LLM for Search Engines

Chenyan Xiong

11-667

Disclaimer:

All the discussions in this lecture about commercial systems are based on public information, plus educated guesses from the instructor

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Overview of Modern Information Retrieval Systems

Fall 2023 11-667 CMU

Information Retrieval Systems

General Definition: Anything system that finds information user needed

• Search Systems, QA Systems, Recommendation Systems, etc.

Specific Definition: Search engines that retrieve documents for user queries

- Explicit Query: User expressed information needs via texts, audios, or conversations
- Target Document: Satisfy user information needs by finding relevant documents

Information Retrieval Systems

General Definition: Anything system that finds information user needed

• Search Systems, QA Systems, Recommendation Systems, etc.

Specific Definition: Search engines that retrieve documents for user queries

- Explicit Query: User expressed information needs via texts, audios, or conversations
- Target Document: Satisfy user information needs by finding relevant documents

One of the most popular AI applications in past decades

The General Framework of Search Engines

Fall 2023 11-667 CMU

The General Framework of Search Engines

Information

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Ranking Models

Given a query q, order a set of candidate document D so that relevant document d^+ is on top of the rank Often done by

- learning a ranking score function f(q, d)
- From relevance labels (q, d^+)

Ranking Models

Given a query q, order a set of candidate document D so that relevant document d^+ is on top of the rank Often done by

- learning a ranking score function f(q, d)
- From relevance labels (q, d^+)

With statistics machine learning models:

 $f(q, d) = XGBoost(\phi(q, d))$

- $\phi(q, d)$: Ranking features, e.g.,
 - word overlaps between q and d
 - BM25 retrieval scores
 - Page rank of d
 - Freshness of d
- A learned combination of features that manually designed to capture q-d relevance

Ranking Models

Given a query q, order a set of candidate document D so that relevant document d^+ is on top of the rank Often done by

- learning a ranking score function f(q, d)
- From relevance labels (q, d^+)

With neural ranking models:

$$f(q,d) = NN(M_{qd})$$
$$M_{qd}^{ij} = sim(q^i, d^j)$$

- M_{qd} : The Translation matrix between q and d.
 - Each element is the embedding similarity between a query term q^i and a doc term d^j
- NN: A specifically designed network to pool term level similarities to q-d relevance
- Learning to model soft matches between q d terms, e.g., "pdf" and "reader"

Ranking BERT

BERT models the relevance of (q, d) by simple classification [1]: $f(q, d) = MLP(BERT([CLS] \circ q \circ [SEP] \circ d))$

• A MLP layer after the last layer's [CLS] representation to learn binary predictions: relevant/irrelevant

Ranking BERT

BERT models the relevance of (q, d) by simple classification [1]: $f(q, d) = MLP(BERT([CLS] \circ q \circ [SEP] \circ d))$

• A MLP layer after the last layer's [CLS] representation to learn binary predictions: relevant/irrelevant

Figure 1: Ranking Performance on MS MARCO Passage Ranking Test [2]

Task: Rank answer passages for Bing questions from BM25 top 1000

- ~1M queries/labels from MS MARCO
- ~10M passages

Significant gains from retrieval to neural ranker to BERT ranker

• Relevant doc moved from position 6 (1/0.16 MRR) to 4 to above 3 Also require far fewer supervisions

Ranking BERT

Figure 2: Ranking score of BERT and Pre-BERT Neural ranker (n-gram soft match) before (x) and after (y) removing a random document term [2]

BERT is more confident:

 Most produced ranking scores are close to 0 or 1

BERT is more global:

- Removing most document terms does not matter
- But some dramatically changed BERT's decision
- Most of these terms are crucial for relevance matches

ChatGPT for Ranking

Challenging to ask ChatGPT to generate a reasonable numerical ranking score for each document One solution is to ask ChatGPT to rank a set of documents for a query

• E.g., input: q + p1, p2, p3, p4, ask ChatGPT to rank p1-p4

Figure 3: "Bubble Sorting" documents by prompting LLMs [3]

ChatGPT for Ranking

Challenging to ask ChatGPT to generate a reasonable numerical ranking score for each document

