Interpretation of Pretrained Language Models

Chenyan Xiong

11-667

Disclaimer

No one really understand why language model works

Very limited theory and very limited empirical observation, especially at large scale

This lecture is to share:

- Observations upon, not causality of, the behavior of LLMs
- Early attempts to interpret their ability
- Useful intuitions and interesting thought experiments

Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?

Outline

What is captured in BERT?

- Attention patterns
- Probing capture capabilities in representations

Why pretrained models generalize?

What does in-context learning do?

BERT Attention Patterns

Restate Transformer's attention mechanism:

 $\alpha_{ij} =$ $\exp(q_i \cdot k_j/\sqrt{d_k})$ $\sum_t \exp(q_i \cdot k_t / \sqrt{d_k})$ Attention from $i \rightarrow j$:

New representation of i :

$$
o_i = \sum_j \alpha_{ij} v_j
$$

The new representation of position i is the attention-weighted combination of other positions' value

• Higher α_{ij} \rightarrow bigger contribution of position *j* to position *i*

Average Entropy of α_{ij}

High entropy heads in lower layers:

• Bag-of-words alike mechanism

Figure 1: Entropy of BERT Attention Distributions [1]

• More global information?

BERT Attention Patterns: Common Patterns

Figure 2: Attend Broadly (Left→Right) [1]

Common Pattern 1: Broad attention

- Neural networks are hard to interpret
- Various stuffs mixed together, hard to tell

BERT Attention Patterns: Common Patterns

Figure 3: Attend to Next (Left→Right) [1]

Common Pattern 2: Attend to next token

- Reverse RNN style
- Learned positional relation in pretraining

BERT Attention Patterns: Common Patterns

Figure 4: Attend to [SEP] and punctuations (Left \rightarrow Right) [1]

Common Pattern 3: Attend to [SEP] and "."

- Centralizing attention to specific tokens
- Effect unclear
	- Some consider it a "none" operation
	- Some consider it as an information hub
	- Maybe a mix of both, at different heads

BERT Attention Patterns: Linguistic Examples

Figure 5: Objects Attend to their Verbs (Left→Right) [1]

BERT Attention Patterns: Linguistic Examples

Figure 6: Noun Modifiers Attend to their Noun (Left→Right) [1]

BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters

- Some attention head corresponds to linguistic relations
- More captured in pretraining, may not change much in fine-tuning

BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters

- Some attention head corresponds to linguistic relations
- More captured in pretraining, may not change much in fine-tuning

Practical Implications:

- Attention weights reflect the importance perceived by language models
- An effective way to gather feedback from LLMs (handy in later lectures)

Outline

- What is captured in BERT?
- Attention patterns
- **Probing capture capabilities in representations**

- Why pretrained models generalize?
- What does in-context learning do?

Probing what is stored in the representations of pretrained models

Figure 7: Edge Probing Technique [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

18 Fall 2023 11-667 CMU

Mixing representations from layers:

$$
\boldsymbol{h}_t^{\text{mix}} = \sum_l w^l \boldsymbol{h}_t^l; w^l = \text{softmax}(a^l)
$$

- Weighted combination of layers (l)
- Combination weights (a^l) is trained per task **Binary classifiers** with the classification layer

representations

Contextual vectors

Figure 7: Edge Probing Technique [2]

Figure 7: Edge Probing Technique [2]

Figure 7: Edge Probing Technique [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

Mixing representations from layers:

$$
\boldsymbol{h}_t^{\text{mix}} = \sum_l w^l \boldsymbol{h}_t^l; w^l = \text{softmax}(a^l)
$$

Labels

Center-of-Gravity:

Binary classifiers

 $E\left[l \right] = \sum_l l \cdot w^l$

• Expected layer to convey the information

Expected Layer:

representations

Contextual vectors

- Δ^l = ProbeAcc(0: *l*) ProbeAcc (0: *l* 1) $E[\Delta^l] = \frac{\sum_l l \cdot \Delta^l}{\sum_l \Delta^l}$ Σ_l Δ l
- Δ^l : The benefit of adding layer l
- $E[\Delta^l]$: The expected layer to solve the probing task

Figure 7: Edge Probing Technique [2]

