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Disclaimer

No one really understand why language model works

Very limited theory and very limited empirical observation, especially at large scale

This lecture is to share:

* Observations upon, not causality of, the behavior of LLMs

* Early attempts to interpret their ability

e Useful intuitions and interesting thought experiments
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Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?
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Outline

What is captured in BERT?
* Attention patterns
* Probing capture capabilities in representations

Why pretrained models generalize?

What does in-context learning do?
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BERT Attention Patterns

Restate Transformer’s attention mechanism:

exp(q; - k;/+/dy)

Attention from i — j: Aij =
2 exp(q; - ke/+/d)
New representation of i: 0; = Z a;;v;
J

The new representation of position i is the attention-weighted combination of other positions’ value

* Higher a;; —bigger contribution of position j to position i

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 Fall 2023 11-667 CMU




BERT Attention Patterns: Stats
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Figure 1: Entropy of BERT Attention Distributions [1]
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BERT Attention Patterns: Stats

High entropy heads in lower layers:
e Bag-of-words alike mechanism

Avg. Attention Entropy (nats)
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BERT Attention Patterns: Stats

Lower entropy in middle layers:
e Start forming certain patterns?
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BERT Attention Patterns: Stats

Rising entropy in deep layers:
* More global information?
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o ? H ) H ”
[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 Fall 2023 11-667 CMU




BERT Attention Patterns: Common Patterns
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Figure 2: Attend Broadly (Left—Right) [1]
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[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 Fall 2023 11-667 CMU




BERT Attention Patterns: Common Patterns

found found
in in Common Pattern 2: Attend to next token
taiwan taiwan

e Reverse RNN style
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Figure 3: Attend to Next (Left—Right) [1]
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[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 Fall 2023 11-667 CMU




BERT Attention Patterns: Common Patterns
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Figure 4: Attend to [SEP] and punctuations (Left—Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019

Common Pattern 3: Attend to [SEP] and “”
* Centralizing attention to specific tokens

e Effect unclear
* Some consider it a “none” operation
e Some consider it as an information hub
* Maybe a mix of both, at different heads
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BERT Attention Patterns: Linguistic Examples
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Figure 5: Objects Attend to their Verbs (Left—Right) [1]
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[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 Fall 2023 11-667 CMU




BERT Attention Patterns: Linguistic Examples
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Figure 6: Noun Modifiers Attend to their Noun (Left—Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019
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BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters

* Some attention head corresponds to linguistic relations

* More captured in pretraining, may not change much in fine-tuning
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BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters
* Some attention head corresponds to linguistic relations

* More captured in pretraining, may not change much in fine-tuning

Practical Implications:

* Attention weights reflect the importance perceived by language models

* An effective way to gather feedback from LLMs (handy in later lectures)
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Outline

What is captured in BERT?
* Attention patterns

* Probing capture capabilities in representations

Why pretrained models generalize?

What does in-context learning do?
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Probing Pretraining Representations

Probing what is stored in the representations of pretrained models
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Figure 7: Edge Probing Technique [2]
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[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in Fall 2023 11-667 CMU

contextualized word representations." ICLR 2019



Probing Pretraining Representations

Representations
as static features

Pre-trained encoder
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Figure 7: Edge Probing Technique [2]

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in

Mixing representations from layers:
hPiX = z wlhl; w! = softmax(a’)
Labels l

* Weighted combination of layers ()

Combination weights (a') is trained per task

Binary classifiers ’ - oo
with the classification layer

Span
representations

Contextual
vectors

Input tokens

contextualized word representations." ICLR 2019

Fall 2023 11-667 CMU



Probing Pretraining Representations
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Figure 7: Edge Probing Technique [2]

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in

Labels

- - g .
Binary classifiers

Span
representations

Contextual
vectors

Input tokens

Mixing representations from layers:
hPiX = z wlhl; w! = softmax(a’)
l

* Weighted combination of layers ()

Combination weights (a') is trained per task
with the classification layer

If the representation perform well

e 3as static features

for simple MLP classifier

In a language task

Then it encodes information required by that
task

contextualized word representations." ICLR 2019
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Probing Pretraining Representations

Mixing representations from layers:
hPiX = z wlhl; w! = softmax(a’)
Labels l
Center-of-Gravity:

