Upcoming Dates

* Please submit your peer feedback by Monday at 8 PM.

Please submit midterm regrade requests by Friday, November 10.
* |f you are unsure whether you should request a regrade, talk to us in office hours first.

No class next Tuesday. If you are a US citizen, go out and vote!
* Daphne will still hold office hours.

Next Thursday: Industry lecture from Deep Ganguli at Anthropic

Please schedule a project midpoint discussion with your project’s assigned mentor some time this or next week.
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Eberly Center Focus Group

Thanks so much to those who participated in this! And thanks for being guinea pigs!

Your suggestions:

* Give a broader overview about how concepts interconnect.
* Noted!

Have more lectures on multimodal applications.
* Noted!

Provide practice questions before the midterm

e This is a graduate level class. We want you to learn the material we are covering because we think it is important, not for
the goal of studying to a particular exam format.

Set more clear expectations for the project
* Noted!

Better balance homework difficulty.
* Noted!
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Midterm Results

Score Distributions (Raw score/63)

Histogram of grade percentages
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Midterm Results

Potential curve : (your_grade = 4/actual_grade_percentage) / 10)

Histogram of probable grade percentages
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Midterm Results

Score Distributions (Raw score/63)
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Midterm Results

problem 1 scores problem 2 scores problem 3 scores
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Challenging question: 2a

Problem 2 [12 pts|. Training and training eata.

a) [1 pt] Why do we train to minimize the negative log likelihood rather than training to minimize the
negative likelihood.

With 10s of thousands of tokens in the vocabulary, the likelihood of many of these tokens being the
next token will be very, very small. Computers have numeric instability when trying to do
mathematical operations on very small models.

.
P(y¢ly1:t-1) = HP()’i|)’1:i—1)
i=1
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Challenging question: 2a

Problem 2 [12 pts|. Training and training eata.

a) [1 pt] Why do we train to minimize the negative log likelihood rather than training to minimize the
negative likelihood.

With 10s of thousands of tokens in the vocabulary, the likelihood of many of these tokens being the
next token will be very, very small. Computers have numeric instability when trying to do
mathematical operations on very small models.

t
log P(y¢|y1:t-1) = Z log P(y;ily1:i-1)

=1
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Challenging question: 3b.4

4. Describe an experiment you could use to disprove the hypothesis that continuous prompts can be made
interpretable via natural language.

Hint: consider two prefix-tuned prompts which both perform well on a task, but one maps to a helpful, natural
language instruction, and the other maps to gibberish.

Possible experiment: do regular prompt tuning but with an extra loss encouraging the resulting
prompt to be in close in embedding space to some arbitrary string of your choice.

If you get high-performing prompts no matter what string you choose, this suggests there is little
correspondence between learned prompts and their discrete interpretations.

Fall 2023 11-667 CMU



Challenging question: 4d

d) [2 pts]| In 1-2 sentences, describe an extrinsic human evaluation experiment you could do to show how
MovieBot performs relative to a baseline model.

Extrinsic evaluation involves doing evaluation of an end-to-end system rather than just evaluating
individual components of the system.

We were looking for answers that mentioned having humans interact with MovieBot directly
(compared to just assessing pre-computed MovieBot generations).

10 Fall 2023 11-667 CMU




Challenging question: 6d

d) [6 pts] Suppose you are building an application which reads in structured metadata (e.g. names of teams,
location of match etc.) and gameplay logs (e.g. spatio-temporal info on passes, shots, fouls, etc.) of a soccer
match and generates a natural language summary of the game.

1) Describe the steps you would take to implement this application using a classical NLG pipeline.

We were expecting an answer following similar steps to the WeatherReporter case study from
Building NLG Systems textbook, chapter 3.

Should at minimum have mentioned document planning followed by surface realization.

Classical NLG pipeline means no language model.
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Scaling Up LLM Pretraining: Scaling Law

Chenyan Xiong
11-667
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Outline

* Why Scaling Up

* Which Language Model to Scale Up

* What Factors Matter in Scaling
 What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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Why Scaling Up

Almost guaranteed

gains in downstream tasks
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Figure 1: Performance of Turing-NLR V5 on MNLI at different model sizes and pretraining steps [1]

e Larger models, better fine-tuning accuracy

* More pretraining steps, better downstream performances

[1] Bajaj et al. “METRO: Efficient denoising pretraining of large scale autoencoding language models with

model generated signals”. arXiv 2022.