Probing Pretraining Representations: Probing Tasks

Table 1: Example Language Tasks to Probe BERT [2]

Probing Pretraining Representations: Probing Results

Table 2: Overall Probing Results [2]

All very good numbers:

• The pretrained representations convey syntactic and sematic information

Probing Pretraining Representations: Across Layers

Layer *0* 8 16 6 \mathcal{L} 10 12. 14 3.39 11.68 Part-of-Speech 13.06 3.79 Constituent Labeling 13.75 5.69 Dependency Labeling 4.64 13.16 Named Entity Labeling 6.54 13.63 Semantic Role Labeling 9.47 15.80 Coreference 9.93 12.72 Semantic Proto-Role 9.40 12.83 Relation Classification **Expected Layer Center of Gravity**

Mixing representations from layers:

$$
\boldsymbol{h}_t^{\text{mix}} = \sum_l w^l \boldsymbol{h}_t^l; w^l = \text{softmax}(a^l)
$$

Center-of-Gravity:

 $E\left[l \right] = \sum_l l \cdot w^l$

- Expected layer to convey the information **Expected Layer**:
- Δ^l = ProbeAcc(0: *l*) ProbeAcc (0: *l* 1) $E[\Delta^l] = \frac{\sum_l l \cdot \Delta^l}{\sum_l \Delta^l}$ Σ_l Δ l
- Δ^l : The benefit of adding layer l
- $E[\Delta^l]$: The expected layer to solve the probing task

Figure 8: Edge Probing Results of BERT Large [3].

Probing Pretraining Representations: Across Layers

Different tasks are tackled at different layers

- Syntactic tasks at lower layers
- Semantic/Knowledge tasks at higher ones

Figure 8: Edge Probing Results of BERT Large [3].

Ave. Performance

Example Linguistic Tasks:

- Part-of-Speech
- Named Entity Labeling

Learning Progress-90%

Learning Progress-95%

• Syntactic Chunking

Learning Progress-97%

Ave. Performance

EMNLP 2021.

Example Factual/Commonsense Tasks:

- SQuAD
- ConceptNet
- Google Relation Extraction

Example Reasoning Tasks:

- Taxonomy Conjunction
- Multi-Hop Composition
- Object Comparison

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.

Learning Progress-97%

Figure 11: Probing at Pretraining steps in Linguistic (left), Factual/Commonsense (middle), and Reasoning (right) tasks [4]

- Capturing tasks at different conceptual difficulty at different rate
- Emergent improvements
- Certain tasks require certain scale

Probing Pretraining Representations: Summary

From the observatory point of view:

- Some attention patterns are intuitive
- Pretrained representations convey strong language information
- Different tasks are captured at different layers and different steps
- And the conceptual difficulty of tasks aligns with where & when they are captured

Probing Pretraining Representations: Summary

From the observatory point of view:

- Some attention patterns are intuitive
- Pretrained representations convey strong language information
- Different tasks are captured at different layers and different steps
- And the conceptual difficulty of tasks aligns with where & when they are captured

It is tempting to think language models capture language semantics from a ground up way: Syntactic →Semantic → Factual → Reasoning →General Intelligence

- Like a classic NLP pipeline
- Like how human brains learn natural language

Probing Pretraining Representations: Summary

From the observatory point of view:

- Some attention patterns are intuitive
- Pretrained representations convey strong language information
- Different tasks are captured at different layers and different steps
- And the conceptual difficulty of tasks aligns with where & when they are captured

It is tempting to think language models capture language semantics from a ground up way:

Syntactic →Semantic → Factual → Reasoning →General Intelligence

- Like a classic NLP pipeline
- Like how human brains learn natural language

But:

- Classic NLP tasks are not really ground up, best systems are often more direct & straightforward
- We really do not know how human brains work, perhaps less than we know how LLM works

Practical implications:

• Efficient inference by only using what is needed: early exist, sparsity, distillation, etc.

Outline

What is captured in BERT?

Why pretrained models generalize?

- Loss landscapes
- Implicit bias of language models

What does in-context learning do?

Understand Generation Ability: Overview

Why pretrained models generalize to many fine-tuning tasks?

