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Disclaimer
No one really understand why language model works

Very limited theory and very limited empirical observation, especially at large scale

This lecture is to share:

• Observations upon, not causality of, the behavior of LLMs

• Early attempts to interpret their ability

• Useful intuitions and interesting thought experiments
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Outline
What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?
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Outline
What is captured in BERT?

• Attention patterns

• Probing capture capabilities in representations

Why pretrained models generalize?

What does in-context learning do?
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BERT Attention Patterns
Restate Transformer’s attention mechanism:

The new representation of position 𝑖 is the attention-weighted combination of other positions’ value

• Higher 𝛼𝑖𝑗 →bigger contribution of position 𝑗 to position 𝑖

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 

𝛼𝑖𝑗 =
exp(𝑞𝑖 ⋅ 𝑘𝑗/ 𝑑𝑘)

σ𝑡 exp(𝑞𝑖 ⋅ 𝑘𝑡/ 𝑑𝑘)

𝑜𝑖 = ෍

𝑗

𝛼𝑖𝑗𝑣𝑗

Attention from 𝑖 → 𝑗:

New representation of 𝑖:
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BERT Attention Patterns: Stats
Average Entropy of 𝛼𝑖𝑗

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 

Figure 1: Entropy of BERT Attention Distributions [1]
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BERT Attention Patterns: Stats

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 

Figure 1: Entropy of BERT Attention Distributions [1]

High entropy heads in lower layers:
• Bag-of-words alike mechanism
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BERT Attention Patterns: Stats

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 

Figure 1: Entropy of BERT Attention Distributions [1]

Lower entropy in middle layers:
• Start forming certain patterns?
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BERT Attention Patterns: Stats

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 

Figure 1: Entropy of BERT Attention Distributions [1]

Rising entropy in deep layers:
• More global information?
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BERT Attention Patterns: Common Patterns

Common Pattern 1: Broad attention

• Neural networks are hard to interpret

• Various stuffs mixed together, hard to tell

Figure 2: Attend Broadly (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Common Patterns

Figure 3: Attend to Next (Left→Right) [1]

Common Pattern 2: Attend to next token

• Reverse RNN style

• Learned positional relation in pretraining

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Common Patterns

Figure 4: Attend to [SEP] and punctuations  (Left→Right) [1]

Common Pattern 3: Attend to [SEP] and “.”

• Centralizing attention to specific tokens

• Effect unclear
• Some consider it a “none” operation

• Some consider it as an information hub

• Maybe a mix of both, at different heads

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Linguistic Examples

Figure 5: Objects Attend to their Verbs (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Linguistic Examples

Figure 6: Noun Modifiers Attend to their Noun (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Summaries
Many language phenomena are captured somewhere in the pretrained parameters

• Some attention head corresponds to linguistic relations

• More captured in pretraining, may not change much in fine-tuning
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BERT Attention Patterns: Summaries
Many language phenomena are captured somewhere in the pretrained parameters

• Some attention head corresponds to linguistic relations

• More captured in pretraining, may not change much in fine-tuning

Practical Implications:

• Attention weights reflect the importance perceived by language models

• An effective way to gather feedback from LLMs (handy in later lectures)
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Outline
What is captured in BERT?

• Attention patterns

• Probing capture capabilities in representations

Why pretrained models generalize?

What does in-context learning do?
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Probing Pretraining Representations
Probing what is stored in the representations of pretrained models

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019

Figure 7: Edge Probing Technique [2]
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Probing Pretraining Representations

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019

Figure 7: Edge Probing Technique [2]

Representations 
as static features

Mixing representations from layers:

𝒉𝑡
mix = ෍

𝑙

𝑤𝑙𝒉𝑡
𝑙 ; 𝑤𝑙 = softmax(𝑎𝑙)

• Weighted combination of layers (𝑙)

• Combination weights (𝑎𝑙) is trained per task 
with the classification layer
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Mixing representations from layers:

𝒉𝑡
mix = ෍

𝑙

𝑤𝑙𝒉𝑡
𝑙 ; 𝑤𝑙 = softmax(𝑎𝑙)

• Weighted combination of layers (𝑙)

