziii}()(;;’[tlgl)])

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

yla”-vyth(),t = l)_)

Conditioned Language Model

X1s ooy XT W e

Yis oo s V-1

chosen word for
position t+1

sampling
agorithm

chosen word for
position +1

sampling
agorithm

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

. sampling chosen word for
YL oo ’y’l Pl=0= agorithm ~ | > position t+1

Conditioned Language Model

. sampling chosen word for
=1)—> . ot
XLoeees XT W _Decoder P(Y; =1) agorithm R position t+1

Yis oo s V-1

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

— decoding chosen word for
Vis oo le P(Y; =i)— method —> position £+1

Conditioned Language Model

— decoding chosen word for
X1y oo s XT W P(Yy =)= thod D position t+1

Yis oo s V-1

Now how do we do generation?

To do generation, we need a sampling algorithm that selects a word given the predicted
probability distribution P(Y; = i|y1.t-1).

Unconditioned Language Model

— decoding chosen word for
Vis oo le P(Y; =i)— strategy —> position £+1

Conditioned Language Model

— decoding chosen word for
X1y oo s XT W PY, = i)—> strategy > position t+1

Yis oo s V-1

90%.% %5000 ¢
A
O
%2622 20 7%
0607066476
o {
NN\
NN N
©.9.6.6.9.9.4
.0
NN\

44

Questions so far?

Carnegie Mellon University

3. Decoding Strategies

How can we sample from

P(Y: = i|y1.4-1)?

Join at menti.com use code 26302590

If we sample with argmax, what word
would get selected?

0 0 0 0

apple banana orange plum

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

d Mentimeter

How can we sample from P(Y; = i|y1.t-1)7

TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
V = {apple,banana, orange, plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = banana|Y; = apple, Y, = apple) = 0.65
P(Y; = orange|Y; = apple, Y, = apple) = 0.2
P(Y; = plum |Y; = apple, Y, = apple) = 0.1

If we sample with argmax, what word would get
selected?

(a) apple (b) banana (c)orange (d)plum

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
V = {apple,banana, orange, plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = bananal| Y; = apple, Y, = apple) = 0.65
P(Y; = orange| Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

If we sample with argmax, what word would get
selected?

(a) apple (b) banana (c)orange (d)plum

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP(Y; = i|y1.c—1) TYPE YOUR ANSWER INTO CHAT
. ' Suppose our vocab consists of 4 words:
Optlon 2: Randomly Sample from the V = {apple, banana, orange, plum}

distribution returned by the model.
We have primed our LM with “apple apple” and want

to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05

P(Y; = banana | Y; = apple, Y, = apple) = 0.65
Joinat menticom use code 2630 2590 S Mancimetes P(YS = orange | Yl = apple' YZ = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

If we sample with argmax, what word

?
WLl getFeieetou With random sampling, what is the probability

we'll pick “banana”?

(@) 0% (b)5% (c)65% (d)100%

0 0 0
banana orange plum

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
V = {apple,banana, orange, plum}

We have primed our LM with “apple apple” and want
to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, Y, = apple) = 0.05
P(Y; = banana | Y; = apple, Y, = apple) = 0.65
P(Y; = orange | Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

With random sampling, what is the probability
we'll pick “banana”?

(@) 0% (b)5% (c)65% (d)100%

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

Problem with Random Sampling 0.05

Most tokens in the vocabulary get assigned é 0.04

very low probabilities but cumulatively, 2 0.03
choosing any one of these low-probability <

tokens is pretty likely. In the example on the g%

right, there is over a 29% chance of 3 0.011 L
choosing a token v with P(Y; = v) < 0.01. 0.00

0 100 200 300 400 500
Vocab items sorted by likelihood

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

tokens is pretty likely. In the example on the

Problem with Random Sampling 0.05 -
Most tokens in the vocabulary get assigned é 0.04
very low probabilities but cumulatively, 2 0.03
choosing any one of these low-probability <

< 0.02

right, there is over a 29% chance of 0.01 1 L
choosing a token v with P(Y; = v) < 0.01. 0.00 -

100 200 300 400 500
Vocab items sorted by/ikelihood

floor bed Web monkey

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Prompt: | set my cat down on the...