• Even on tasks with sufficient supervised label

Why larger models and longer pretraining steps improve generalization?

- In statistical machine learning: more complicated model + exhaustive training is recipe for overfitting
- But they indeed are the core advantages of pretraining models

Visualization of Loss Landscape

- Plot the loss function around a model parameter θ
- Challenge: θ is super high dimension

Approximation: plot the loss landscape of θ towards two other parameters θ_1 and θ_2 [5]

$$
f(\alpha, \beta) = \cos(\theta + \alpha(\theta_1 - \theta) + \beta(\theta_2 - \theta))
$$

• A plot along the axes of α and β the linear interpolation
- Plot the loss function around a model parameter θ
- Challenge: θ is super high dimension

Approximation: plot the loss landscape of θ towards two other parameters θ_1 and θ_2 [5]

$$
f(\alpha, \beta) = \cos(\theta + \alpha(\theta_1 - \theta) + \beta(\theta_2 - \theta))
$$

• A plot along the axes of α and β the linear interpolation

Figure 12: A sharp loss landscape and a smooth loss landscape [5]

BERT landscape in finetuning [6]

 $f(\alpha, \beta) = \cos(\theta + \alpha(\theta_1 - \theta) + \beta(\theta_2 - \theta))$

- θ starting parameter of fine-tuning: pretrained or random initialized
- θ_1 the finetuned parameter of this task
- θ_2 the finetuned parameter of another task, which is meaningful

BERT landscape in finetuning [6]

 $f(\alpha, \beta) = \text{loss}(\theta + \alpha(\theta_1 - \theta) + \beta(\theta_2 - \theta))$

- θ starting parameter of fine-tuning: pretrained or random initialized
- θ_1 the finetuned parameter of this task
- θ_2 the finetuned parameter of another task, which is meaningful

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]

BERT landscape in finetuning [6]

 $f(\alpha, \beta) = \text{loss}(\theta + \alpha(\theta_1 - \theta) + \beta(\theta_2 - \theta))$

- θ starting parameter of fine-tuning: pretrained or random initialized
- θ_1 the finetuned parameter of this task
- θ_2 the finetuned parameter of another task, which is meaningful

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]

Plot the optimization path: project the checkpoint θ' at different steps to the loss landscape

Figure 14: Optimization Trajectory when finetuning MNLI from random (left) and pretrained (right) BERT [6]

Outline

What is captured in BERT?

Why pretrained models generalize?

- Loss landscapes
- **Implicit bias of language models**

What does in-context learning do?

Inductive Bias of Language Models: Pretraining Longer

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Inductive Bias of Language Models: Pretraining Longer

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Inductive Bias of Language Models: Pretraining Longer

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Trace of (Loss) Hessian: A reflection of the loss flatness

Inductive Bias of Language Models: Larger Models

Figure 16: Illustration of Optimization Trajectory [7]

Inductive Bias of Language Models: Larger Models

Large Model

Figure 16: Illustration of Optimization Trajectory [7]

Larger models can reach a flattener optima:

- Larger transformers have bigger solution space
- 2. They cover smaller transformers
- 3. Optimizer keep seeking for flattener optima, even reached same loss

Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

- Better starting point
- Better loss shape
- Pretraining longer and larger Transformers lead to more flatness

Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

- Better starting point
- Better loss shape
- Pretraining longer and larger Transformers lead to more flatness Why flatness matters?
- Many empirical evidences showing its connection to generalization ability
- Intuitively, more robust to data variations/noises
- Theoretically, argued that it leads to simpler network solutions
	- Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997

Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

- Better starting point
- Better loss shape
- Pretraining longer and larger Transformers lead to more flatness Why flatness matters?
- Many empirical evidences showing its connection to generalization ability
- Intuitively, more robust to data variations/noises
- Theoretically, argued that it leads to simpler network solutions
	- Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
- Why pretrained models prefer flatter optima?
- A inductive bias of the optimizer, the architecturer, the pretraining loss, or the combination of them?
- Much more research required

Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?