• Combination weights (𝑎𝑙) is trained per task 
with the classification layer

If the representation perform well

• as static features

• for simple MLP classifier

• In a language task

Then it encodes information required by that 
task

Probing Pretraining Representations

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019

Figure 7: Edge Probing Technique [2]

Simple 
classification to 

target labels
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Probing Pretraining Representations

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019

Figure 7: Edge Probing Technique [2]

Mixing representations from layers:

𝒉𝑡
mix = ෍

𝑙

𝑤𝑙𝒉𝑡
𝑙 ; 𝑤𝑙 = softmax(𝑎𝑙)

Center-of-Gravity:

     𝐸 𝑙 = σ𝑙 𝑙 ⋅ 𝑤𝑙

• Expected layer to convey the information 
needed by the probe task

• Larger → information at higher layers
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Probing Pretraining Representations

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019

Figure 7: Edge Probing Technique [2]

Mixing representations from layers:

𝒉𝑡
mix = ෍

𝑙

𝑤𝑙𝒉𝑡
𝑙 ; 𝑤𝑙 = softmax(𝑎𝑙)

Center-of-Gravity:

     𝐸 𝑙 = σ𝑙 𝑙 ⋅ 𝑤𝑙

• Expected layer to convey the information

Expected Layer:

 Δ𝑙 = ProbeAcc 0: 𝑙 − ProbeAcc (0: 𝑙 − 1)

 𝐸 Δ𝑙 =
σ𝑙 𝑙⋅Δ𝑙

σ𝑙 Δ𝑙

• Δ𝑙  : The benefit of adding layer 𝑙

• 𝐸 Δ𝑙 : The expected layer to solve the 
probing task
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Probing Pretraining Representations: Probing Tasks

Task Description Type

Part-of-Speech Is the token a verb, noun, adj, etc. Syntactic

Constituent Labeling Is the span a noun phrase, verb phrase, etc. Syntactic

Dependency Labeling Label the functional relationship between tokens, e.g. subject-object? Syntactic

Named Entity Labeling Classify the entity type of a span, e.g., person, location, etc. Syntactic/Semantic

Semantic Role Labeling Label the predicate-augment structure of a sentence Semantic

Coreference Determine the reference of mentions to entities Semantic

Semantic Proto-Role Classifier the detailed role of predicate-augment Semantic

Relation Classification Predict real-world relations between entities Semantic/Knowledge

Table 1: Example Language Tasks to Probe BERT [2]

[2] Tenney, Ian, et al. "What do you learn from context? probing for sentence structure in 
contextualized word representations." ICLR 2019
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Probing Pretraining Representations: Probing Results

[2] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline."
 ACL. 2019.

Probing Task GPT-1 
(base)

BERT 
(base)

BERT 
(Large)

Part-of-Speech 95.0 96.7 96.9

Constituent Labeling 84.6 86.7 87.0

Dependency Labeling 94.1 85.1 95.4

Named Entity Labeling 92.5 96.2 96.5

Semantic Role Labeling 89.7 91.3 92.3

Coreference 86.3 90.2 91.4

Semantic Proto-Role 83.1 86.1 85.8

Relation Classification 81.0 82.0 82.4

Macro Average 88.3 89.3 91.0

Table 2: Overall Probing Results [2]
All very good numbers:

• The pretrained representations convey 
syntactic and sematic information
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Probing Pretraining Representations: Across Layers

Part-of-Speech

Constituent Labeling

Dependency Labeling

Named Entity Labeling

Semantic Role Labeling

Coreference

Semantic Proto-Role 

Relation Classification

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline."
 ACL. 2019.

Figure 8: Edge Probing Results of BERT Large [3].

Layer 𝒍

Expected Layer Center of Gravity

Mixing representations from layers:

𝒉𝑡
mix = ෍

𝑙

𝑤𝑙𝒉𝑡
𝑙 ; 𝑤𝑙 = softmax(𝑎𝑙)

Center-of-Gravity:

     𝐸 𝑙 = σ𝑙 𝑙 ⋅ 𝑤𝑙

• Expected layer to convey the information

Expected Layer:

 Δ𝑙 = ProbeAcc 0: 𝑙 − ProbeAcc (0: 𝑙 − 1)

 𝐸 Δ𝑙 =
σ𝑙 𝑙⋅Δ𝑙

σ𝑙 Δ𝑙

• Δ𝑙  : The benefit of adding layer 𝑙

• 𝐸 Δ𝑙 : The expected layer to solve the 
probing task
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Probing Pretraining Representations: Across Layers

Part-of-Speech

Constituent Labeling

Dependency Labeling

Named Entity Labeling

Semantic Role Labeling

Coreference

Semantic Proto-Role 

Relation Classification

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline."
 ACL. 2019.