Problem with Random Sampling 0.05
Most tokens in the vocabulary get assigned é 0.04
very low probabilities but cumulatively, 2 0.03
choosing any one of these low-probability <
tokens is pretty likely. In the example on the g%
right, there is over a 29% chance of 3 0.011 L
choosing a token v with P(Y; = v) < 0.01. 0.00
/]1 100 200 3ey 400 / 500
Solution: modify the distribution returned by the Vocab items sorted by fikelihood
model to make the tokens In the tail less likely.

floor bed Web monkey

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

exp(z;/T)
2.jexp(z;/T)

P(Y; =1) =

Next token likelihood

How can we sample from P(Y;

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with

temperature.
With temperature = 0.5
0.4 1
0.3
0.2
0.1
0.0 L
0 100 200 300 400

Vocab items sorted by likelihood

500

Next token likelihood

©
I

©
w

o
(N}

©
=

©
o

With temperature = 1.0

= i|y1.6-1)7

0

100

Vocab items sorted by likelihood

200

300

400

500

Next token likelihood

0.4 1

0.3 A

0.2

0.1

0.0 1

With temperature = 1.5

_

0

100

Vocab items sorted by likelihood

200

300

400

500

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP(Y; = i|y1.c—1) TYPE YOUR ANSWER INTO CHAT
. ' Suppose our vocab consists of 4 words:
Optlon 2: Randomly Sample from the V = {apple, banana, orange, plum}

distribution returned by the model.

Option 3: Randomly sample with
temperature.

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
P(Y, =) = exp(z;/T) P(Y; = apple | Y; = apple, Y, = apple) = 0.05
t Zjexp(zj/T) P(Y; = banana | Y; = apple, ¥, = apple) = 0.65
P(Y; = orange | Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

Join at menti.com use code 2630 2590 i Mentimeter

What would the probability of selecting
“banana” be if we use temperature

sampling and set T=es? What would the probability of selecting

“banana” be if we use temperature sampling
and set T = «?

(@) 0% (b) 25% (c)65% (d) 100%

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP(Y; = i|y1.c—1) TYPE YOUR ANSWER INTO CHAT
. ' Suppose our vocab consists of 4 words:
Optlon 2: Randomly Sample from the V = {apple, banana, orange, plum}

distribution returned by the model.

Option 3: Randomly sample with
temperature.

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple,Y, = apple) = 0.65
P(Y; = orange | Y, = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

With temperature = 100

©
B
1

©
w

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = «?

©
=

Next token likelihood
o
N

©
o

0 100 200 300 400 500 (@) 0% (b) 25% (c)65% (d) 100%

Vocab items sorted by likelihood

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP(Y; = i|y1.c—1) TYPE YOUR ANSWER INTO CHAT
. ' Suppose our vocab consists of 4 words:
Optlon 2: Randomly Sample from the V = {apple, banana, orange, plum}

distribution returned by the model.

Option 3: Randomly sample with
temperature.

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:
P(Y, =) = exp(z;/T) P(Y; = apple | Y; = apple, Y, = apple) = 0.05
t Zjexp(zj/T) P(Y; = banana | Y; = apple, ¥, = apple) = 0.65
P(Y; = orange | Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

Join at menti.com use code 2630 2590 i Mentimeter

What would the probability of selecting

“banana” be if we use temperature sampling . .
and set T=0.00001? What would the probability of selecting

“banana” be if we use temperature sampling
and set T = 0.00001?

(@) 0% (b) 25% (c)65% (d) 100%

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the

distribution returned by the model.

Option 3: Randomly sample with
temperature.

exp(z;/T)
2.jexp(z;/T)

P(Y =1) =

As T approaches 0, random sampling with
temperature looks more and more like argmax.