E[l]=Y,1-w

* Expected layer to convey the information
needed by the probe task

Binary classifiers

Span _ - _
representations  * Larger — information at higher layers

GO 0D G0 6D GO
. f f f P
| X

Input tokens

Figure 7: Edge Probing Technique [2]

n ? . .
[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in Fall 2023 11-667 CMU

contextualized word representations." ICLR 2019



Probing Pretraining Representations

Mixing representations from layers:
hPiX = z wlhl; w! = softmax(a’)
Labels l
Center-of-Gravity:

E[l]=Y,1-w

* Expected layer to convey the information

Binary classifiers

Span Expected Layer:

representations Al — probeAcc(0: 1) — ProbeAcc (0: 1 — 1)
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Figure 7: Edge Probing Technique [2]
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[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in Fall 2023 11-667 CMU

contextualized word representations." ICLR 2019



Probing Pretraining Representations: Probing Tasks

Task Description Type

Part-of-Speech Is the token a verb, noun, adj, etc. Syntactic
Constituent Labeling Is the span a noun phrase, verb phrase, etc. Syntactic
Dependency Labeling Label the functional relationship between tokens, e.g. subject-object?  Syntactic

Named Entity Labeling Classify the entity type of a span, e.g., person, location, etc. Syntactic/Semantic
Semantic Role Labeling  Label the predicate-augment structure of a sentence Semantic
Coreference Determine the reference of mentions to entities Semantic

Semantic Proto-Role Classifier the detailed role of predicate-augment Semantic

Relation Classification Predict real-world relations between entities Semantic/Knowledge

Table 1: Example Language Tasks to Probe BERT [2]

n ? . .
[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in Fall 2023 11-667 CMU

contextualized word representations." ICLR 2019



Probing Pretraining Representations: Probing Results

_ All very good numbers:
Table 2: Overall Probing Results [2]

* The pretrained representations convey

Probing Task GPT-1 BERT ~ BERT syntactic and sematic information
(base) (base) (Large)
Part-of-Speech 95.0 96.7 96.9
Constituent Labeling 84.6 86.7 87.0
Dependency Labeling 94.1 85.1 95.4
Named Entity Labeling 92.5 96.2 96.5
Semantic Role Labeling 89.7 91.3 92.3
Coreference 86.3 90.2 91.4
Semantic Proto-Role 83.1 86.1 85.8
Relation Classification 81.0 82.0 82.4
Macro Average 88.3 89.3 91.0

[2] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline." 24 Fall 2023 11-667 CMU

ACL. 2019.



Probing Pretraining Representations: Across Layers
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Figure 8: Edge Probing Results of BERT Large [3].

[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline." 25

Mixing representations from layers:
hPiX = z wlht; w! = softmax(a’)
l

Center-of-Gravity:
E[l]=%,1-w
* Expected layer to convey the information
Expected Layer:
Al = ProbeAcc(0: ) — ProbeAcc (0:1 — 1)

YAl
=3

 Al: The benefit of adding layer [

E[AY]

« E[A']: The expected layer to solve the
probing task
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Probing Pretraining Representations: Across Layers

Layerl0 2 4 6 8 10 12 14 16

Part-of-Speech
Constituent Labeling
Dependency Labeling
Named Entity Labeling
Semantic Role Labeling
Coreference

Semantic Proto-Role

Relation Classification

T T T T T T T O I A O T

3.39

5.69 13.75

9.93

9.40 m

Expected Layer Center of Gravity

Figure 8: Edge Probing Results of BERT Large [3].

[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline." 26

Different tasks are tackled at different layers
* Syntactic tasks at lower layers

* Semantic/Knowledge tasks at higher ones

Fall 2023 11-667 CMU
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Probing Pretraining Representations: Across Training Steps
Ave. Performance Example Linguistic Tasks:

e Part-of-Speech
0.9- P
* Named Entity Labeling
e Syntactic Chunking
0.8
0.7 1
0.6
Ok 200k 400k 600k 800k 1M
Figure 9: Linguistics Task Probing
at RoBERTa Pretraining Steps [4].
—==- Random Guess e GloVe + Linear CIf. Our Checkpoints 1 Learning Progress-90% M Learning Progress-97%
Random Vector + Linear CIf. = —-- Original ROBERTagase —— exp. moving average curve [0 Learning Progress-95%

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." Fall 2023 11-667 CMU

EMNLP 2021.



