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Disclaimer:
Pretraining for retrieval is a very premature field. 
Anything we know now may be wrong.
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Outline
Overview of Modern Information Retrieval Systems

• An example search component updated by LLMs

• Glances of other components using LLMs

Dense Retrieval, a different way of search with LLMs

• End-to-end learned retrieval

• Notable extensions

Pretrain retrieval representations
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Mismatches Between LM Pretraining and Retrieval Needs
Various observations that pretrained LLMs are not as strong in retrieval than other language tasks

• Zero zero-shot performance from vanilla LMs, e.g., BERT, ELECTRA

• Required more complicated fine-tuning, e.g., smoothed self-negatives

• Prompting LLMs not really working
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Mismatches Between LM Pretraining and Retrieval Needs
Various observations that pretrained LLMs are not as strong in retrieval than other language tasks

• Zero zero-shot performance from vanilla LMs, e.g., BERT, ELECTRA

• Required more complicated fine-tuning, e.g., smoothed self-negatives

• Prompting LLMs not really working

Figure 10: Scaling of LLMs on Zero-Shot Dense Retrieval [8]

GPT-3

T5

Domain 
Adapted BERT Much worse scaling law from LLMs in retrieval

• GPT-3 much worse than T5 at similar scale
• More diminished return when scaling up
• Generalizing better with domain adapted pretraining

[8] Yu et al. “COCO-DR: Combating Distribution Shifts in Zero-Shot Dense Retrieval
with Contrastive and Distributionally Robust Learning”.  EMNLP 2022.
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Language modeling is more about local contexts

Retrieval requires capturing information of the full document

Mismatch #1: Local versus Global
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Language modeling is more about local contexts
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Mismatch #1: Local versus Global

Masked Sequences: _BC_

_ B _C

Input

A D

Learning

Token Level Training

Transformer Encoder

[CLS]

Document Level Needs

Input Sequences: ABCD

A B DC

Input

Inference

Transformer Encoder

[CLS]

Document Embedding

BERT Base MLM Loss

64

128
256 512

Very little used 
information



Fall 2023 11-667 CMU8

Language modeling is more about local contexts

• Long context methods mainly work on specific long-range tasks (not retrieval)

• “The longer context model retains strong performance on various general-purpose tasks” (LLaMA 2 [8])

Mismatch #1: Local versus Global

Table 2: LLaMA 2 performance on general-purpose tasks with different pretraining context length [8]

[8] Touvron et al. “LLaMA 2: Open Foundation and Fine-Tuned Chat Models”.  
ArXiv 2023.
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Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Mismatch #1 Solution: Auto-Encoder Training

Learning

Transformer Decoder

Raw Sequence

Input

Text Auto-Encoder

Transformer Encoder

Sequence Embedding
Input

Raw Sequence Learn to reconstruct 
only from embedding

Information 
Bottleneck

Required to represent 
full sequence?

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.
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Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Mismatch #1 Solution: Auto-Encoder Training

𝐸𝐷 𝐿𝑑𝑒𝑐 𝑋, 𝜃𝑑𝑒𝑐 = 𝐸𝐷 

𝑡:1~𝑛

− log 𝑃 𝑋𝑡 𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐; 𝜃𝑑𝑒𝑐

= 

𝑡:1~𝑛

𝐸𝐷[𝐷𝐾𝐿(𝑃𝐷(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐)  ∥ 𝑃𝜃𝑑𝑒𝑐
(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐) )] + 𝐻𝐷(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐) 

Reconstruction Loss:

Decoder Sequence Embedding

Data Distribution Decoder’s Distribution Language Entropy

Learning

Transformer Decoder

Raw Sequence

Input

Text Auto-Encoder

Transformer Encoder

Sequence Embedding
Input

Raw Sequence Learn to reconstruct 
only from embedding

Information 
Bottleneck

Required to represent 
full sequence?