TYPE YOUR ANSWER INTO CHAT

Suppose our vocab consists of 4 words:
V = {apple,banana, orange, plum}

We have primed our LM with “apple apple” and
want to generate the next word in the sequence.

Our language model predicts:

P(Y; = apple | Y; = apple, ¥, = apple) = 0.05
P(Y; = banana | Y; = apple,Y, = apple) = 0.65
P(Y; = orange | Y; = apple, Y, = apple) = 0.2
P(Y; = plum | Y; = apple, Y, = apple) = 0.1

What would the probability of selecting
“banana” be if we use temperature sampling
and set T = 0.00001?

(@) 0% (b) 25% (c)65% (d) 100%

How can we sample from P(Y; = i|y1.t-1)7

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the

distribution returned by the model. Prompt: | set my cat down on the...

Option 3: Randomly sample with 5 o

temperature. g0

Option 4: Introduce sparsity by %‘) 0.03

reassigning all probability mass to the £ 0.02

k most likely tokens. This is referred to % 001

as top-k sampling. = k
0.00 A

0 100 200 300 400 500
Vocab items sorted by likelihood

Usually k between 10 and 50 is selected.

How can we sample from P(Y; = i|y1.t-1)7 i

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
k most likely tokens. This is referred to
as top-k sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the k, tokens which
form p% of the probability mass.

At each step, k; is chosen such that the total
probability of the k; most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.

How can we sample from P(Y; = i|y1.t-1)7 i

Option 1: Take argmaxP (Y; = i|yy.t—1)
l

Option 2: Randomly sample from the
distribution returned by the model.

Option 3: Randomly sample with
temperature.

Option 4: Introduce sparsity by
reassigning all probability mass to the
k most likely tokens. This is referred to
as top-k sampling.

Option 5: Introduce sparsity by reassigning
all probability mass to the k, tokens which
form p% of the probability mass.

At each step, k; is chosen such that the total
probability of the k; most likely tokens is no
greater than the desired probability p.This is
referred to as nucleus sampling.

Option 6: Use some version of beam search.

Beam Search

Assumption: the best possible sequence to generate is the one with highest overall
sequence likelihood (according to themodel).

It is computationally intractable to search all possible sequences for the most likely one, so
instead we use beam search.

Beam search is a search algorithm that approximates finding the overall most likely
sequence to generate,

Problems with Beam Search

is much for likely than human-
written text

It.turns out for open—ended task; l!ke Beam Search Text is Less Surprising
dialog or story generation, optimizing
for the sequence with the highest 1 : T
possible P(xq, ..., x7) isn't actually a _ 0.8
great idea. Z 06
e Beam search generates text that o 04 A
0.2
0

u | AU

20 40 60 80 100

o

Beam Search

Timestep
e H UMAN

Problems with Beam Search

It turns out for open-ended tasks like
dialog or story generation, optimizing

for the sequence with the highest 3.0
possible P(xq, ..., x7) isn't actually a
great idea. 25

« Beam search generates text that
is much for likely than human-
written text

2.0

Human Judgement

« When sequence likelihood is too
high, humans rate text as bad. o

—-225 -200 -175 =150 -125 -100 -75 =50 -—25
log p(x)

When to Use Beam Search

Your task is very narrow, i.e., there is only ~1 “correct” sequence your model should
generate.

o Example task: question answering, machine translation

You are using a language model that isn't very good, and you don't trust its predicted
probabilities.

Decoding t=1

strate . — i
paramge)z'er: The Decodlng k= vocab size

Strategy Tradeoff p=1

—

* Lacks diversity, with an over- - Has similar diversity of word use
representation of common words. to human writing.

* Contains few semantic errors. - Contains many semantic errors.

* Fools humans but not automatic Fools automatic detection
detection systems. systems but not humans.

Other generation parameters you'll encounter

* Frequency penalty: Reduce the likelihood the model generates a token based on
how often it has occurred already.

« The more likely a token has occurred, the less likely it will be to occur in the future.