Probing Pretraining Representations: Across Training Steps

Ave. Performance Example Factual/Commonsense Tasks:
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Figure 10: Factual/Common Sense Task Probing
at RoBERTa Pretraining Steps [4].
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[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." Fall 2023 11-667 CMU

EMNLP 2021.



Probing Pretraining Representations: Across Training Steps
Ave. Performance Example Reasoning Tasks:
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Figure 11: Reasoning Task Probing

at RoBERTa Pretraining Steps [4].

—==- Random Guess e GloVe + Linear CIf. Our Checkpoints 1 Learning Progress-90% M Learning Progress-97%
Random Vector + Linear CIf. = —-- Original ROBERTagase —— exp. moving average curve [0 Learning Progress-95%

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." Fall 2023 11-667 CMU

EMNLP 2021.



Probing Pretraining Representations: Across Training Steps

Ave. Performance Ave. Performance Ave. Performance
00| = =R 0.175 ] === v m— — — — —— 0.44 -
0.150 - 0.42-
0.8- 0.125 - 0.40-
0.100 - 0.38-
0.71 Jueeiiinnnnnnnnnnnnnnnns 0.075 0.36-
06 0.050 - 0.34-
0.025 -
| T Ao

0.32 1
0.301

Figure 11: Probing at Pretraining steps in Linguistic (left), Factual/Commonsense (middle), and Reasoning (right) tasks [4]

* Capturing tasks at different conceptual difficulty at different rate
* Emergent improvements

e Certain tasks require certain scale

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." Fall 2023 11-667 CMU

EMNLP 2021.



Probing Pretraining Representations: Summary

From the observatory point of view:

Some attention patterns are intuitive

Pretrained representations convey strong language information

Different tasks are captured at different layers and different steps

And the conceptual difficulty of tasks aligns with where & when they are captured
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Probing Pretraining Representations: Summary

From the observatory point of view:

Some attention patterns are intuitive

Pretrained representations convey strong language information

Different tasks are captured at different layers and different steps

And the conceptual difficulty of tasks aligns with where & when they are captured

It is tempting to think language models capture language semantics from a ground up way:
Syntactic =Semantic = Factual — Reasoning —=General Intelligence

* Like a classic NLP pipeline

* Like how human brains learn natural language
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Probing Pretraining Representations: Summary

From the observatory point of view:

Some attention patterns are intuitive

Pretrained representations convey strong language information

Different tasks are captured at different layers and different steps

And the conceptual difficulty of tasks aligns with where & when they are captured

It is tempting to think language models capture language semantics from a ground up way:
Syntactic =Semantic = Factual — Reasoning —=General Intelligence

* Like a classic NLP pipeline

* Like how human brains learn natural language

But:

* Classic NLP tasks are not really ground up, best systems are often more direct & straightforward

* We really do not know how human brains work, perhaps less than we know how LLM works

Practical implications:

* Efficient inference by only using what is needed: early exist, sparsity, distillation, etc.

33
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Outline

What is captured in BERT?

Why pretrained models generalize?
* Loss landscapes

* Implicit bias of language models

What does in-context learning do?

34
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Understand Generation Ability: Overview

Why pretrained models generalize to many fine-tuning tasks?

* Even on tasks with sufficient supervised label

Why larger models and longer pretraining steps improve generalization?

* In statistical machine learning: more complicated model + exhaustive training is recipe for overfitting

e But they indeed are the core advantages of pretraining models

35 Fall 2023 11-667 CMU




Visualization of Loss Landscape

Plot the loss function around a model parameter 6

* Challenge: 0 is super high dimension

Approximation: plot the loss landscape of 8 towards two other parameters 6, and 6, [5]
f(a,B) =loss(6 + a(6, — 0) + B(6, — 0))

* Aplot along the axes of @ and [ the linear interpolation

[5] Li, et al. "Visualizing the loss landscape of neural nets.” Fall 2023 11-667 CMU

NeurlPS 2018.