Figure 8: Edge Probing Results of BERT Large [3].

Layer 𝒍

Expected Layer Center of Gravity

Different tasks are tackled at different layers

• Syntactic tasks at lower layers

• Semantic/Knowledge tasks at higher ones
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Probing Pretraining Representations: Across Training Steps

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." 
EMNLP 2021.

Figure 9: Linguistics Task Probing 
at RoBERTa Pretraining Steps [4].

0k          200k       400k        600k        800k        1M   

Example Linguistic Tasks:

• Part-of-Speech

• Named Entity Labeling

• Syntactic Chunking
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Probing Pretraining Representations: Across Training Steps

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." 
EMNLP 2021.

Figure 10: Factual/Common Sense Task Probing 
at RoBERTa Pretraining Steps [4].

0k          200k       400k        600k        800k        1M   

Example Factual/Commonsense Tasks:

• SQuAD

• ConceptNet

• Google Relation Extraction



Fall 2023 11-667 CMU29

Probing Pretraining Representations: Across Training Steps

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." 
EMNLP 2021.

Figure 11: Reasoning Task Probing 
at RoBERTa Pretraining Steps [4].

0k          200k       400k        600k        800k        1M   

Example Reasoning Tasks:

• Taxonomy Conjunction

• Multi-Hop Composition

• Object Comparison
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Probing Pretraining Representations: Across Training Steps

• Capturing tasks at different conceptual difficulty at different rate

• Emergent improvements

• Certain tasks require certain scale

Figure 11: Probing at Pretraining steps in Linguistic (left), Factual/Commonsense (middle), and Reasoning (right) tasks [4]

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." 
EMNLP 2021.
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Probing Pretraining Representations: Summary
From the observatory point of view:

• Some attention patterns are intuitive

• Pretrained representations convey strong language information

• Different tasks are captured at different layers and different steps

• And the conceptual difficulty of tasks aligns with where & when they are captured
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Probing Pretraining Representations: Summary
From the observatory point of view:

• Some attention patterns are intuitive

• Pretrained representations convey strong language information

• Different tasks are captured at different layers and different steps

• And the conceptual difficulty of tasks aligns with where & when they are captured

It is tempting to think language models capture language semantics from a ground up way:
 Syntactic →Semantic → Factual → Reasoning →General Intelligence 

• Like a classic NLP pipeline
• Like how human brains learn natural language
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Probing Pretraining Representations: Summary
From the observatory point of view:

• Some attention patterns are intuitive

• Pretrained representations convey strong language information

• Different tasks are captured at different layers and different steps

• And the conceptual difficulty of tasks aligns with where & when they are captured

Practical implications:

• Efficient inference by only using what is needed: early exist, sparsity, distillation, etc.

It is tempting to think language models capture language semantics from a ground up way:
 Syntactic →Semantic → Factual → Reasoning →General Intelligence 

• Like a classic NLP pipeline
• Like how human brains learn natural language
But:
• Classic NLP tasks are not really ground up, best systems are often more direct & straightforward
• We really do not know how human brains work, perhaps less than we know how LLM works
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Outline
What is captured in BERT?

Why pretrained models generalize?

• Loss landscapes

• Implicit bias of language models

What does in-context learning do?
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Understand Generation Ability: Overview
Why pretrained models generalize to many fine-tuning tasks?

• Even on tasks with sufficient supervised label

Why larger models and longer pretraining steps improve generalization?

