
Parameter Efficient Tuning

11-667: LARGE LANGUAGE MODELS: METHODS 

AND APPLICATIONS



Announcements

• If you still don’t have a team for the project, come see me after class.

• For issues with HW1 Question 3.1, see my post recent note on Piazza.

• Do you want feedback on your project idea? Fill out the form to ask 
for feedback by EOD day.

• Chenyan’s office hours today are canceled.



You want to use an LM for some task for 
which you’ve collected a dataset of 
examples.

What do you do?
1. Prompt engineering

1. Doesn’t always work
2. Tedious to find a good prompt

2. Finetune the full LM on your data
1. Expensive
2. Overfitting / catastrophic forgetting on small datasets
3. Need to store one full set of model weights per task.

3. Parameter-efficient tuning



What is parameter efficient tuning?

Rather than finetuning the entire model, we finetune only small 
amounts of weights.

In this lecture, we’ll break PETM techniques into roughly three 
categories.



1. Addition: What if we introduce additional trainable 
parameters to the neural network and just train those?

2. Specification: What if we pick a small subset of the 
parameters of the neural network and just tune those?

3. Reparameterization: What if we re-parameterize the 
model into something that is more efficient to train?

PETM



What is parameter efficient tuning?

Ideas we will cover

• AutoPrompt

• Prompt tuning

• LoRa

• (IA)3



What if we introduce additional 
trainable parameters to the neural 

network and just train those?

Methods we’ll discuss: prompt tuning, prefix tuning, adapters, and 
compacters



Intuition for Prompt Tuning

Prompt engineering sucks.

If we have a bunch of examples of the task, why can’t 
we train a neural network to produce a good prompt 
for the task.

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.emnlp-main.243/


  

Prompt Tuning Method

What we want: a NN that is trained on examples of 
our task and produces a sequence of tokens we can 
prepend to our LLM query, causing the LLM to do the 
task in question.

In practice, optimizing over discrete tokens is hard. 

What we do instead: a NN that outputs a sequence of 
embeddings we can prepend to our query to the LLM, 
causing the LLM to do the task.

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.emnlp-main.243/


Prompt Tuning Method

1. Finetune T5 to act a bit more like a traditional language model.
1. This only needs to be done once, and empirically makes prompt tuning working 

better.
2. This is probably because the span-corruption objective T5 was originally trained 

with isn’t amenable to prompting.

2. Freeze the weights of T5. Set the first k input embeddings to be 
learnable.

1. k is a hyperparameter up to the choice of the implementer.

3. Initialize the k learnable embeddings. Some options include:
1. Random initialization
2. Initialize to values drawn from the vocabulary embedding matrix

4. Train on your task specific data,

“The Power of Scale for Parameter-Efficient Prompt Tuning.” Lester et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.emnlp-main.243/


Prompt Tuning Method



Prompt Tuning Method



Prefix Tuning

Same idea as prompt tuning, except that the learned prefix is appended not 
just to the input embeddings, but rather at each layer of the Transformer.

“Prefix-Tuning: Optimizing Continuous Prompts for Generation.” Li and Liang. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.acl-long.353/


How to initialize the prefix?

Initializing to real embeddings seems to work better than random 
initialization.

“Prefix-Tuning: Optimizing Continuous Prompts for Generation.” Li and Liang. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://aclanthology.org/2021.acl-long.353/


Advantages of Prefix/Prompt Tuning

• The learned embeddings tend to be relatively small, just a few 
megabytes or less.

• It is cheap to keep around one set of embeddings per task.

• The pre-trained LLM can be loaded into memory (such as on a server), 
and at inference time, the appropriate task-specific embeddings can 
be passed in.

• Example use case: User customization



Pitfalls of Prefix and Prompt Tuning

• In practice, these methods tend to converge significantly slower than 
full parameter fine-tuning.

• Unclear what the best prefix length is for any particular task.
• Every sequence position you “spend” on the prefix is one less you have for 

your actual task.

• Learned embeddings are not very interpretable.



What are adapters?

• Adapters are new modules are added between layers of a pre-trained 
network.

• The original model weights are fixed; just the adapter modules are 
tuned.

• The adapters are initialized such that the output of the 
adapter-inserted module resembles the original model.

“Parameter-Efficient Transfer Learning for NLP.” Houslby et al. 2019.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/pdf/1902.00751.pdf


What are adapters?

“Parameter-Efficient Transfer Learning for NLP.” Houslby et al. 2019.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/pdf/1902.00751.pdf


What are compacters?

•  

“COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers.” Mahabadi et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2106.04647


What are compacters?

“COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers.” Mahabadi et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2106.04647


There have been many other extensions to 
adapters which we won’t discuss in this class.

“COMPACTER: Efficient Low-Rank Hypercomplex Adapter Layers.” Mahabadi et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2106.04647


Advantages of Adapter-Based Methods

• Have been shown to be quite effective in multi-task settings.
• There are methods for training task-specific adapters and then combining the 

to leverage the cross-task knowledge (see AdapterFusion).

• Tend to be faster to tune than full model finetuning.

• Possibly more robust to adversarial perturbations of the tuning data 
than full model finetuning.

• (see robust transfer learning paper)

https://aclanthology.org/2021.eacl-main.39/
https://aclanthology.org/2021.acl-short.108.pdf


Pitfalls or Adapter Methods

• Adding in new layers means making inference slower.

• It also makes the model bigger (possibly harder to fit on available 
GPUs).

• Adapter layers need to be processed sequentially at inference time, 
which can break model parallelism. 



What if we pick a small subset 
of the parameters of the neural 
network and just tune those?

Methods we’ll discuss: layer freezing, BitFit, diff pruning



Layer Freezing

• Research has shown that earlier layers of the Transformer tend to 
capture linguistic phenomena and basic language understand; later 
layers are where the task-specific learning happens.