* Presence penalty: Reduce the likelihood the model generates a token based on
whether or not it has occurred already.

 If atoken occurs any number of times, it will be less likely to occur in the future.
» Stopping criteria
« Stop after generating k tokens.

« Stop when a certain token is generated (for example, a period or a newline).

90%.% %5000 ¢
A
O
%2622 20 7%
0607066476
o {
NN\
NN N
©.9.6.6.9.9.4
.0
NN\

/6

Questions so far?

Carnegie Mellon University

4. Language Model Architectures

What are these encoder/decoder things?

2?2
|
Y1 oo s V-1

/8

Circa 2013: Recurrent neural networks

Generating Sequences With
Recurrent Neural Networks

Alex Graves
Department of Computer Science
University of Toronto
graves@cs.toronto.edu

Abstract

This paper shows how Long Short-term Memory recurrent neural net-
works can be used to generate complex sequences with long-range struc-
ture, simply by predicting one data point at a time. The approach is
demonstrated for text (where the data are discrete) and online handwrit-
ing (where the data are real-valued). It is then extended to handwriting
synthesis by allowing the network to condition its predictions on a text
sequence. The resulting system is able to generate highly realistic cursive
handwriting in a wide variety of styles.

30

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

Decoder

Recurrent Neural Networks

P(y:0er) P(y3ley)

A /\ 1. The decoder inputs a sequence of
Decoder ¢ & / embeddings.
u ﬂ 2. The RNN inputs the previous hidden

state and the embedding for the token
being processed.

hg ‘ h, | h, /

|

Vi y2

2. Initialize a hidden state h,

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

Decoder

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

2. Initialize a hidden state h,

Recurrent Neural Networks

1. The decoder inputs a sequence of
embeddings.

Decoder

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

H I 3. The RNN outputs a predicted
embedding, and an updated hidden
Y Y2 State.

4. The first hidden state is typically
initialized with the zero vector.

Recurrent Neural Networks

Decod

vocab size

1. The decoder inputs a sequence of
embeddings.

2. The RNN inputs the previous hidden
state and the embedding for the token
being processed.

3. The RNN outputs a predicted
embedding, and an updated hidden
state.

4. The first hidden state is typically
initialized with the zero vector.

Recurrent Neural Networks

Computing the next hidden state:

For the first layer:

h{ = RNN(W, 1y, + Wy1,1hi_; + b})

Decoder
For all subsequent layers:

h! = RNN(W,, 1y, + Whl—lhlhé_l + Whlhzhé_l +bl)

Predicting an embedding for the next token in
the sequence:

L
=1

Fach of the b and W are learned bias and
weight matrices.

What did the generated text look like?

The '''Rebellion''' (''Hyerodent'') is [[literal]], related mildl{ older than ol
d half sister, the music, and morrow been much more propellent. All those of [[H
amas (mass)|sausage trafflcklng]]s were also known as [[Trip class submarinel’’S
ante'’ at Serassim]]; ''Verra'® as 1865&ndash;682&ndash;831 is related t
o0 ballistic missiles. While she viewed it friend of Halla equatorial weapons of
Tuscany, in [[France]], from vaccine homes to "individual", among [[sl
averylsiaves]] (such as artistual selling of factories were renamed English hab1i
t of twelve years.)

By the 1978 Russian [[TurkeylTurkist]] capital city ceased by farmers and the in
tention of navigation the ISBNs, all encoding EETransylvania International Organ
isation for Transition BankinglAttiking others]] it is in the westernmost placed
lines. This type of missile calculation maintains all %reater proof was the [[
1990s]] as older adventures that never established a self-interested case. The n

ewcgmers were Prosecutors in child after the other weekend and capable function
used.

Holding may be typicallﬁ largely banned severish from sforked warhing tools and
behave laws, allowing the private jokes, even through missile IIC control, most
notably each, but no relatively larger success, is not being reprinted and withd
rawn into forty-ordered cast and distribution.