Visualization of Loss Landscape

Plot the loss function around a model parameter 6

* Challenge: 0 is super high dimension

Approximation: plot the loss landscape of 8 towards two other parameters 6, and 6, [5]
f(a,B) =loss(6 + a(6, — 0) + B(6, — 0))

* Aplot along the axes of @ and [ the linear interpolation

Figure 12: A sharp loss landscape and a smooth loss landscape [5]

[5] Li, et al. “Visualizing the loss landscape of neural nets.” NeurlPS 2018. Fall 2023 11-667 CMU




Visualization of Loss Landscape: BERT

BERT landscape in finetuning [6]

f(a,B) =loss(6 + a(6, — 0) + B(6, — 0))
e @ starting parameter of fine-tuning: pretrained or random initialized
* O, the finetuned parameter of this task

* 0, the finetuned parameter of another task, which is meaningful

[6] Hao, Yaru, et al. "Visualizing and Understanding the Effectiveness of BERT."
EMNLP 2019.

Fall 2023 11-667 CMU



Visualization of Loss Landscape: BERT

BERT landscape in finetuning [6]

f(a,B) =loss(6 + a(6, — 0) + B(6, — 0))
e @ starting parameter of fine-tuning: pretrained or random initialized
* O, the finetuned parameter of this task

* 0, the finetuned parameter of another task, which is meaningful

- point

start |~

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT."
EMNLP 2019.
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Visualization of Loss Landscape: BERT

BERT landscape in finetuning [6]
f(a,B) =loss(6 + a(6, — 0) + B(6, — 0))

e @ starting parameter of fine-tuning: pretrained or random initialized

* O, the finetuned parameter of this task

* 0, the finetuned parameter of another task, which is meaningful

Random Pretrained

- point

start |~

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT."
EMNLP 2019.
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Visualization of Loss Landscape: BERT

Plot the optimization path: project the checkpoint 6’ at different steps to the loss landscape
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Figure 14: Optimization Trajectory when finetuning MNLI from random (left) and pretrained (right) BERT [6]

[6] Hao, Yaru, et al. "Visualizing and Understanding the Effectiveness of BERT." Fall 2023 11-667 CMU

EMNLP 2019.



Outline

What is captured in BERT?

Why pretrained models generalize?
* Loss landscapes

* Implicit bias of language models

What does in-context learning do?

42
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Inductive Bias of Language Models: Pretraining Longer

2.

NS 80

> 88.0

— ")

© 2.75 o

5 87.5 O

O --=-- Pre-training o

< 87.0 2.70 2

= ; —e— Linear Probe =

5 865 2.65 O

-

A 86.0 }ﬁ . é

- ’q 0\ I o
ey’ o 7@ / 4 2.60

= 85.5 :V Ir ﬁ W‘ ] *Ll IS

o)

200 400 600 800 1000 1200 1400
Number of Steps / 1000

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Fall 2023 11-667 CMU

Language Models." ICML 2023.



Inductive Bias of Language Models: Pretraining Longer

Yet smoothly improving downstream generalization

fos
o
o

00
~
un

00
o
U

M ~J

o)l ~

un o o
re-training Loss

00
e
o

™

o

o
P

Downstream Accuracy %
oo oo
LN -]
wn o

«__ Signs of overfitting and

200 400 600 800 1000 1200 1400 instable learning
Number of Steps / 1000

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Fall 2023 11-667 CMU

Language Models." ICML 2023.



Inductive Bias of Language Models: Pretraining Longer

Same pretraining loss but flattener loss shape
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Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Trace of (Loss) Hessian: A reflection of the loss flatness

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Fall 2023 11-667 CMU

Language Models." ICML 2023.



Inductive Bias of Language Models: Larger Models

Flatness,
implicit bias

Models with
minimum loss
(global min)

Optimization trajectory

Figure 16: lllustration of Optimization Trajectory [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Fall 2023 11-667 CMU

Language Models." ICML 2023.



Inductive Bias of Language Models: Larger Models

Flatness,
implicit_bias

_____ -
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Larger models can reach a flattener optima:
Models with 1. Larger transformers have bigger

minimum loss solution space
(global min)
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Figure 16: lllustration of Optimization Trajectory [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Fall 2023 11-667 CMU

Language Models." ICML 2023.



Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima
* Better starting point

* Better loss shape

* Pretraining longer and larger Transformers lead to more flatness

48 Fall 2023 11-667 CMU




Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

* Better starting point

* Better loss shape

* Pretraining longer and larger Transformers lead to more flatness

Why flatness matters?

