Important Announcements

- We want to give you free AWS credits! Make sure to do the “AWS Quiz”
on Canvas by next Friday to give us your account number.

« Homework 1 coming out on next Tuesday.

« Piazzais now up. Find the link on Canvas.
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Self-attention:

Abstract [L’, hippopotame, a, mangé , mes, devoirs]

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including [L’, hippopotame, a, mangé , mes, devoirs]
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
3 large and limited training data.




Components of a Generic Attention Mechanism

« A sequence of <key, value> embeddings pairs

« The values are always the hidden states from a previous layer of the neural
network. The attention mechanism outputs a weighted sum of these.

« For encoder-decoder attention, the values are the final hidden states of the
encoder (as we so in the previous slide) and the keys are the hidden states from
the target sequence.

« A sequence of embeddings
« The Is the current focus of the attention.
« We choose weights for each of the values by computing a score between the
current and each of the keys.

T
attention output at position j = z score( j» ki) " V;
i=1

q; - k;

Jax

score( j» k;) =




Components of a Generic Attention Mechanism

Since the attention computations at each position j are completely independent, we can
actually parallelize all these computations and instead think in terms of matrix multiplications.

For example, the sequence of embedding vectors x4, -+, xy becomes matrix X € RT*%x,

This gives us the attention equation which appear in the “Attention is All You Need” paper.

. QK'
attention(Q, K, V) = softmax \%

Nem



Transformers: "Attention is All You Need”
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The input into the encoder looks like:
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Transtformers: Generated Text Circa 2018

"The Transformer™ are a Japanese [[hardcore punk]] band.

==Early years==

The band was formed in 1968, during the height of Japanese music history. Among the legendary [[Japanese people|Japanese]] composers of
[Japanese lyrics], they prominently exemplified Motohiro Oda's especially tasty lyrics and psychedelic intention. Michio was a longtime member of the
every Sunday night band PSM. His alluring was of such importance as being the man who ignored the already successful image and that he municipal
makeup whose parents weredamp;:nbsp;— the band was called Jenei &It ref&gt; http:/'www.separatist.org/se_frontend/post-punk-musician-the-kidney.
hitmi&it;ref&qgt; From a young age the band was very close, thus opting to pioneer what had actually begun as a more manageable core hardcore
punk band.&lt;ref&gt; http:/f'www.talkradio.net/aricle/independent-music-fades-from-the-closed-drawings-out&it;/ref&gt;

==History==
===Baorn from the heavy metal revolution===
In 1977 the self-proclaimed King of Tesponsors, [[Joe Lus:

. It was somewhere... it was just a guile ... taking this song to Broadway. It was the first record | ever heard on A.M., After some opposition | received

The band cut their first record album titled "Transformed, furthered and extended Extended” &lt;ref&gt;[https:/www.discogs.com/album/69771 MC —
Transformed EP (CDR) by The Moondrawn — EMI, 1994)&lt;/ref&gt; and in 1978 the official band line-up of the three-piece pop-punk-rock band TEEM.
They generally played around [[Japan]], growing from the Top 40 standard.

===1981-2010: The band to break away===

On 1 January 1981 bassist Michio Kono, and the members of the original line-up emerged. Niji Fukune and his [[Head poet|Head]] band (now
guitarist) Kazuya Kouda left the band in the hands of the band at the May 25, 1981, benefit season of [[Led Zeppelin]]'s Marmarin building. In June
1987, Kono joined the band as a full-time drummer, playing a few nights in a 4 or 3 hour stint with [[D-beat]]. Kono played through the mid-1930s, at
Shinlie, continued to play concerts with drummers in Ibis, Cor, and a few at the Leo Somu Studio in Japan. In 1987, Kono recruited new bassist Michio
Kono and drummer Ayaka Kurobe as drummer for band. Kono played trumpet with supplement music with Saint Etienne as a drummer. Over the next
few years Kono played as drummer and would get many alumni news invitations to the bands' "Toys Beach” section. In 1999 he joined the [[CT-182]].