Besides these markets (notably a son of humor).

How did RNN-based language models connect the encoder with
the decoder?

Encoder Decoder /

IH
HII |]]||

432 2019 1234 2421

S too

The hippo my homework Le hippotame

How did RNN-based language models connect the encoder with
the decoder?

Simplest approach: Use the final hidden
state from the encoder to initialize the first
hidden state of the decoder. Py &) P(y318,)

Decoder

ue
®
.

How did RNN-based language models connect the encoder with
the decoder?

Better approach: an attention mechanism.
When predicting the
next English word, how
much weight should the
model put on each
[The, hippopotamus, ... French word in the
source sequence?

Translate Fr to En

[L’, hippopotame, a, mangé, mes, devoirs]

How did RNN-based language models connect the encoder with

the decoder?

Better approach: an attention mechanism.

[The, hippopotamus,

Translate Fr to En

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation
by jointly learning to align and translate." (2014).

When predicting the
next English word, how
much weight should the
model put on each
French word in the
source sequence?

[L’, hippopotame, a, mangé, mes, devoirs]

Attention Mechanism

At each step t in the decoder, a context vector is computed which contains all the
information from the encoder that is relevant to the decoder making a prediction at
this position.

Compute a linear combination of the encoder hidden states.
I= (X1I+a2|:|+0(3l + ...+ (XTI
C:

The context vector is a linear sum of the encoder hidden states, i.e., ¢, = H®Ca,.

Decoder's prediction at position tis based on both the context
vector and the hidden state outputted by the RNN at that position.

|:|=f9(_h§leC =)

€
The decoder’s predicted embedding for position t is a function of the context vector
and the decoder’s hidden state for this position.

~ __ dec, enc enc enc
€: = fo(he™% ay Wi+ ay h3™" + - ap h77%)

Computing the Attention Weights

The a; ; are scores that indicate how important the encoder hidden state at position i
is to the model's prediction at position j. They are typically normalized to sum to 1.

exp ei,j

= T

a; < Softmax function

_ enc jdec
e j = score(h; ,hj_l

Computing the Attention Weights

The a; ; are scores that indicate how important the encoder hidden state at position i
is to the model's prediction at position j. They are typically normalized to sum to 1.

exp ei,j

= < Softmax function

ai,]‘ =

e; ; = score(h;"", h]‘-ief)

In dot-product attention, we use a very simple scoring function: score(q,k) = q -k

“At the core of an attention-based approach is the

ability to compare an item of interest to a collection

of other items in a way that reveals their relevance
in the current context.”

-Jurafsky and Martin, Chapter 10

102

Circa 2017: Transformers

Encoder-decoder attention:
Attention Is All You Need

[The, hippopotamus,

Ashish Vaswani* Noam Shazeer” Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* FLukasz Kaiser* [L’, hippopotame, a, mangé, mes, devoirs]
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* #
illia.polosukhin@gmail.com

Self-attention:

Abstract [L’, hippopotame, a, mangé, mes, devoirs]

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including [L’, hippopotame, a, mangé, mes, devoirs]
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
1 O 3 large and limited training data.

Why drop the recurrence and only use attention?

« Recurrent neural networks are slow to train. Computation cannot be parallelized.

« The computation at position t is dependent on first doing the computation at
position t-1.

« Recurrent neural networks do poorly with long contexts.

 |f two tokens are K positions apart, there are K opportunities for knowledge of
the first token to be erased from the hidden state before a prediction is made at
the position of the second token.

« Transformers solve both these problems.

104

Components of a Generic Attention Mechanism

« A sequence of <key, value> embeddings pairs

« The values are always the hidden states from a previous layer of the neural
network. The attention mechanism outputs a weighted sum of these.

« For encoder-decoder attention, the values are the final hidden states of the

encoder (as we so in the previous slide) and the keys are the hidden states from
the target sequence.

« A sequence of embeddings
« The is the current focus of the attention.
« We choose weights for each of the values by computing a score between the
current and each of the keys.