* Many empirical evidences showing its connection to generalization ability

* |ntuitively, more robust to data variations/noises

* Theoretically, argued that it leads to simpler network solutions
* Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
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Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

* Better starting point

* Better loss shape

* Pretraining longer and larger Transformers lead to more flatness

Why flatness matters?

* Many empirical evidences showing its connection to generalization ability
* |ntuitively, more robust to data variations/noises

* Theoretically, argued that it leads to simpler network solutions
* Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997

Why pretrained models prefer flatter optima?

* Ainductive bias of the optimizer, the architecturer, the pretraining loss, or the combination of them?

* Much more research required
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Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?
e Semantic Prior or Input-Label Mapping

e Connection with Gradient Decent
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In-Context Learning Interpretation: Observations

Natural language targets: Two sources of information:
{Positive/Negative} sentiment * Semantic knowledge captured in LLM

4 _ _ _ R In-context training signals (input-label mapping)
Contains no wit [...] \n  Negative
Very good viewing [...] \n  Positive
A smile on your face \n

N\ J

'

Language
Model
v

[ Positive ]

Figure 17: Regular In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: Observations

Natural language targets: Two sources of information:
{Positive/Negative} sentiment * Semantic knowledge captured in LLM
4 _ _ _ R In-context training signals (input-label mapping)
Contains no wit [...] \n  Negative
Very good viewing [...] \n  Positive
A smile on your face \n Which one works? Mixed observations:
. /'« Random in-context labels work
J’ — Existing semantic knowledge
I—anguage * Order of in-context data matter
MOdEl — In-context training signals
v
[ Positive ]

Figure 17: Regular In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.
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In-Context Learning Interpretation: Random Label Test

Flipped natural language targets: Randomly flip X% of binary labels

{Negative/Positive} sentiment * More flips (XT), more requirement of existing

4 I knowledge to make correct prediction
Contains no wit [...] \n Positive
Very good viewing [...] \n Negative
A smile on your face \n
\_ /  Behavior of models with bigger X%
¢ * Those care less use more inner knowledge
Language * Those impacted more learn more in-context
Model
v
[ Negative ]

Figure 18: Flipped-Label In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: Random Label Test

Flipped natural language targets: Randomly flip X% of binary labels

{Negative/Positive} sentiment * More flips (XT), more requirement of existing

4 N knowledge to make correct prediction
Contains no wit [...] \n Positive
Very good viewing [...] \n Negative
A smile on your face \n
\_ /  Behavior of models with bigger X%
¢ * Those care less use more inner knowledge
Language * Those impacted more learn more in-context
Model
I Question:
[ Negative ] e Does larger LM care more, or less about bigger X?

Figure 18: Flipped-Label In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: Random Label Test

PaLM InstructGPT Larger models perform better with 0% flipped label
100 100 1 . :
S 80 '\/\\/\ 20 \ But are much more sensitive to label flips
>\ 60 B \ i S N
S —. R S
= 40 \ 40 \
< 20 20
0 L 0 N |
0 25 50 75 100 0 25 50 75 100
% flipped labels % flipped labels
—— PalLM-540B | Large | —— text-davinci-002
PalLM-62B text-davinci-001
PalLM-8B text-curie-001
- - - Random text-babbage-001
! Small ! text-ada-001
- - - Random

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning,
binary classification with 16 examples per class [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: Random Label Test

PaLM InstructGPT Larger models perform better with 0% flipped label
100 100 1 L :
< 80 \/\\A\ 20 \ But are much more sensitive to label flips
> 60 - N . B
ST ST ol RN
3 0 40 \ The strongest models can even over-correct
< 20
ol ol | * With merely 32 in-context labels
0 25 50 75 100 0 25 50 75 100
% flipped labels % flipped labels
—4— PaLM-540B | Large | —a— text-davinci-002 There must be some learning in in-context learning
PalLM-62B text-davinci-001 o ESpeCia”y in |arger LMs
PalLM-8B text-curie-001
- - - Random text-babbage-001
| Small | text-ada-001
- - - Random

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning,
binary classification with 16 examples per class [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: No Semantic Test

Semantically-unrelated targets: Use semantically-unrelated label terms
{Foo/Bar}, {Apple/Orange}, {A/B}  E.g., foo / barinstead of positive / negative
4 ) * Models have to learn more from in-context