• In statistical machine learning: more complicated model + exhaustive training is recipe for overfitting

• But they indeed are the core advantages of pretraining models 



Fall 2023 11-667 CMU36

Visualization of Loss Landscape
Plot the loss function around a model parameter 𝜃

• Challenge: 𝜃 is super high dimension

Approximation: plot the loss landscape of  𝜃 towards two other parameters  𝜃1 and  𝜃2 [5]

𝑓 𝛼, 𝛽 = loss(𝜃 + 𝛼 𝜃1 − 𝜃 + 𝛽(𝜃2 − 𝜃)) 

• A plot along the axes of 𝛼 and 𝛽 the linear interpolation

[5] Li, et al. "Visualizing the loss landscape of neural nets.“
NeurIPS 2018.
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Visualization of Loss Landscape
Plot the loss function around a model parameter 𝜃

• Challenge: 𝜃 is super high dimension

Approximation: plot the loss landscape of  𝜃 towards two other parameters  𝜃1 and  𝜃2 [5]

𝑓 𝛼, 𝛽 = loss(𝜃 + 𝛼 𝜃1 − 𝜃 + 𝛽(𝜃2 − 𝜃)) 

• A plot along the axes of 𝛼 and 𝛽 the linear interpolation

[5] Li, et al. “Visualizing the loss landscape of neural nets.” NeurIPS 2018.

Figure 12: A sharp loss landscape and a smooth loss landscape [5]
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Visualization of Loss Landscape: BERT
BERT landscape in finetuning [6]

𝑓 𝛼, 𝛽 = loss(𝜃 + 𝛼 𝜃1 − 𝜃 + 𝛽(𝜃2 − 𝜃)) 

• 𝜃 starting parameter of fine-tuning: pretrained or random initialized

• 𝜃1 the finetuned parameter of this task

• 𝜃2 the finetuned parameter of another task, which is meaningful

[6] Hao, Yaru, et al. "Visualizing and Understanding the Effectiveness of BERT." 
EMNLP 2019.
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Visualization of Loss Landscape: BERT
BERT landscape in finetuning [6]

𝑓 𝛼, 𝛽 = loss(𝜃 + 𝛼 𝜃1 − 𝜃 + 𝛽(𝜃2 − 𝜃)) 

• 𝜃 starting parameter of fine-tuning: pretrained or random initialized

• 𝜃1 the finetuned parameter of this task

• 𝜃2 the finetuned parameter of another task, which is meaningful

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." 
EMNLP 2019.

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]
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Visualization of Loss Landscape: BERT
BERT landscape in finetuning [6]

𝑓 𝛼, 𝛽 = loss(𝜃 + 𝛼 𝜃1 − 𝜃 + 𝛽(𝜃2 − 𝜃)) 

• 𝜃 starting parameter of fine-tuning: pretrained or random initialized

• 𝜃1 the finetuned parameter of this task

• 𝜃2 the finetuned parameter of another task, which is meaningful

[6] Hao, et al. "Visualizing and Understanding the Effectiveness of BERT." 
EMNLP 2019.

Random Pretrained

Figure 13: Loss landscape of finetuning MNLI from random or pretrained BERT [6]
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Visualization of Loss Landscape: BERT
Plot the optimization path: project the checkpoint 𝜃′ at different steps to the loss landscape

[6] Hao, Yaru, et al. "Visualizing and Understanding the Effectiveness of BERT." 
EMNLP 2019.

Figure 14: Optimization Trajectory when finetuning MNLI from random (left) and pretrained (right) BERT [6]
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Outline
What is captured in BERT?

Why pretrained models generalize?

• Loss landscapes

• Implicit bias of language models

What does in-context learning do?
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for 
Language Models." ICML 2023.  

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for 
Language Models." ICML 2023.  

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Signs of overfitting and 
instable learning

Yet smoothly improving downstream generalization
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Inductive Bias of Language Models: Pretraining Longer

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for 
Language Models." ICML 2023.  

Figure 15: Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]

Trace of (Loss) Hessian: A reflection of the loss flatness

Same pretraining loss but flattener loss shape
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Inductive Bias of Language Models: Larger Models

Figure 16: Illustration of Optimization Trajectory [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for 
Language Models." ICML 2023.  
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Inductive Bias of Language Models: Larger Models

Figure 16: Illustration of Optimization Trajectory [7]

[7] Liu, Hong, et al. "Same Pre-training Loss, Better Downstream: Implicit Bias Matters for 
Language Models." ICML 2023.  