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.
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Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Mismatch #1 Solution: Auto-Encoder Training

𝐸𝐷 𝐿𝑑𝑒𝑐 𝑋, 𝜃𝑑𝑒𝑐 = 𝐸𝐷 

𝑡:1~𝑛

− log 𝑃 𝑋𝑡 𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐; 𝜃𝑑𝑒𝑐

= 

𝑡:1~𝑛

𝐸𝐷[𝐷𝐾𝐿(𝑃𝐷(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐)  ∥ 𝑃𝜃𝑑𝑒𝑐
(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐) )] + 𝐻𝐷(𝑋𝑡|𝑋<𝑡, 𝐶𝐿𝑆 𝑒𝑛𝑐) 

Reconstruction Loss:

Decoder Sequence Embedding

Data Distribution Decoder’s Distribution Language Entropy

What if:
• Decoder is good at modeling language (GPT-*)?
• Language has strong patterns thus low entropy?

Learning

Transformer Decoder

Raw Sequence

Input

Text Auto-Encoder

Transformer Encoder

Sequence Embedding
Input

Raw Sequence Learn to reconstruct 
only from embedding

Information 
Bottleneck

Required to represent 
full sequence?

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.
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Mismatch #1 Solution: Auto-Encoder Training
Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Information bottleneck on Document Encoding

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.
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Mismatch #1 Solution: Auto-Encoder Training
Reintroduce self-reconstruction loss on sequence embeddings to capture full sequence information [9]

Information bottleneck on Document Encoding

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.
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SEED-Encoder Pretraining 
• Pretrain with Encoder with standard MLM
• Pretrain the Decoder with Auto-Regressive LM
• Two pretrained jointly:

• Decoder pushes for better sequence encoding
• Encoder is used in representation-centric tasks
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Mismatch #1 Solution: Auto-Encoder Training

MARCO Retrieval
(With ANCE)

Encoder Validation Loss
(During Pretraining)

Weaker Decoder Helps 
Encoder MLM Training

Weaker Decoder Pushes 
for Better Encoder

MARCO Retrieval
(w.r.t. ANCE Fine-Tuning Steps)

A Better Starting Point for 
Dense Retriever

[9] Lu et al. “Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder”.  
EMNLP 2021.

Better pretraining starting point for dense retrievers 
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Mismatch #2: Anisotropy/Non-Uniformity
Zero-shot performance of pretrained embeddings on semantic text similarity (STS) tasks

• STS Task: producing a similarity score for a given pair of sentences 

• Metric: by Pearson correlation with human rating (e.g., 5 being exact same meaning/paraphrase)

Much worse performance than GloVe Embeddings.

• [CLS] is near random. 

• Mean-pooling over tokens is better but still much worse than word embeddings

[10] Reimers et al. “Sentence-BERT: Sentence Embeddings Using Siamese BERT-networks”. 
EMNLP 2019

Table 3: BERT embedding similarity performances on STS tasks [10]
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Mismatch #2: Anisotropy/Non-Uniformity
The sequence embedding space of many pretrained LLMs are highly non-uniform

Figure 11: Similarity of RoBERTa [CLS] on semantically 
similar and random pairs from STS-S [11]

Figure 12: SVD 2-D mapping of word embeddings 
from Transformer trained on EN→DE [12]

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.

[12] Gao et al. “Representation Degeneration Problem in Training 
Neural Language Generation Methods”. ICLR 2019.
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Mismatch #2: Anisotropy/Non-Uniformity
The sequence embedding space of many pretrained LLMs are highly non-uniform

Most rare tokens are pushed to a narrow cone in the space, and [CLS] is a rare token in learning

• Every training signal pushes all negatives away from the positive

• Rare tokens (without much or any positive pulls) are pushed away from all positives, into a narrow cone

Figure 11: Similarity of RoBERTa [CLS] on semantically 
similar and random pairs from STS-S [11]

Figure 12: SVD 2-D mapping of word embeddings 
from Transformer trained on EN→DE [12]

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.