One solution is to ask ChatGPT to rank a set of documents for a query

• E.g., input: q + p1, p2, p3, p4, ask ChatGPT to rank p1-p4

Figure 3: "Bubble Sorting" documents by prompting LLMs [3]

- About 3-5% accuracy+ from GPT-4 over T5 ranker
- Can be distilled to smaller models
- As search mainly cares about top positions, no need to bubble sort all

LLMs in Many Places of Search Engines

LLMs in Many Places of Search Engines

Biggest Pain Points in Previous Search Systems

20

Bag-of-Words first stage retrieval

• Retrieve documents that contain exact query terms

Intrinsic challenge: Vocabulary Mismatch

• Query and Relevant documents may not have term overlap

Biggest Pain Points in Previous Search Systems

Bag-of-Words first stage retrieval

Retrieve documents that contain exact query terms

Intrinsic challenge: Vocabulary Mismatch

• Query and Relevant documents may not have term overlap

A huge pain point for IR systems

- Discrete representations hard to optimize
- Bounds ranking performance
- Very ways to mitigate, making systems complicated
- More effective way: expand document with clicked queries
 - Requires ton of user traffics
 - Impossible for public domain
 - Lower coverage even in commercial search

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Information

Matching with learned semantic representations instead of bag-of-words A pipe dream of IR, with lots of attempts for half a century

- Controlled vocabularies
- Ontologies
- Latent Semantic Index
- Topic Models
- Knowledge Graphs
- Shallow Neural Networks None achieved general success

25

Information

Information

Fall 2023 11-667 CMU

Dense Retrieval: Formulation

A standard setup with BERT Encoders [4]

Retrieval Function: (Dual Encoder)

 $f(q,d) = \text{BERT}(q) \cdot \text{BERT}(d) = \text{MLP}\left(\overline{[\text{CLS}]}_q\right) \cdot \text{MLP}\left(\overline{[\text{CLS}]}_d\right)$

Inference: (Approximate KNN Search)

 $D_q = \text{ANN}_{f(q,\circ)}$ Finding K nearest neighbor in the corpus with approximate nearest neighbor search.

Dense Retrieval: Formulation

A standard setup with BERT Encoders [4]

Retrieval Function: (Dual Encoder)

 $f(q,d) = \text{BERT}(q) \cdot \text{BERT}(d) = \text{MLP}\left(\overline{[\text{CLS}]}_q\right) \cdot \text{MLP}\left(\overline{[\text{CLS}]}_d\right)$

Inference: (Approximate KNN Search)

 $D_q = ANN_{f(q,\circ)}$ Finding K nearest neighbor in the corpus with approximate nearest neighbor search.

Approximate nearest neighbor search (ANNS): Gain (sub-linear) efficiency by slightly scarifying KNN accuracy

- Partition-based methods: Split the space into regions and only search sub regions
 - E.g., hierarchical K-means trees
- Hash-based methods: Map data points by hashing functions and only search certain hash codes
 - E.g., Locality sensitive hash
- Graph-based methods: Connect data points by similarity edges and greedily traverse the graph
 - E.g., K-nearest neighborhood graph
- Can achieve similar cost/efficiency as inverted index (not yet in standard open-source toolkits)

Dense Retrieval: Training

Representation learning using standard query-relevant document pairs

Learning: (Contrastive Learning / Learning to Rank)

Dense Retrieval: Challenge

Standard random negatives too weak for retrieval

Learning: (Contrastive Learning / Learning to Rank)

Figure 4: Dense Retrieval Training Loss with Randomly Sampled Negatives on MSMARCO

Dense Retrieval: Challenge

Standard random negatives too weak for retrieval

Learning: (Contrastive Learning / Learning to Rank)

A severe problem because of unique properties of retrieval

- Corpus size is **huge**: millions, billions, or trillions
- 99.99% are trivially irrelevant
- Retrieval is to distinguish a **small number** of hard negatives

Figure 4: Dense Retrieval Training Loss with Randomly Sampled Negatives on MSMARCO