- Semantic Prior or Input-Label Mapping
- Connection with Gradient Decent

In-Context Learning Interpretation: Observations

Natural language targets: {Positive/Negative} sentiment

Two sources of information:

- Semantic knowledge captured in LLM
- In-context training signals (input-label mapping)

Figure 17: Regular In-Context Learning [8]

In-Context Learning Interpretation: Observations

Natural language targets: {Positive/Negative} sentiment

Figure 17: Regular In-Context Learning [8]

Two sources of information:

- Semantic knowledge captured in LLM
- In-context training signals (input-label mapping)

Which one works? Mixed observations:

- Random in-context labels work
- \rightarrow Existing semantic knowledge
- Order of in-context data matter
- \rightarrow In-context training signals

Flipped natural language targets: {Negative/Positive} sentiment

Figure 18: Flipped-Label In-Context Learning [8]

Randomly flip X% of binary labels

• More flips (X[†]), more requirement of existing knowledge to make correct prediction

Behavior of models with bigger X%

- Those care less use more inner knowledge
- Those impacted more learn more in-context

Flipped natural language targets: {Negative/Positive} sentiment

Figure 18: Flipped-Label In-Context Learning [8]

Randomly flip X% of binary labels

• More flips (X1), more requirement of existing knowledge to make correct prediction

Behavior of models with bigger X%

- Those care less use more inner knowledge
- Those impacted more learn more in-context

Question:

• Does larger LM care more, or less about bigger X?

Larger models perform better with 0% flipped label

• But are much more sensitive to label flips

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning, binary classification with 16 examples per class [8]

Larger models perform better with 0% flipped label

• But are much more sensitive to label flips

The strongest models can even over-correct

• With merely 32 in-context labels

There must be some learning in in-context learning

• Especially in larger LMs

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning, binary classification with 16 examples per class [8]

In-Context Learning Interpretation: No Semantic Test

Semantically-unrelated targets: {Foo/Bar}, {Apple/Orange}, {A/B}

Figure 20: In-Context Learning with Semantically-Unrelated Label Terms [8]

Use semantically-unrelated label terms

- E.g., foo / bar instead of positive / negative
- Models have to learn more from in-context

Behavior of models with unrelated labels

- Those perform well learns more in-context
- Those impacted rely more in existing knowledge

In-Context Learning Interpretation: No Semantic Test

Semantically-unrelated targets (SUL-ICL)

Natural language targets (regular ICL)

Figure 21: In-Context Learning Accuracy with Semantically-Unrelated Labels versus Related Labels [8]

Larger models work better with unrelated labels

• They learn in-context label mappings better

Smaller models are more prune to unrelated labels

• They rely more on their prior-knowledge

In-Context Learning Interpretation: No Semantic Test

Larger models better leverages in-context examples

• Advantages more pronounces with more labels

Not much better than random with two examples

• Confirms unrelated labels are not aligned with existing semantic knowledge

Figure 22: In-Context Learning with Different Number of Semantically-Unrelated Labels [8]

In-Context Learning Interpretation: Observations

- Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
- Less sensitive to flipped labels
- Hard to capture semantically-unrelated input-label mappings
- Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples

- Can reverse their semantic prior to predict flipped labels
- Can learn semantic-unrelated label mappings
- Better utilizes more in-context examples

In-Context Learning Interpretation: Observations

- Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
- Less sensitive to flipped labels
- Hard to capture semantically-unrelated input-label mappings
- Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples

- Can reverse their semantic prior to predict flipped labels
- Can learn semantic-unrelated label mappings
- Better utilizes more in-context examples

Why? How can LLMs learn from in-context examples?

Outline

What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?

- Semantic Prior or Input-Label Mapping
- **Connection with Gradient Decent**

One can *manually* construct a Transformer (TF_{GD}) that does gradient operation in in-context learning

- Its prediction given in-context learning examples (X_k, Y_k) $=$ a reference model after performing SGD on (X_k, Y_k)
- The predict change of adding a new (x, y) is similar with reference model after an SGD step with (x, y)

One can *manually* construct a Transformer (TF_{GD}) that does gradient operation in in-context learning

- Its prediction given in-context learning examples (X_k, Y_k) == a reference model after performing SGD on (X_k, Y_k)
- The predict change of adding a new (x, y) is similar with reference model after an SGD step with (x, y)

Currently it can be done in these conditions [9]:

- Linear self-attention, no SoftMax
- Reference model is a simple regression model such as linear regression
- Can stack linear self-attention with MLP but nothing more, i.e. no layer norm etc.