[12] Gao et al. “Representation Degeneration Problem in Training 
Neural Language Generation Methods”. ICLR 2019.
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Pretraining sequence representations with Sequence Contrastive Learning (SCL) [11]

Adding pretraining task: 𝐿SCL = E(
exp(cos(𝒔,𝒔+))

exp cos 𝒔,𝒔+ +σ𝑠− exp(cos(𝒔,𝒔−)) 
)

Mismatch #2 Solution: Sequence Contrastive Learning

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.
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Pretraining sequence representations with Sequence Contrastive Learning (SCL) [11]

Adding pretraining task: 𝐿SCL = E(
exp(cos(𝒔,𝒔+))

exp cos 𝒔,𝒔+ +σ𝑠− exp(cos(𝒔,𝒔−)) 
)

Mismatch #2 Solution: Sequence Contrastive Learning

Embeddings of negative 
sequence pairs

Embeddings of positive 
contrast sequence pairs

Construction of positive contrast sequence pairs:
• Data augmentation: cropping [11], random replacement, 

back translation, different dropout (SimCSE), etc.
• Unsupervised pairs: co-occurrence in doc (co-doc), etc.
• Supervisions: Web QA pairs, search query-clicked docs…

Main Transformer

Sequence A

Input

Sequence A Embedding

Main Transformer

Sequence B

Input

Sequence B Embedding

Contrastive Learning

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.
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Mismatch #2 Solution: Sequence Contrastive Learning
Recalibration of the embedding space, e.g., using cropped sequence pairs (90% overlap)

Training Pair Similarity 
(With SCL)

Easy-to-Learn Task
(90% overlap, after all)

Training Pair Similarity 
(Without SCL)

Failed without SCL
(Although 90% overlap!)

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.



Fall 2023 11-667 CMU22

Mismatch #2 Solution: Sequence Contrastive Learning
Recalibration of the embedding space, e.g., using cropped sequence pairs (90% overlap)

Decent zero-shot performance on many sequence similarity tasks and non-random performance on retrieval

Training Pair Similarity 
(With SCL)

Easy-to-Learn Task
(90% overlap, after all)

Effective Calibration
& Good Zero-Shot Ability

STS-B Similarity
(With SCL) 

Training Pair Similarity 
(Without SCL)

Failed without SCL
(Although 90% overlap!)

[11] Meng et al. “COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining”.  
NeurIPS 2021.
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Deeper Look into Contrastive Learning
Two forces in contrastive learning: Alignment and Uniformity [13]

        𝐿SCL = E
exp cos 𝒔,𝒔+

exp cos 𝒔,𝒔+ +σ𝑠− exp cos 𝒔,𝒔−

                 ~ cos 𝒔, 𝒔+ + log(exp cos 𝒔, 𝒔+ + σ𝑠− exp cos 𝒔, 𝒔− )

• Proof in Wang et al. [12] that, if exist, perfectly aligned/uniform encoders minimize the two terms

• Note: here negatives are sampled uniformly, not from a long tail distribution

[13] Wang et al. “Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere”. ICML 2020.

Align positive pairs together Uniformly spread random pairs in the space



Fall 2023 11-667 CMU24

Deeper Look into Contrastive Learning
Two forces in contrastive learning: Alignment and Uniformity [13]

[13] Wang et al. “Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere”. ICML 2020.

Figure 13: Uniformity of image features in CIFAR-10 from
random network (top) and unsupervised contrastive learning (bottom) [12]

Figure 13: Uniformity of image features in CIFAR-10 from
random network (top) and unsupervised contrastive learning (bottom) [12]
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Mismatch #3: Alignments
What information does unsupervised contrastive pairs bring in to align the embedding space?

Very limited semantic signals in the alignment for search relevance

• Either strong term overlaps or loosely correlated

Method Sequence A Sequence B

SimCSE The Steelers enjoy a large, widespread fanbase nicknamed 
Steeler Nation.

The Steelers enjoy a large, widespread fanbase nicknamed 
Steeler Nation.

Inverse Cloze 
Task (ICT)

The Steelers enjoy a large, widespread fanbase nicknamed 
Steeler Nation.