Dense Retrieval: Training with Sparse Retrieval Negatives

Sampling negatives from top results of existing sparse retrieval systems

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{q} \sum_{d^+} \sum_{d^- \sim \overline{P_D^-}} l(f(q, d^+), f(q, d^-))$$

- Negatives from existing inverted index (industry's sparse retrieval). (Bing Vector Search) [Waldburger 2019]
- Sampling from BM25 Top K. (DPR) [Karpukhin et al. 2020]
- Offline hard negative mining from production system (Facebook Embedding Search) [Huang et al. 2020]

Dense Retrieval: Training with Sparse Retrieval Negatives

Sampling negatives from top results of existing sparse retrieval systems

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{q} \sum_{d^+} \sum_{d^- \sim \overline{P_D^-}} l(f(q, d^+), f(q, d^-))$$

- Negatives from existing inverted index (industry's sparse retrieval). (Bing Vector Search) [Waldburger 2019]
- Sampling from BM25 Top K. (DPR) [Karpukhin et al. 2020]
- Offline hard negative mining from production system (Facebook Embedding Search) [Huang et al. 2020]

Pros:

• Bootstrap upon an existing system with meaningful negatives

Cons:

- Often negatives from sparse retrieval are still too trivial
- Weaker generalization ability

Dense Retrieval: Training with Self Negatives

Sampling negatives globally from the entire corpus using the dense retriever itself (ANCE [5]).

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{q} \sum_{d^+} \sum_{d^- \sim \operatorname{ANN}_{f(q,\circ)}} l(f(q,d^+), f(q,d^-))$$

- Sampling from the top retrieved results of the dense retrieval model
- Periodically refresh the dense retrieval index to keep negatives updated
- Start from sparse retrieval negatives to warm up

Dense Retrieval: Training with Self Negatives

Sampling negatives globally from the entire corpus using the dense retriever itself (ANCE [5]).

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{q} \sum_{d^+} \sum_{d^- \sim \operatorname{ANN}_{f(q,\circ)}} l(f(q,d^+), f(q,d^-))$$

- Sampling from the top retrieved results of the dense retrieval model
- Periodically refresh the dense retrieval index to keep negatives updated
- Start from sparse retrieval negatives to warm up

Pros:

- Aligned training and testing distribution
- Strong performance in-domain and out-of-domain

Cons:

- Overhead cost in refreshing the corpus index for negative sampling
- Instabilities from negative refreshes

Dense Retrieval: Instabilities from Negative Sampling

Dense retriever swings between several groups of negatives [6]

Query	Class A Negatives	Class B Negatives
most popular	The Golden Retriever is one of the most popular	Rabbit habitats include meadows, woods, forests,
breed of rabbit	breeds in the United States	grasslands, deserts and wetlands

After Negative Refresh #1

After Negative Refresh #2

After Negative Refresh #3

Figure 5: T-SNE plots of a query and its two negative groups during ANCE training [6]

Dense Retrieval: Training with Teleportation Negatives

Smooth training by combining negatives from past samples and potential future samples (ANCE-Tele [7])

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{q} \sum_{d^+} \sum_{d^- \sim \operatorname{Tele}_i} l(f(q, d^+), f(q, d^-))$$

$$\text{Tele}_{i} = \underline{\text{ANN}_{f_{i}(q,\circ)}} + \underline{\text{Tele}_{i-1}} + \underline{\text{ANN}_{f_{i}(d^{+},\circ)}}$$

Self-Negatives from current (i-th) training episode

Negatives from previous episode (Momentum) Approximation of future negatives using neighbors of d^+ (Lookahead)

Dense Retrieval: Training with Teleportation Negatives

Smooth training by combining negatives from past samples and potential future samples (ANCE-Tele [7])

Figure 6: Smooth Negative Sampling with Momentum and Lookahead [6]

38

Dense Retrieval: Performances

Evaluation on supervised retrieval: MS MARCO Passage Task.

- Retrieve answer passages for Bing questions from a corpus of ~10M passages
- All dense retrievers start from RoBERTa base.