Contains no wit [...] \n Foo

Very good viewing [...] \n Bar

A smile on your face \n L Behavior of models with unrelated labels
. J * Those perform well learns more in-context

J’ * Those impacted rely more in existing knowledge
Language
Model
[ Bar ]

Figure 20: In-Context Learning with Semantically-Unrelated
Label Terms [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: No Semantic Test

Larger models work better with unrelated labels

PalLM InstructGPT * They learn in-context label mappings better
100 100
90 90
~ 80 80 |- Smaller models are more prune to unrelated labels
g 70 70
~. 60| 60 | * They rely more on their prior-knowledge
é 50 | 50 |-
= 40 40
Q
% 30 |- 30 ||
20 20
10 | 10 ||
0 o U
8B 62B 540B a-1b-1c-1d-1d-2

[ ] Semantically-unrelated targets (SUL-ICL)
B Natural language targets (regular ICL)

Figure 21: In-Context Learning Accuracy with Semantically-
Unrelated Labels versus Related Labels [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: No Semantic Test

Larger models better leverages in-context examples

* Advantages more pronounces with more labels

100 | 100 |
S 80| 30 | /"
> 60 60 % Not much better than random with two examples
S LT et et e L E—" _ ot
§ 40 40 e Confirms unrelated labels are not aligned with
< 201 20 | existing semantic knowledge
0 | | 0 | | |
2 4 8 16 2 4 8 16

# exemplars per class # exemplars per class

—4— PalLM-540B —e— code-davinci-002
PalLM-62B —e— code-davinci-001
PalLM-8B —e— code-cushman-001

- - - Random - - - Random

Figure 22: In-Context Learning with Different Number of
Semantically-Unrelated Labels [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. Fall 2023 11-667 CMU




In-Context Learning Interpretation: Observations

Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
* Less sensitive to flipped labels
* Hard to capture semantically-unrelated input-label mappings

e Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
e Can reverse their semantic prior to predict flipped labels

* Can learn semantic-unrelated label mappings

* Better utilizes more in-context examples
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In-Context Learning Interpretation: Observations

Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
* Less sensitive to flipped labels
* Hard to capture semantically-unrelated input-label mappings

e Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
e Can reverse their semantic prior to predict flipped labels
* Can learn semantic-unrelated label mappings

* Better utilizes more in-context examples

Why? How can LLMs learn from in-context examples?
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Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?
e Semantic Prior or Input-Label Mapping

 Connection with Gradient Decent
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Learning in In-Context Learning: Gradient Construction

One can manually construct a Transformer (T F;p) that does gradient operation in in-context learning
* Its prediction given in-context learning examples (X, Y)
== a reference model after performing SGD on (X, Y%)

* The predict change of adding a new (x, y) is similar with reference model after an SGD step with (x, y)

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Gradient Construction

One can manually construct a Transformer (T F;p) that does gradient operation in in-context learning
* Its prediction given in-context learning examples (X, Yx)
== a reference model after performing SGD on (X, Y%)

* The predict change of adding a new (x, y) is similar with reference model after an SGD step with (x, y)

Currently it can be done in these conditions [9]:
* Linear self-attention, no SoftMax
* Reference model is a simple regression model such as linear regression

* Can stack linear self-attention with MILP but nothing more, i.e. no layer norm etc.

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Gradient Construction

Detailed mathematical construction can be found in Oswald et al. 2023 [9].

Intuitively:

 Self-attention is a high-capacity function and can approximate many math operations
* The reference model (the one who does SGD) is a simple linear regression model

* Lost of non-linearity removed to facilitated the construction

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Gradient Construction

Detailed mathematical construction can be found in Oswald et al. 2023 [9].

Intuitively:

 Self-attention is a high-capacity function and can approximate many math operations
* The reference model (the one who does SGD) is a simple linear regression model

* Lost of non-linearity removed to facilitated the construction

A very toy-ish set up, but a good thought process and a starting point to understand complicated LLMs

e Similar assumptions are often taken in current deep learning theory research

The gradient decent Transformer Tgp is learn in-context by gradient decent by construction

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Trained Transformer

TFgp is constructed but not learned
* A constructed measurement target
One can train the toy Transformer T Frp,i, in the same in-context learning set up

* E.g., to perform linear regression task with in-context examples

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Comparison

TFgp is constructed but not learned
* A constructed measurement target
One can train the toy Transformer T Frp,i, in the same in-context learning set up