They currently play their home games at Acrisure Stadium on 
Pittsburgh's North Side in the North Shore neighborhood, 

Cropping 
Augmentation

The Steelers enjoy a large, widespread fanbase nicknamed 
___ 

____ enjoy a large, widespread fanbase nicknamed Steeler 
Nation.

Co-document The Steelers enjoy a large, widespread fanbase nicknamed 
Steeler Nation.

In the NFL's "modern era" (since the AFL–NFL merger in 
1970) the Steelers have posted the best record in the league.
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Mismatch #3 Solution: Weak Supervision from Web Graph
Leverage Anchor Texts and the document they point to pseudo query-relevant document pairs

Method Sequence A Sequence B

Anchor-Document Vegetarian Society of Ireland The Vegetarian Society of Ireland is a registered charity. Our
aim is to increase awareness of vegetarianism in relation to health, 

Actual Argument 
Retrieval Data

Becoming a vegetarian is an 
environmentally friendly thing to do.

Health general weight philosophy ethics You don’t have to be
vegetarian to be green. Many special environments have been created by

[14] Nie et al. “Unsupervised Dense Retrieval Training with Web Anchors”. 
SIGIR 2023.
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Mismatch #3 Solution: Weak Supervision from Web Graph
Leverage Anchor Texts and the document they point to pseudo query-relevant document pairs

Web graph and anchor information is widely used in many web and search applications

• Determine the importance of a web page (Page Rank)

• Enrich the representation of a document , using 3rd party information (Document Expansion)

• Serve as pseudo queries for feature-based ranking models

Method Sequence A Sequence B

Anchor-Document Vegetarian Society of Ireland The Vegetarian Society of Ireland is a registered charity. Our
aim is to increase awareness of vegetarianism in relation to health, 

Actual Argument 
Retrieval Data

Becoming a vegetarian is an 
environmentally friendly thing to do.

Health general weight philosophy ethics You don’t have to be
vegetarian to be green. Many special environments have been created by

[14] Nie et al. “Unsupervised Dense Retrieval Training with Web Anchors”. 
SIGIR 2023.
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Mismatch #3 Solution: Weak Supervision from Web Graph
Leverage Anchor Texts and the document they point to pseudo query-relevant document pairs

Method Sequence A Sequence B

Anchor-Document Vegetarian Society of Ireland The Vegetarian Society of Ireland is a registered charity. Our
aim is to increase awareness of vegetarianism in relation to health, 

Actual Argument 
Retrieval Data

Becoming a vegetarian is an 
environmentally friendly thing to do.

Health general weight philosophy ethics You don’t have to be
vegetarian to be green. Many special environments have been created by
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[14] Nie et al. “Unsupervised Dense Retrieval Training with Web Anchors”. 
SIGIR 2023.

Figure 14: MARCO NDCG@10 of BM25 and dense 
retrievers trained by different unsupervised signals

Anchor-Doc the only unsupervised signal source outperforms BM25
• Data cleaning required to filter out functional anchors, e.g., “homepage”
A widely useful information in standard web search
• Page Rank, Document Expansion, etc.
Still a weakly supervised method, rather than a pretraining method
• Behavior closer to weak supervision/transfer learning, not pretraining
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Mismatch Between LLM and Retrieval: Recap

Mismatch

Solution?

Local vs. Global Non-uniformity Semantic Alignment

Auto-Encoder Contrastive Training Weak Supervision
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Mismatch Between LLM and Retrieval: Recap

We are still not seeing the emergent power of LLMs in embedding-based retrieval

• The fact we need these solutions/mitigations shows there is something missing

Auto-regressive LM + scaling up solved a lot of problems, but not everything

• Web search is perhaps the biggest money-making AI application, yet not fully covered by GPT-X

“Bitter lesson”, more compute and large-scale trump specific designs, is deemed to happen

• But that may not achieved all by current language models

Mismatch

Solution?

Local vs. Global Non-uniformity Semantic Alignment

Auto-Encoder Contrastive Training Weak Supervision
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Quiz: Why data augmentation based contrastive 
learning work better in vision tasks like ImageNet 
classification but not as much in search?
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