Figure 7: Supervised Retrieval Performances on MS MARCO.

BM25: Standard sparse bag-of-words based retrieval DPR: Trained with BM25 negatives + random negatives ANCE: Trained with self-negatives (warmed up by BM25 negative) ANCE-Tele: Trained with momentum and lookahead global negatives

Dense Retrieval: Examples

Retriever	Query	Bad Case	Relevant Document
BM25	What is the most popular food in Switzerland	Answers.com: Most popular traditional food dishes of Mexico	Wikipedia: Swiss cuisine
ANCE	How long to hold bow in yoga	Yahoo Answer: How long should you hold a yoga pose for	yogaoutlet.com: How to do bow pose in yoga

Table 1: Error Cases of BM25 and ANCE in TREC Deep Learning Track Document Retrieval 2019 [5]

Sparse retrieval and dense retrieval behave quite differently.

- BM25 and ANCE only agree on 20% of their top 100 rankings
- But both find relevant document in top 3

Dense Retrieval: Summary

A long-desired goal, finally achieved because of two advancements:

- 1. Representation power of LLMs (Major)
- 2. Retrieval-oriented fine-tuning (Last Mile)

Dense Retrieval: Summary

Information

A long-desired goal, finally achieved because of two advancements:

- 1. Representation power of LLMs (Major)
- 2. Retrieval-oriented fine-tuning (Last Mile)

A "Painkiller" solution

- Eliminate a major bottleneck of existing search solutions
- A fundamental solution of an intrinsic challenge in status quo

Dense Retrieval: Summary

Information

A long-desired goal, finally achieved because of two advancements:

- 1. Representation power of LLMs (Major)
- 2. Retrieval-oriented fine-tuning (Last Mile)

A "Painkiller" solution

- Eliminate a major bottleneck of existing search solutions
- A fundamental solution of an intrinsic challenge in status quo

Enabled lots of potentials

- Democratize state-of-the-art search
- Ride the generalization power of LLMs
- Unify many modalities and scenarios in one embedding space
- Many vector-based search startups and heavy investments

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Dense Retrieval Extensions: Stronger Foundation Models

Sentence T5 Encoder-Decoder: bringing in benefits of T5

Figure 8: Architecture of SentenceT5 Encoder-Decoder [7].

Benefits:

- Better pretrained model (T5 > RoBERTa)
- Easy to introduce prompts/instructions, especially task specific ones in multi-task setting
- Current go-to solution at T5's scales

Dense Retrieval Extensions: Robust Zero-Shot

Various techniques to make web-trained dense retrievers generalizable to other search domains

- Lots of real-world needs (e.g., OpenAI embedding API, AWS Open Search, Azure Search)
- Most successful techniques are to continuously pretrain underlying LLM in target corpus

BM25

MARCO Trained DPR

MARCO Adapted ANCE

Target Domain Adapted ANCE

Figure 9: Loss landscape of dense retrieval models on MARCO development set.

Dense Retrieval Extensions: Universal Retrieval

Map queries and documents in variant formats and modalities into one central embedding space

- Enable cross scenario and cross modality information access
- One unified entry for search

Current Solution: Ride the universal representation capability of foundational models

- Linearize structured data with prompts, e.g., Table BERT, and use text model
- Leverage multi-modality foundational models, e.g., CLIP for image-text
- Continuous pretrain LM on other data formats, e.g., code, molecular SMILE

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Mismatches Between LM Pretraining and Retrieval Needs

Various observations that pretrained LLMs are not as strong in retrieval than other language tasks

- Zero zero-shot performance from vanilla LMs, e.g., BERT, ELECTRA
- Required more complicated fine-tuning, e.g., ANCE
- Prompting LLMs not really working

Mismatches Between LM Pretraining and Retrieval Needs

Various observations that pretrained LLMs are not as strong in retrieval than other language tasks

- Zero zero-shot performance from vanilla LMs, e.g., BERT, ELECTRA
- Required more complicated fine-tuning, e.g., ANCE
- Prompting LLMs not really working

Figure 10: Scaling of LLMs on Zero-Shot Dense Retrieval [8]