* E.g., to perform linear regression task with in-context examples

Trained Transformer matches the

0.40 - 2.5 .
1 — GD e — constructed gradient decent Transformer
=== Trained TF | Model diff — -1.00 . .
0.351 2.0 e d | * Near identical
o € 151 095  Prediction L2 difference
0.30 A e . .
= S 1.0 £ 0.90 * Model sensitivity cosine/L2 difference
0.25 1 } * Model sensitivity L2 difference
0.5+ N r -0.85
—
0.20 — . T 0.0 — T T T 7 — 0.80
0 2000 4000 0 1000 2000 3000 4000 5000

Training steps Training steps

Figure 23: Comparison of constructed TFgp and Trained T Frpain- [9]

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Comparison

TFgp is constructed but not learned

* A constructed measurement target

One can train the toy Transformer T Frp,i, in the same in-context learning set up
* E.g., to perform linear regression task with in-context examples

Trained Transformer matches the

0407 ) 2.5 constructed gradient decent Transformer

= GD == Preds diff = Model cos
= Trained TF i Model diff — -1.00 . .
0.351 2.0 - | * Near identical
o § 151 095 e Prediction L2 difference
0.30 A e e . .
3 ~ 101 0.90 * Model sensitivity cosine/L2 difference
0.25 } * Model sensitivity L2 difference
0.5 1 N r - 0.85
0.20 = . . 0.0 — T T T T — 0.80 . ]
0 2000 4000 0 1000 2000 3000 4000 5000 Transformers (with strong assumptions
Training steps Training steps . . : :
and simplifications) learn in-context by
Figure 23: Comparison of constructed TFp and Trained T Fppain. [9] gradient descent (of a linear regression

model)

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023. Fall 2023 11-667 CMU




Learning in In-Context Learning: Multi-Layer Transformer

Compare the constructed and learned Transformer in multi-layer setting

0.40 GD vs trained TF 0.4 - GD vs trained TF
— GD 2.57 — GD 2.01 L 1.05
0.35 - — GD** === Model cos GD**5 steps === Maodel cos
~—— Trained TF 207 [e—— 1.0 0.31 = Trained TF 1.5 4 e L 1.00
0.30 1 ’
€15 0.9 E " £ (\ £
A 1.5 . n . L n
) j 5 = Preds diff ) 5 = Preds diff [ 0.95
3 0.25 o log @ 0 0.2 © 10l )
- z Model diff [ 98 £ 4 = LOT 1IN —— Model diff £
0.20 - N 1.0 8 \ N ~——_____[0903
' 0.7 Q Q
0.1 0.5
0.15 LS.; 0.51 L L 0.6 : - 0.85
0.10 = . . . 0.0 = . . ; 0.5 0.0 . . 0.80
0 1000 2000 3000 0 1000 2000 3000 0 20000 40000 0 20000 40000
Training steps Training steps Training steps Training steps
Figure 24: Two-layer TFgp versus T Frpain- [9] Figure 25: Five-layer TFgp versus T Frpain- [9]
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Learning in In-Context Learning: Multi-Layer Transformer

Compare the constructed and learned Transformer in multi-layer setting

0.40 -

0.35 1

0.30 1

)]

8 0.25
|
0.20 1

0.15 1
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= Trained TF
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0

1000 2000 3000

Training steps

L2 Norm
-
o

o
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=
wu
L

GD vs trained TF

== Model cos

= Preds diff
Model diff
0 1000 2000 3000

Training steps

Figure 24: Two-layer TFgp versus T Frpain- [9]
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Learned Transformer outperforms the constructed TFgp

Divergence increases with deeper (five only, still) networks
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Figure 25: Five-layer TF;p versus T Frpain. [9]

But still remarkable similarity of in-context learning and gradient decent

Upgraded gradient decent TF;p with manually tuned data transformation matches better

Fall 2023 11-667 CMU




Learning in In-Context Learning: Theory versus Empirical

Empirical Observation Theory
* Larger Transformers better learn in-context * Transformers perform one gradient step per layer
* More in-context examples help larger model more * And per in-context example

* Smaller Transformers rely more on existing semantic  Smaller models have limited gradient steps built in

N 4

Assumptions :

e Linear attention + MLP Transformer
* Simple regression reference model
e Shallow networks