Small Model

Large Model

Larger models can reach a flattener optima: 

1. Larger transformers have bigger 
solution space

2. They cover smaller transformers

3. Optimizer keep seeking for flattener 
optima, even reached same loss
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima

• Better starting point

• Better loss shape

• Pretraining longer and larger Transformers lead to more flatness
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima

• Better starting point

• Better loss shape

• Pretraining longer and larger Transformers lead to more flatness

Why flatness matters?

• Many empirical evidences showing its connection to generalization ability

• Intuitively, more robust to data variations/noises

• Theoretically, argued that it leads to simpler network solutions 
• Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
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Why Pretrained Models Generalize: Summary
Many observations on pretrained models lead to flatter optima

• Better starting point

• Better loss shape

• Pretraining longer and larger Transformers lead to more flatness

Why flatness matters?

• Many empirical evidences showing its connection to generalization ability

• Intuitively, more robust to data variations/noises

• Theoretically, argued that it leads to simpler network solutions 
• Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997

Why pretrained models prefer flatter optima?

• A inductive bias of the optimizer, the architecturer, the pretraining loss, or the combination of them?

• Much more research required
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Outline
What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?

• Semantic Prior or Input-Label Mapping

• Connection with Gradient Decent
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In-Context Learning Interpretation: Observations
Two sources of information:

• Semantic knowledge captured in LLM

• In-context training signals (input-label mapping)

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 17: Regular In-Context Learning [8]
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In-Context Learning Interpretation: Observations
Two sources of information:

• Semantic knowledge captured in LLM

• In-context training signals (input-label mapping)

Which one works? Mixed observations:

• Random in-context labels work

→ Existing semantic knowledge

• Order of in-context data matter

→ In-context training signals

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 17: Regular In-Context Learning [8]
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In-Context Learning Interpretation: Random Label Test
Randomly flip X% of binary labels

• More flips (X↑), more requirement of existing 
knowledge to make correct prediction

Behavior of models with bigger X%

• Those care less use more inner knowledge

• Those impacted more learn more in-context

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 18: Flipped-Label In-Context Learning [8]



Fall 2023 11-667 CMU55

In-Context Learning Interpretation: Random Label Test
Randomly flip X% of binary labels

• More flips (X↑), more requirement of existing 
knowledge to make correct prediction

Behavior of models with bigger X%

• Those care less use more inner knowledge

• Those impacted more learn more in-context

Question:

• Does larger LM care more, or less about bigger X? 

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 18: Flipped-Label In-Context Learning [8]
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In-Context Learning Interpretation: Random Label Test
Larger models perform better with 0% flipped label

• But are much more sensitive to label flips

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Large

Small

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning, 
binary classification with 16 examples per class [8]
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In-Context Learning Interpretation: Random Label Test
Larger models perform better with 0% flipped label

• But are much more sensitive to label flips

The strongest models can even over-correct

• With merely 32 in-context labels

There must be some learning in in-context learning

• Especially in larger LMs

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 19: PaLM and GPT in Flipped-Label In-Context Learning, 
binary classification with 16 examples per class [8]

Large

Small
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In-Context Learning Interpretation: No Semantic Test

Figure 20: In-Context Learning with Semantically-Unrelated 
Label Terms [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Use semantically-unrelated label terms

• E.g., foo / bar instead of positive / negative

• Models have to learn more from in-context

Behavior of models with unrelated labels

• Those perform well learns more in-context

• Those impacted rely more in existing knowledge
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In-Context Learning Interpretation: No Semantic Test

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Figure 21: In-Context Learning Accuracy with Semantically-
Unrelated Labels versus Related Labels [8]

Larger models work better with unrelated labels

• They learn in-context label mappings better

Smaller models are more prune to unrelated labels

• They rely more on their prior-knowledge
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In-Context Learning Interpretation: No Semantic Test

Figure 22: In-Context Learning with Different Number of 
Semantically-Unrelated Labels [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.