Much worse scaling law from LLMs in retrieval

- GPT-3 much worse than T5 at similar scale
- More diminished return when scaling up
- Generalization heavily depends on domain adapted pretraining

Mismatch #1: Local versus Global

Language modeling is more about local contexts

Retrieval requires capturing information of the full document

Token Level Training

Document Level Needs

Mismatch #1: Local versus Global

Language modeling is more about local contexts

Retrieval requires capturing information of the full document

Token Level Training

Document Level Needs

BERT Base MLM Loss

Mismatch #1: Local versus Global

Language modeling is more about local contexts

- Long context methods mainly work on specific long range tasks (not retrieval)
- "the longer context model retains strong performance on various general-purpose tasks" (LLaMA 2 [8])

Context	Hella-Swag	NQ	TQA	GSM8K	Human-Eval
Length	(0-shot)	(64-shot)	(64-shot)	(8-shot)	(0-shot)
2k	75.1	25.5	53.7	4.9	7.9
4k	74.8	25.5	52.2	6.5	7.3

Table 2: LLaMA 2 performance on general-purpose tasks with different pretraining context length [8]

Mismatch #1 Solution: Auto-Encoder Training

Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Information bottleneck on Document Encoding

Mismatch #1 Solution: Auto-Encoder Training

Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Information bottleneck on Document Encoding

Restrict decoder capacity to enforce dependency on encoder

With restricted decoder:

- Encoding captures latter tokens too
- Better starting point for dense retrieval
- Better few-shot ability too

- Many similar ways to configure this, e.g., see condenser, TSDAE, etc.
- T5 implicitly has this global information from its pretraining setup and has benefit of large scale pretraining

Mismatch #2: Anisotropy/Non-Uniformity

The sequence embedding space of many pretrained LLMs are highly non-uniform

similar and random pairs from STS-S [10]

Figure 12: SVD 2-D mapping of word embeddings from Transformer trained on EN→DE [11]

Mismatch #2: Anisotropy/Non-Uniformity

The sequence embedding space of many pretrained LLMs are highly non-uniform

similar and random pairs from STS-S [10]

Figure 12: SVD 2-D mapping of word embeddings from Transformer trained on EN→DE [11]

Most rare tokens are pushed to a narrow cone in the space, and [CLS] is a rare token in learning

- Every training signal pushes all negatives away from the positive
- Rare tokens (without much or any positive pulls) are pushed away from all positives, into a narrow cone
- Theoretical intuitions in Gao et al. [11]

Pretraining sequence representations with Sequence Contrastive Learning (SCL)

Adding pretraining task: $L_{SCL} = E(\frac{\exp(\cos(s,s^+))}{\exp(\cos(s,s^+)) + \sum_{s^-} \exp(\cos(s,s^-))})$

Pretraining sequence representations with Sequence Contrastive Learning (SCL)

Recalibration of the embedding space, e.g., using cropped sequence pairs (90% overlap)

(Although 90% overlap!)

(90% overlap, after all)

Recalibration of the embedding space, e.g., using cropped sequence pairs (90% overlap)

Decent zero-shot performance on many sequence similarity tasks and non-random performance on retrieval

61

Deeper Look into Contrastive Learning

Two forces in contrastive learning: Alignment and Uniformity [12]

 $L_{\text{SCL}} = E\left(\frac{\exp(\cos(s,s^+))}{\exp(\cos(s,s^+)) + \sum_{s^-} \exp(\cos(s,s^-))}\right)$ $\sim \frac{\cos(s,s^+)}{\downarrow} + \frac{\log(\exp(\cos(s,s^+)) + \sum_{s^-} \exp(\cos(s,s^-)))}{\downarrow}$ Align positive pairs together Uniformly spread random pairs in the space

- Proof in Wang et al. [12] that, if exist, perfectly aligned/uniform encoders minimize the two terms
- Note: here negatives are sampled uniformly, not from a long tail distribution

Deeper Look into Contrastive Learning

Two forces in contrastive learning: Alignment and Uniformity [12]

Figure 13: Uniformity of image features in CIFAR-10 from random network (top) and unsupervised contrastive learning (bottom) [12]

Mismatch #3: Alignments

What information does unsupervised contrastive pairs bring in to align the embedding space?