T
attention output at position j = z score(ji» kl-) V;
i=1

q; - k;

Jax

score(j,kl-) =

Components of a Generic Attention Mechanism

Since the attention computations at each position j are completely independent, we can
actually parallelize all these computations and think in terms of matrix multiplications.

For example, instead of thinking of a sequence of embedding vectors x4, -+, Xy We can think
of a matrix X € RT*%x,

This gives us the attention equation which appear in the "Attention is All You Need” paper.

. QK'
attention(Q, K, V) = softmax \%

Jax

Output

Probafbilities
. Al : : 1l
Transtormers: “Attention is All You Need i)
|l Linear |}
([Add &lNorm]4-\\
Feed
Forward
J
e I \ | Add & Norm J~
—>(.Add & Norm Multi-Head
Feed Attention
Forward I) Nx
| [LAdd & Norm Je=
orm
Nx | ~(Add & Norm) T
Multi-Head Multi-Head
Attention Attention
At At
N J U —)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Output

Probafbilities
. Al . : /1
Transformers: "Attention is All You Need i)
|l Linear |}
([Add & Norm]4-\\
Feed
Forward
)
e { ~ | Add & Norm J~
> Add & Norm } Multi-Head
Feed Attention
Forward I) N x
_\
Nx LAdd & Norm e~
Encoder ~—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 1t
o J)
Positional D ¢ Positional
. Encoding Encoding
X1sves XT " Decoder > P(Y; =) ot Output
Embedding Embedding
yl 9 see J’t—l T T
Inputs Outputs

(shifted right)

Output

Probafbilities
.l : : /1
Transformers: "Attention is All You Need i)
 Linear |
i
([Add & Norm]4-\\
Decoder ol
Forward
)
e { N | Add & Norm J«~
> Add & Norm } Nut-Head
Feed Attention
Forward I) N x
| | J—~
Add & Norm
Nx I
~—>| Add & Norm] asked
Multi-Head Multi-Head
Attention Attention
At 1
o J U)
\ Positional D 4 Positional
Encoding X Encodin
X1,...,XT— Encoder Decoder —> P(Y; = i) oot Output ’
— Embedding Embedding
yl 9 see J’t—l T T
Inputs Outputs

(shifted right)

—

embedding
matrix E

y

P(Y, = i|Xy.7,Y1:t-1) =

logits
1

vocab size

exp(Ey.[i])

2jexp(Ey: /]

Transformers: “"Attention is All You Need’

Output

(shifted right)

Probabilities
| Softmax |}
L Linear |}
A
(1)
| Add & Norm J=~
Feed
Forward
J
r 1 A | Add & Norm Je~
> Add & Norm J MIUlt-Head
Feed Attention
Forward 7 7) N x
‘ (J—~
Add & Norm
Nx I
~—> Add & Norm] Masked
Multi-Head Multi-Head
Attention Attention
At At
_ y, G —
Positional Positional
Encod P & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Output

Probafbilities
.l : : 17
Transtormers: “"Attention is All You Need Ca)
|l Linear |}
The input into the encoder looks like: ((Adaz.Nom J— |
Feed
Forward
. . . e 1 ~\ | Add & Norm J~
Token Embeddings Position Embeddings —(Adda Norm) ——
X ultl-
§ Feed Attention
HeIIC — . g + For\‘/vard 7 7) Nx
0 e ‘g L Add & Norm e~
X Nx | (Add & Norm —
l . I Multi-Head Multi-Head
maximum sequence length Attention Attention
At At
\; J . —)
Positional D ¢ Positionall
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder-decoder

attention

Transformers: “"Attention is All You Need"”

Output

Probabilities
|
| Softmax |}
|
L Linear |}
()
| Add & Norm J=~
Feed
Forward
J
r 1 A | Add & Norm J~
(L Add &Norm) Multi-Head
l ool P Attention
| Forward] L P D N N x
A
—]
L Add & Norm e~
Nx I
~—| Add &.Norm] Masked
Multi-Head Multi-Head
Attention Attention
At At
_ y, G —
Positional Positional
Encod P & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Transformers: “"Attention is All You Need"”