Larger models better leverages in-context examples

• Advantages more pronounces with more labels

Not much better than random with two examples

• Confirms unrelated labels are not aligned with 
existing semantic knowledge



Fall 2023 11-667 CMU61

In-Context Learning Interpretation: Observations
Smaller LMs rely more on existing knowledge and are less effective in learning from in-context

• Less sensitive to flipped labels

• Hard to capture semantically-unrelated input-label mappings

• Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples

• Can reverse their semantic prior to predict flipped labels

• Can learn semantic-unrelated label mappings

• Better utilizes more in-context examples
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In-Context Learning Interpretation: Observations
Smaller LMs rely more on existing knowledge and are less effective in learning from in-context

• Less sensitive to flipped labels

• Hard to capture semantically-unrelated input-label mappings

• Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples

• Can reverse their semantic prior to predict flipped labels

• Can learn semantic-unrelated label mappings

• Better utilizes more in-context examples

Why? How can LLMs learn from in-context examples?
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Outline
What is captured in BERT?

Why pretrained models generalize?

What does in-context learning do?

• Semantic Prior or Input-Label Mapping

• Connection with Gradient Decent
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Learning in In-Context Learning: Gradient Construction
One can manually construct a Transformer (𝑇𝐹GD) that does gradient operation in in-context learning

• Its prediction given in-context learning examples (𝑋𝑘, 𝑌𝑘) 

    == a reference model after performing SGD on (𝑋𝑘, 𝑌𝑘) 

• The predict change of adding a new (𝑥, 𝑦) is similar with reference model after an SGD step with (𝑥, 𝑦) 

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction
One can manually construct a Transformer (𝑇𝐹GD) that does gradient operation in in-context learning

• Its prediction given in-context learning examples (𝑋𝑘, 𝑌𝑘) 

    == a reference model after performing SGD on (𝑋𝑘, 𝑌𝑘) 

• The predict change of adding a new (𝑥, 𝑦) is similar with reference model after an SGD step with (𝑥, 𝑦) 

Currently it can be done in these conditions [9]:

• Linear self-attention, no SoftMax

• Reference model is a simple regression model such as linear regression

• Can stack linear self-attention with MLP but nothing more, i.e. no layer norm etc.

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction
Detailed mathematical construction can be found in Oswald et al. 2023 [9]. 

Intuitively:

• Self-attention is a high-capacity function and can approximate many math operations

• The reference model (the one who does SGD) is a simple linear regression model

• Lost of non-linearity removed to facilitated the construction

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Gradient Construction
Detailed mathematical construction can be found in Oswald et al. 2023 [9]. 

Intuitively:

• Self-attention is a high-capacity function and can approximate many math operations

• The reference model (the one who does SGD) is a simple linear regression model

• Lost of non-linearity removed to facilitated the construction

A very toy-ish set up, but a good thought process and a starting point to understand complicated LLMs

• Similar assumptions are often taken in current deep learning theory research

The gradient decent Transformer 𝑇GD is learn in-context by gradient decent by construction

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Trained Transformer
𝑇𝐹GD is constructed but not learned

• A constructed measurement target

One can train the toy Transformer 𝑇𝐹Train in the same in-context learning set up

• E.g., to perform linear regression task with in-context examples

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.
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Learning in In-Context Learning: Comparison
𝑇𝐹GD is constructed but not learned

• A constructed measurement target

One can train the toy Transformer 𝑇𝐹Train in the same in-context learning set up

• E.g., to perform linear regression task with in-context examples

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.

Figure 23: Comparison of constructed 𝑇𝐹GD and Trained 𝑇𝐹Train. [9] 

Trained Transformer matches the 
constructed gradient decent Transformer

• Near identical 
• Prediction L2 difference 

• Model sensitivity cosine/L2 difference

• Model sensitivity L2 difference
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Learning in In-Context Learning: Comparison
𝑇𝐹GD is constructed but not learned

• A constructed measurement target

One can train the toy Transformer 𝑇𝐹Train in the same in-context learning set up

• E.g., to perform linear regression task with in-context examples

[9] Oswald, et al. “Transformers Learn In-Context by Gradient Descent." ICML 2023.