• This means we should be able to learn new tasks by freezing the 
earlier layers and just tuning the later ones.



BitFit: Bias-terms Fine-tuning

•  

“BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models.” Zaken et al. 2022.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2106.10199


Intuition for DiffPruning

• In prior methods we discussed, the choice of what parameters to 
freeze and what parameters to tune was done manually.

• Why not learn this instead?

• Main idea:
• For each parameter, finetune a learnable “delta” which gets added to the 

original parameter value.
• Use an L

0
-norm penalty to encourage sparsity in the deltas.

“Parameter-Efficient Transfer Learning with Diff Pruning.” Guo et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2012.07463


What if we re-parameterize the 
model into something that is more 

efficient to train?

Methods we’ll discuss: LoRa, (IA)3



Intuition for Re-Parameterizing the Model

Finetuning has a low intrinsic dimension, that is, the minimum number 
of parameters needed to be modified to reach satisfactory 
performance is not very large.

This means, we can reparameterize a subset of the original model 
parameters with low-dimensional proxy parameters, and just optimize 
the proxy.



• An objective function’s intrinsic dimension measures the minimum 
number of parameters needed to reach a satisfactory solution to the 
objective.

• Can also be thought of as the lowest dimensional subspace in which 
one can optimize the original objective function to within a certain 
level of approximation error.

What do we mean by intrinsic dimension?



What do we mean by intrinsic dimension?

•  

“Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning.” Aghajanyan et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2012.13255


LoRA: Low Rank Adaption

• Intuition: It’s not just the model weights that are low rank, updates to 
the model weights are also low-rank.

• LoRA freezes the pretrained model weights and injects trainable rank 
decomposition matrices into each layer.

• Like DiffPruning, we are learning a delta to apply to each weight. In 
the case of LoRA, this delta has been re-paramaterized to be lower 
dimension than the original model parameters.

• In practice, LoRA only adapts the attention weights and keeps the rest 
of the Transformer as-is.

“LoRA: Low-Rank Adaptation of Large Language Models.” Hu et al. 2021.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2106.09685


(IA)3: Infused Adapter by Inhibiting and 
Amplifying Inner Activations
• Intended to be an improved over LoRA

• Three goals:
•  must add or update as few parameters as possible to avoid incurring storage and 

memory costs
• should achieve strong accuracy after training on only a few examples of a new tasks
• must allow for mixed-task batches

• Main idea:
• Rescale inner activations with lower-dimensional learned vectors, which are 

injected into the attention and feedforward modules
• Main differences from LoRA:

• LoRA learns low-rank updates to the attention weights
• (IA)3  learns injectable vectors.

“Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning.” Liu at al. 2022.

https://aclanthology.org/2021.emnlp-main.243/
https://arxiv.org/abs/2205.05638


Advantages of Re-Paramaterization Methods

• Training tends to be more memory-efficient, since we only need to 
calculate gradients and maintain optimizer state for a small number of 
parameters.

• These methods are faster to tune than standard full model finetuning.

• It is straight-forward to swap between tasks by swapping in and our 
just the tuned weights.



Summary



Prefix Tuning

https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Prompt Tuning

https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Adapters: adding in new trainable layers

https://www.leewayhertz.com/parameter-efficient-fine-tuning/



LoRA: injecting trainable rank decomposition matrices

https://www.leewayhertz.com/parameter-efficient-fine-tuning/



Training Subset of Existing Parameters

• Manually chose what to tune
• Just tune the last few layers
• Just tune the bias terms (BitFit)

• Learn which parameters need to be tuned (DiffPruning)



Summary

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

https://aclanthology.org/2021.emnlp-main.243/
https://www.nature.com/articles/s42256-023-00626-4


Results



If you have the resources, full fine-tuning tends to work the best.

PF: prefix tuning

FT: full fine-tuning

AP: adapter

LR: LoRA

This survey overall found:
Full fine-tuning >
LoRA >
Adapters >
Prefix Tuning >
Prompt Tuning 
In terms of performance.

Plots for many more tasks 
can be found in the paper.

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

https://aclanthology.org/2021.emnlp-main.243/
https://www.nature.com/articles/s42256-023-00626-4


What does memory usage look like?

FT: full fine-tuning
AP: adapter
LR: LoRA
BF: BitFit
Prompt tuning and prefix tuning not included because they use 
the same amount of memory as full fine-tuning

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

https://aclanthology.org/2021.emnlp-main.243/
https://www.nature.com/articles/s42256-023-00626-4


Can the methods be combined?

FT: BitFit

AP: adapter

PT: prompt tuning

Results on SST-2 
sentiment 
classification

“Delta Tuning: A Comprehensive Study of Parameter Efficient Methods for Pre-trained Language Models.” Ding et al. 2023.

https://aclanthology.org/2021.emnlp-main.243/
https://www.nature.com/articles/s42256-023-00626-4


Options Available to You



How can you use parameter-efficient tuning?

• OpenAI finetuning API
• It is extremely likely they are using a version of one of the methods described.
• Unfortunately, we can only rely on speculation.
• Models available: gpt-3.5-turbo-0613, babbage-002, and davinci-002

• HuggingFace PETM Library
• LoRA, prefix tuning, prompt tuning, and (IA)3 all implemented.
• Several different models available to be adapted.

https://platform.openai.com/docs/guides/fine-tuning/fine-tuning-examples
https://github.com/huggingface/peft


Quiz Question
Suppose you want your LM to be able to perform two different tasks. 

You could use prompt tuning to tune a separate prompt for each task. 
Or you could tune a single prompt for both tasks simultaneously.

Under what circumstances might one of these approaches work better 
than the other?