Fall 2023 11-667 CMU



In-Context Learning Interpretation: Summary

Various solid empirical evidence that:
* Larger Transformers do learn in-context

* In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

e Good intuitions

* One way to make sense of in-context learning
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In-Context Learning Interpretation: Discussion

Likely many not-yet-finished learning theory,
* This interpretation is more for our understanding and inspiration

e Strong assumptions are introduced to make the theory

Personal views:

* In-context learning is different from SGD and is more powerful in some scenarios
* Connecting with existing, well-known techniques is a good starting point

* Eventually researchers will develop new theorical frameworks to explain the amazing capabilities of LLM
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Outline

What is captured in BERT?
* Attention patterns

* Probing capture capabilities in representations

Why pretrained models generalize?
* Loss landscapes

* Implicit bias of language models

What does in-context learning do?
e Semantic Prior or Input-Label Mapping

 Connection with Gradient Decent
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Quiz: Why the order of in-context example matters?
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BERT Attention Patterns: Linguistic Examples
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Figure 5: Objects Attend to their Verbs (Left—Right) [1]
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BERT Attention Patterns: Linguistic Examples
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Figure 6: Noun Modifiers Attend to their Noun (Left—Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019
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Probing Pretraining Representations: Across Layers

Mixing representations from multiple layers:
hx =% sthl; st = softmax(at)
Definition: Center-of-Gravity
E[l]=Y,1-s"
* Expected layer to convey the information needed by the probe task
* Larger Center-of-Gravity — information needed captured at higher layers

Definition: Expected Layer
Al = Probing Score(0: 1) — Probing Score(0: [ — 1)

Y eA
=3

« Al: The benefit of adding layer [ in the mix

E[AY]

« E[A']: The expected layer to resolve the probing task

[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline." 83 Fall 2023 11-667 CMU
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Probing Across Time Tasks

Package Knowledge Task Formulation Examples
. VERB
POS Tagging staying
. . . B-NP
Syntactic Chunking Token Labeling American
LKT Linguistic Name Entity Recognition
Syntactic Arc Predication
.................................. Token Pair Labeling
Syntactic Arc Classification 4{(Coni} .., v )
Peter and May bought car .
Irregular Forms . v/ Aaron broke the unicycle. X Aaron broken the unicycle.
----------- Comparing
Determiner-Noun Agree.
L e A Sentence Scores
BLIMP Linguistic Subject-Verb Agreement
---------------------------------- Expected:
Island Effect S(/) > S(X)
Filler Gap
Google RE Masked LM
Factual :
LAMA Expected
_______________________________ SQuAD  |Vw € VgeBerm \ {v},
Commonsense ConceptNet P(v/ | C) > P(w | C) | Youcan use [MASK] to bathe your dog. V1 [MASK] = shampoo
Conjunction Acceptability v Jim yelled at Kevin because Jim was so upset. X Jim yelled at Kevin and Jim was so upset.
Comparing v/ Someone unlocks the door and they go in. Someone leads the way in.
SWAG Sentence Scores X Someone unlocks the door and they go in. Someone opens the door and walks out.
CAT Commonsense Expected: X Someone unlocks the door and they go in. Someone walks out of the driveway.
VX, X Someone unlocks the door and they go in. Someone walks next to someone and sits on a pew.
S(v) > S(X) v People can choose not to use Google, and since all other search engines re-direct to Google,
. Google is not a harmful monopoly.
Argument Reasoning . X X
X People can choose not to use Google, but since other search engines do not re-direct to Google,
Google is not a harmful monopoly.
Taxonomy Conjunction . . A ferry and a floatplane are both a type of [MASK]. v vehicle X airplane X boat
Multiple Choice ~ frmmmmemseremamenenenaes D e e R T EER
It was [MASK] hot, it was really cold. v not X really
. Masked LM
OLMPICS Reasoning

Expected: VX,
P(v/|C)>Px|C)

A .

‘When comparing a 23, a 38 and a 31 year old, the [MASK] is oldest.

v second X first X third
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In-Context Learning Interpretation: Summary

Various solid empirical evidence that:
* Larger Transformers do learn in-context

* In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

e Good intuitions

* One way to make sense of in-context learning

* Very strong assumptions are introduced for the connection, unfortunately
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