The The
Law Law
will will
never never
be \ be
perfect perfect
but but
its its
application application
should - should
be be
just just
this this
is is
what == what
we we
are are
missing missing
in in
my my
opinion opinion
<EOS> <EOS>
<pad> <pad>

The
Law
will
never
be
perfect

but

its
application
should
be

just
this

is

what
we

are
missing
in

my
opinion

<EOS>
<pad>

A

The
Law
will

never
be
perfect

- but

its
application
should

be

just

this

is

what
we

are
missing

)
in

my
opinion

<EOS>
<pad>

Self-attention

4 |)
—>{ Add & Norm }

\.

l Feed
Forv-id

A

QA & Norm)
I\/I_ulti—Head
Attention

—tr

Output
Probabilities

t

| Softmax |}

t

|l Linear |}

(- ~\
| Add & Norm Je~

Feed
Forward

J

| Add & Norm Je~

Multi-Head
Attention

Positional
Encoding

Input
Embedding

T

Inputs

7 7 N
F

' 1+Add & Norm

‘I\/Iasked
Multi-Head
Attention J
1t

. —)

@ Positional
Encoding

Output
Embedding

T

Outputs
(shifted right)

Output

Probabilities
Transformers: “Attention is All You Need” ’
ranstormers. ention IS OU INee [Softfmax)
L Linear |}
(.)
[Add & Norm }<~
Layer:| 5 4 | Attention: [Output - Output 4 Masked . FFeedd
H EmeE = Self-attention -
Das_ Das_ J
i Tier Ve 1 N [Add & Norm Je~
_ - —{Add & Norm J Multi—.Head
tber tiber Feed Attention
|| q‘:e’ ?“er Foiv o 7T 5 7 N x
e_ e_ — ~
die_ die_ \L 1 \) %/
Strale_ StraRe_ N . |"5~dd & Norm
B it * | ~{ Add & Norm] " Masked
- - Multi-Head Multi-Head
weil_ weil_ Attention Attention
es_ es_ : v
zu_ zu_ \ ‘ y
mii \ mii . J __)
de_ \ de_ Positional D & Positional
war_ war_ . -1 AN .
- y Encoding Encoding
weil_ weil_ Input Output
es_ es_ Embedding Embedding
ZUu_ Zu_ T T
mii mu
de_ de_ Inputs Outputs
war_ war_ (shifted right)

Output
Probabilities

t

Transformers: “Attention is All You Need”)

|l Linear |}

(- ~\
| Add & Norm Je~

0 e MUIt|'head Feed
ayer:| 54 | Attention:| Output - Output %
H BEE = Forward
Das Das N J
- e | wl
Tier Tier e | ~\ waAdd & Norm
_ _ Add wNorm ——r
tiber iiber l -] Multi-Head
\ Feec l | Atention
. i aner Forward
\ te_ te_

\ } Y 7) Nx
die_ die_ L & _‘ %’

StraRe_ StraBe_ A \ LAdd & Norm
') Nx Aadl & Norm N
nicht_ nicht_ (OIS}) Mackead

- - Multi-Head Multi-Head
weil_ weil_ | Attention | Attention
es_ es_ ‘ \ ’ Q ’
Zu_ zZu_ ‘_J
mii \ \ mu \\ / . /
de_ \ de_ Positional D & Positional
war_ war_ . T 1 .
- ,) Encoding Encoding
well_ weil_ Input Output
es_ Embedding Embedding
Zu_
mi T T
de_ Inputs Outputs

war_ 7 war_ (shifted right)

Quiz Question

In a sentence or two, explain why the Transformer architecture
tends to work better than recurrent approaches.

If you are enrolled in the class, log into
Canvas and check the “Quizzes” tab.

If you are on the waitlist, complete the
quiz at cmu-lims.org/quiz