Detailed mathematical construction can be found in Oswald et al. 2023 [9]. Intuitively:

- Self-attention is a high-capacity function and can approximate many math operations
- The reference model (the one who does SGD) is a simple linear regression model
- Lost of non-linearity removed to facilitated the construction

Detailed mathematical construction can be found in Oswald et al. 2023 [9]. Intuitively:

- Self-attention is a high-capacity function and can approximate many math operations
- The reference model (the one who does SGD) is a simple linear regression model
- Lost of non-linearity removed to facilitated the construction

A very toy-ish set up, but a good thought process and a starting point to understand complicated LLMs

• Similar assumptions are often taken in current deep learning theory research

The gradient decent Transformer T_{GD} is learn in-context by gradient decent by construction

Learning in In-Context Learning: Trained Transformer

- TF_{GD} is constructed but not learned
- A constructed measurement target
- One can train the toy Transformer TF_{Train} in the same in-context learning set up
- E.g., to perform linear regression task with in-context examples

Learning in In-Context Learning: Comparison

TF_{GD} is constructed but not learned

- A constructed measurement target
- One can train the toy Transformer TF_{Train} in the same in-context learning set up
- E.g., to perform linear regression task with in-context examples

Figure 23: Comparison of constructed TF_{GD} and Trained TF_{Train} . [9]

Trained Transformer matches the constructed gradient decent Transformer

- Near identical
	- Prediction L2 difference
	- Model sensitivity cosine/L2 difference
	- Model sensitivity L2 difference

Learning in In-Context Learning: Comparison

TF_{GD} is constructed but not learned

- A constructed measurement target
- One can train the toy Transformer TF_{Train} in the same in-context learning set up
- E.g., to perform linear regression task with in-context examples

Figure 23: Comparison of constructed TF_{GD} and Trained TF_{Train} . [9]

Trained Transformer matches the constructed gradient decent Transformer

- Near identical
	- Prediction L2 difference
	- Model sensitivity cosine/L2 difference
	- Model sensitivity L2 difference

Transformers (with strong assumptions and simplifications) learn in-context by gradient descent (of a linear regression model)

Learning in In-Context Learning: Multi-Layer Transformer

Compare the constructed and learned Transformer in multi-layer setting

Learning in In-Context Learning: Multi-Layer Transformer

Compare the constructed and learned Transformer in multi-layer setting

- Learned Transformer outperforms the constructed TF_{GD}
- Upgraded gradient decent TF_{GD} with manually tuned data transformation matches better
- Divergence increases with deeper (five only, still) networks
- But still remarkable similarity of in-context learning and gradient decent
Learning in In-Context Learning: Theory versus Empirical

Empirical Observation

- Larger Transformers better learn in-context
- More in-context examples help larger model more
- Smaller Transformers rely more on existing semantic

Assumptions :

- Linear attention + MLP Transformer
- Simple regression reference model
- Shallow networks

Theory

- Transformers perform one gradient step per layer
- And per in-context example
- Smaller models have limited gradient steps built in

In-Context Learning Interpretation: Summary

Various solid empirical evidence that:

- Larger Transformers do learn in-context
- In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

- Good intuitions
- One way to make sense of in-context learning

In-Context Learning Interpretation: Discussion

Likely many not-yet-finished learning theory,

- This interpretation is more for our understanding and inspiration
- Strong assumptions are introduced to make the theory

Personal views:

- In-context learning is different from SGD and is more powerful in some scenarios
- Connecting with existing, well-known techniques is a good starting point
- Eventually researchers will develop new theorical frameworks to explain the amazing capabilities of LLM

Outline

- What is captured in BERT?
- Attention patterns
- Probing capture capabilities in representations

Why pretrained models generalize?

- Loss landscapes
- Implicit bias of language models

What does in-context learning do?

- Semantic Prior or Input-Label Mapping
- Connection with Gradient Decent

Quiz: Why the order of in-context example matters?