His successor was Barrie Bell on a cover of [[Jethro Tull (band)|Jethro Tull]]'s original 1967 hit &quot;Back Home&quot; (last appearance was in
Jethro), with whom he shares a name.
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===2010 — present: The band to split===

In 2006 the band split up and the remaining members reformed under the name Starmirror, with Kono in tears, Kurobe, and Kurcbe all playing
harmonica with Kooky Bell and a new guitarist again. While Jaari also had the realist DJ experience, The SkykelDaten asked New Bantherhine, who
liked Kono and Kurobe, to join him on guitar. Kono is now playing in the studio a new formation, and at their 11th anniversary concert, made a wide
variety of music and DJ equipment including two new vocalists: Dejeh Faida and Janis. NARCO (Inc.) privileges areas sections until 2012. and in
2015 both were members as members as were Dicent and Cautty.

In 2014, the album "[[Marco Victoriano in Focus]]" was released, and entered the Japanese albums chart at number 69 in the [[Oricon Singles
Chart]].&It;ref name=&quot;oricon&quot; &gt {{cite web|tite=THE GER: THE TALENT RAILWAY LIVERSITIES|url=hitp:/iwww.
cricon.co.jp/profiinductee/ 30563/ ranking/cd/ 1/|work=C0riconStyle|accessdate=11 Jul 2014}}&lt;/ref&gt; The album was also in Japan, where [[Hoite
(musician)|Hoite]] recorded and released an album in October 2011, and a short album, titled "[[Grateful]]" in 2012.&lt;ref&gt;{{cite web
|uri=httpiwww.oricon.co.jp/profiartisti229337/ranking/cd/1/title=HORIZON HISTORY|publisher=cricon.co.jp|accessdate=9 Nov
2014|language=ja}}&lt;ref&gt; Kono played the [[M9ne]] bass with Tony "Shadows Without a Face”, and released his music from the new [[Smile
(record label)|Smile]] label with original Fat Joe Lang "Remix and Bachian" cassette.

::St}rh}::
The band's style has been compared to [[Radar|radar-based]], influenced by bands such as [[Metallica]], [[Damage (Japanese band)|Damage]],
[[Dreadzone]], and [[Girlschool]].

The group classifies itself as &guot;the first band to play a Used Of American Inside the Outer East&quot;, &lt;ref&gt; hitp.//

www. funonling. jp/imain. php?conlD=005&amp; artlD=1254 8 &It/ref&gt; including the band's usual Eugene Terre ensemble. He later stated that the raw
interviews in Metal Hammer and Metallica gave reason to what they considered that an explosion of the live band started by the band.&lt;ref&gt; hitp./
stillenterprise.com/en/interviews/last-night-reunion-confronts-kooky-spearing-the-charismatic-dynamic-partnership/&lt;/ref&gf;

[[Hunt's Brigade]], a surf-rock band from Tokyo, has cited the band's music as being &quot:straight ahead of their time /| did but only read five songs
(played now), a beat, rock blast, a bit of a bass blast, good lyrics, and a few&quot;.&ltrefé&gt; hitp://stillenterprise. com/en/announcements/Package-
a2/swag-w-\Vause-042332/&It;/ref&gt; Halutodrinking, a popular-sounding drum style, has described the band as being &quot;supporting [mod]ed
distrust&quot;, because it incorporated the track as an ensemble and did not fit into any of the more darling songs from their previous incarnation,
which was forging a strong style to a lot of different




	Slide 1
	Slide 2
	Slide 3
	Slide 4: Components of a Generic Attention Mechanism
	Slide 5: Components of a Generic Attention Mechanism
	Slide 6: Transformers: “Attention is All You Need”
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Transformers: Generated Text Circa 2018
	Slide 26: Transformers: Generated Text Circa 2018