Figure 23: Comparison of constructed 𝑇𝐹GD and Trained 𝑇𝐹Train. [9] 

Trained Transformer matches the 
constructed gradient decent Transformer

• Near identical 
• Prediction L2 difference 

• Model sensitivity cosine/L2 difference

• Model sensitivity L2 difference

Transformers (with strong assumptions 
and simplifications) learn in-context by 
gradient descent (of a linear regression 
model)
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Learning in In-Context Learning: Multi-Layer Transformer
Compare the constructed and learned Transformer in multi-layer setting

Figure 24: Two-layer 𝑇𝐹GD versus 𝑇𝐹Train. [9] Figure 25: Five-layer 𝑇𝐹GD versus 𝑇𝐹Train. [9] 
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Learning in In-Context Learning: Multi-Layer Transformer
Compare the constructed and learned Transformer in multi-layer setting

• Learned Transformer outperforms the constructed 𝑇𝐹GD

• Upgraded gradient decent 𝑇𝐹GD with manually tuned data transformation matches better

• Divergence increases with deeper (five only, still) networks

• But still remarkable similarity of in-context learning and gradient decent

Figure 24: Two-layer 𝑇𝐹GD versus 𝑇𝐹Train. [9] Figure 25: Five-layer 𝑇𝐹GD versus 𝑇𝐹Train. [9] 



Fall 2023 11-667 CMU

Learning in In-Context Learning: Theory versus Empirical

Empirical Observation

• Larger Transformers better learn in-context

• More in-context examples help larger model more

• Smaller Transformers rely more on existing semantic

Theory

• Transformers perform one gradient step per layer

• And per in-context example 

• Smaller models have limited gradient steps built in

Assumptions :
• Linear attention + MLP Transformer
• Simple regression reference model
• Shallow networks
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In-Context Learning Interpretation: Summary
Various solid empirical evidence that:

• Larger Transformers do learn in-context

• In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

• Good intuitions

• One way to make sense of in-context learning
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In-Context Learning Interpretation: Discussion
Likely many not-yet-finished learning theory, 

• This interpretation is more for our understanding and inspiration

• Strong assumptions are introduced to make the theory

Personal views:

• In-context learning is different from SGD and is more powerful in some scenarios

• Connecting with existing, well-known techniques is a good starting point

• Eventually researchers will develop new theorical frameworks to explain the amazing capabilities of LLM
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Outline
What is captured in BERT?

• Attention patterns

• Probing capture capabilities in representations

Why pretrained models generalize?

• Loss landscapes

• Implicit bias of language models

What does in-context learning do?

• Semantic Prior or Input-Label Mapping

• Connection with Gradient Decent
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Quiz: Why the order of in-context example matters?
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BERT Attention Patterns: Linguistic Examples

Figure 5: Objects Attend to their Verbs (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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BERT Attention Patterns: Linguistic Examples

Figure 6: Noun Modifiers Attend to their Noun (Left→Right) [1]

[1] Clark Et al. “What Does BERT Look At? An Analysis of BERT’s Attention.” BlackBoxNLP 2019 
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Probing Pretraining Representations: Across Layers
Mixing representations from multiple layers:

                                                     𝒉𝑡
mix = σ𝑙 𝑠𝑙𝒉𝑡

𝑙 ; 𝑠𝑙 = softmax(𝛼𝑙)

Definition: Center-of-Gravity

                                                      𝐸 𝑙 = σ𝑙 𝑙 ⋅ 𝑠𝑙

• Expected layer to convey the information needed by the probe task

• Larger Center-of-Gravity → information needed captured at higher layers

Definition: Expected Layer
Δ𝑙 = Probing Score 0: 𝑙 − Probing Score(0: 𝑙 − 1)

                                                   𝐸 Δ𝑙 =
σ𝑙 𝑙⋅Δ𝑙

σ𝑙 Δ𝑙

• Δ𝑙 : The benefit of adding layer 𝑙 in the mix

• 𝐸 Δ𝑙 : The expected layer to resolve the probing task

[3] Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline."
 ACL. 2019.
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Probing Across Time Tasks
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In-Context Learning Interpretation: Summary
Various solid empirical evidence that:

• Larger Transformers do learn in-context

• In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations

• Good intuitions

• One way to make sense of in-context learning

• Very strong assumptions are introduced for the connection, unfortunately
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