References: BERTology

- Clark, Kevin, et al. "What does bert look at? an analysis of bert's attention." arXiv preprint arXiv:1906.04341 (2019).
- Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT rediscovers the classical NLP pipeline." arXiv preprint arXiv:1905.05950 (2019).
- Htut, Phu Mon, et al. "Do attention heads in BERT track syntactic dependencies?." arXiv preprint arXiv:1911.12246 (2019).
- Liu, Leo Z., et al. "Probing across time: What does RoBERTa know and when?." arXiv preprint arXiv:2104.07885 (2021).
- Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." arXiv preprint arXiv:1905.06316 (2019).
- Rogers, Anna, Olga Kovaleva, and Anna Rumshisky. "A primer in BERTology: What we know about how BERT works." Transactions of the Association for Computational Linguistics 8 (2021): 842-866.
- Carlini, Nicholas, et al. "Extracting Training Data from Large Language Models." USENIX Security Symposium. Vol. 6. 2021.
- Carlini, Nicholas, et al. "Quantifying memorization across neural language models." arXiv preprint arXiv:2202.07646 (2022).
- Izacard, Gautier, and Edouard Grave. "Distilling knowledge from reader to retriever for question answering." arXiv preprint arXiv:2012.04584 (2020).

References: Optimization

- Erhan, Dumitru, et al. "The difficulty of training deep architectures and the effect of unsupervised pre-training." Artificial Intelligence and Statistics. PMLR, 2009.
- Li, Hao, et al. "Visualizing the loss landscape of neural nets." Advances in neural information processing systems 31 (2018).
- Hao, Yaru, et al. "Visualizing and understanding the effectiveness of BERT." arXiv preprint arXiv:1908.05620 (2019).
- Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for Language Models." arXiv preprint arXiv:2210.14199 (2022).
- Chiang, Ping-yeh, et al. "Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent." The Eleventh International Conference on Learning Representations. 2023.

References: Knowledge

- Petroni, Fabio, et al. "Language models as knowledge bases?." arXiv preprint arXiv:1909.01066 (2019).
- Roberts, Adam, Colin Raffel, and Noam Shazeer. "How much knowledge can you pack into the parameters of a language model?." arXiv preprint arXiv:2002.08910 (2020).
- Jiang, Zhengbao, et al. "How can we know what language models know?." Transactions of the Association for Computational Linguistics 8 (2020): 423-438.
- Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).
- Min, Sewon, et al. "Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?." arXiv preprint arXiv:2202.12837 (2022).
- Geva, Mor, et al. "Transformer feed-forward layers are key-value memories." arXiv preprint arXiv:2012.14913 (2020).
- Meng, Kevin, et al. "Locating and editing factual associations in GPT." Advances in Neural Information Processing Systems 35 (2022): 17359-17372.

BERT Attention Patterns: Linguistic Examples

Figure 5: Objects Attend to their Verbs (Left→Right) [1]

BERT Attention Patterns: Linguistic Examples

Figure 6: Noun Modifiers Attend to their Noun (Left→Right) [1]

Probing Pretraining Representations: Across Layers

Mixing representations from multiple layers:

 \bm{h}^{r}_t $\mathbf{m}^{\text{mix}}_t = \sum_l s^l \mathbf{h}^l_t$; $s^l = \text{softmax}(\alpha^l)$

Definition: Center-of-Gravity

$$
E[l] = \sum_l l \cdot s^l
$$

- Expected layer to convey the information needed by the probe task
- Larger Center-of-Gravity \rightarrow information needed captured at higher layers

Definition: Expected Layer

$$
\Delta^{l} = \text{Probing Score}(0; l) - \text{Probing Score}(0; l - 1)
$$

$$
E[\Delta^{l}] = \frac{\sum_{l} l \cdot \Delta^{l}}{\sum_{l} \Delta^{l}}
$$

- Δ^l : The benefit of adding layer l in the mix
- $E[\Delta^l]$: The expected layer to resolve the probing task

Probing Across Time Tasks

In-Context Learning Interpretation: Summary

Various solid empirical evidence that:

- Larger Transformers do learn in-context
- In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

- Good intuitions
- One way to make sense of in-context learning
- Very strong assumptions are introduced for the connection, unfortunately