Method	Sequence A	Sequence B
SimCSE	The Steelers enjoy a large, widespread fanbase nicknamed Steeler Nation.	The Steelers enjoy a large, widespread fanbase nicknamed Steeler Nation.
Inverse Cloze Task (ICT)	The Steelers enjoy a large, widespread fanbase nicknamed Steeler Nation.	They currently play their home games at Acrisure Stadium on Pittsburgh's North Side in the North Shore neighborhood,
Cropping Augmentation	The Steelers enjoy a large, widespread fanbase nicknamed	enjoy a large, widespread fanbase nicknamed Steeler Nation.
Co-document	The Steelers enjoy a large, widespread fanbase nicknamed Steeler Nation.	In the NFL's "modern era" (since the AFL–NFL merger in 1970) the Steelers have posted the best record in the league.

Very limited semantic signals in the alignment

- Either trivial paraphrasing or loosely correlated
- Pretty far away from search relevance
- 10% worse than BM25 after unsupervised contrastive learning (might just approximate BM25)

Mismatch #3 Solution: Weak Supervision from Web Graph

Leverage Anchor Texts and the document they point to pseudo query-relevant document pairs

Method	Sequence A	Sequence B
Anchor Document	Vegetarian Society of Ireland	The Vegetarian Society of Ireland is a registered charity. Our aim is to increase awareness of vegetarianism in relation to health,
Actual Argument Retrieval Data	Becoming a vegetarian is an environmentally friendly thing to do.	Health general weight philosophy ethics You don't have to be vegetarian to be green. Many special environments have been created by

Mismatch #3 Solution: Weak Supervision from Web Graph

Leverage Anchor Texts and the document they point to pseudo query-relevant document pairs

Method	Sequence A	Sequence B
Anchor Document	Vegetarian Society of Ireland	The Vegetarian Society of Ireland is a registered charity. Our aim is to increase awareness of vegetarianism in relation to health,
Actual Argument Retrieval Data	Becoming a vegetarian is an environmentally friendly thing to do.	Health general weight philosophy ethics You don't have to be vegetarian to be green. Many special environments have been created by

Anchor-Doc the only unsupervised signal source outperforms BM25

- Other contrastive pairs not providing much semantics for relevance
- Data cleaning required to filter out functional anchors, e.g., "homepage"

A widely useful information in standard web search

- Page Rank, Document Expansion, etc.
- Still merely 10% better than vanilla BM25

Still a weakly supervised method, rather than a pretraining method

- Behavior closer to weak supervision/transfer learning, not pretraining
- Not seeing emergent capabilities

Figure 14: MARCO NDCG@10 of BM25 and dense retrievers trained by different unsupervised signals

Mismatch Between LLM and Retrieval: Recap

We are still not seeing the emergent power of LLMs in embedding-based retrieval

• The fact we need these solutions/mitigations shows there is something missing

Auto-regressive LM + Scaling up captured a lot, but not everything

• Web search is perhaps the biggest money-making AI application, yet not fully covered by GPT-X

"Bitter lesson", more compute and large scale trump specific designs, is deemed to happen

• But that may not solely via current language models

Outline

Overview of Modern Information Retrieval Systems

- An example search component being updated by LLMs
- Glances of other components using LLMs

Dense Retrieval, a revolution of search with LLMs

- End-to-end learned retrieval
- Notable extensions
- Pretraining retrieval representations

Quiz: What are the advantages of using T5 Encoder-Decoder instead of encoder only to produce document embeddings?

Dense Retrieval: Performances

Evaluation Tasks:

- Supervised Retrieval: MS MARCO Passage Task.
 - Retrieve answer passages for Bing questions from a corpus of ~10M passages
- Zero-Shot Retrieval: Transfer from MARCO to BEIR Benchmark.
 - A fused benchmark of 18 public tasks, with diverse domains and tasks

Figure 6: Tasks included in BEIR [6]