14
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Why Scaling Up

More than just better leaderboard entries

» Significant gains in many real production scenarios
* Name any existing Al product, likely it benefited from bigger LLMs

* Non-trivial gains from scaled up LLMs
* Very hard to achieve with more sophisticated, but smaller models

 Distillable gains for efficient serving
* Scaled up — Distill to smaller models better than pretraining smaller ones

* Deterministic gains
* Research is risky.
— Investmentis for long term return of the world & human-beings.
* Scaling up gains are deterministic.
— Investment leads to predictable gains for “my” business.

[2] Kharya et al. “Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest 15
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» Significant gains in many real production scenarios
* Name any existing Al product, likely it benefited from bigger LLMs

* Non-trivial gains from scaled up LLMs
* Very hard to achieve with more sophisticated, but smaller models

 Distillable gains for efficient serving
* Scaled up — Distill to smaller models better than pretraining smaller ones

* Deterministic gains
* Research is risky.
— Investmentis for long term return of the world & human-beings.
* Scaling up gains are deterministic.
— Investment leads to predictable gains for “my” business.
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Figure 2: Growth of LLM parameter size as of 2022 [2]

[2] Kharya et al. “Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest 16
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Which Language Model: Architecture

Decoder or Encode-decoder?

Target: ABCDEFGH</s> Target: H1 J KLMNO</s>
I O O O Prrrrtrtrtt

;0): Transformer Decoder Transformer Encoder Transformer Decoder
Prrrrrett Prrtrtrtett [ A I

Input: <s>ABCDEFGH Input: <s>ABCDEFG</s> <s>HI J KLMNO

Encoder is out of consideration because

1. Encoder-decoder covers the functionality of encoder

2. Hard to do generation with encoder-only
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Which Language Model: Pretraining Tasks

Auto-regressive (Causal) LM, Pre-fix (Non-Causal) LM or Denoising Masked-LM?
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Figure 3: Attention Masks and Pretraining Tasks of Different LLM Architectures [3].

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 18 Fall 2023 11-667 CMU

Generalization?”. ICML 2022.



Which Language Model: Empirical Studies

e N s R
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Figure 4: Empirical Study Pipeline on Different Language Model Configurations [3].

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 19
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Which Language Model: Empirical Studies
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Figure 4: Empirical Study Pipeline on Different Language Model Configurations [3].

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 20 Fall 2023 11-667 CMU
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Which Language Model: Empirical Studies

Experimental Settings

MODELS ARCHITECTURE
Decoder-only  Encoder-decoder

PRETRAINING MULTITASK FINETUNING

Parameters 4.8B 11.0B

Vocabulary 32,128 Dataset C4 TO-Train
Positional embed. TS5 relative Steps 131,072 10,000
Embedding dim. 4,096 Batch size in tokens 1,282,048 1,310,720
Attention heads 64 Optimizer Adafactor(decay_rate=0.8)
Feedforward dim. 10,240 1

Activation GEGLU [Shazeer, 2020] RCLRCE \/ max(n,10%) sG]
Layers 24 48 Dropout 0.0 0.1
Tied embeddings True z loss 0.0001

Precision bfloat16 Precision bfloatl6

Table 1: Experimental Settings following T5 pretraining and TO finetuning configurations [3].

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 2 1
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Which Language Model: Empirical Results

Performances in direct zero-shot, evaluated immediately after self-supervised pretraining, no finetuning.

EAI-EvAL TO-EvAL

Causal decoder 44.2 42.4
Non-causal decoder 43.5 41.8
Encoder-decoder 39.9 41.7
Random baseline 32.9 41.7

Table 1: Experimental Settings following T5 configurations [3].

Decoder only models pretrained with auto-regressive language modeling tasks performances
significantly better under the same pretraining configurations.

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 22 Fall 2023 11-667 CMU

Generalization?”. ICML 2022.



Which Language Model: Empirical Results

Performances after multi-task finetuning

TO-Eval Baselines
masked Random
language language
modeling modeling ¢ ED:MLM (1.3T) + ED:PLM (131B) [T5-LM]

0.65
= e ED:MLM (1.3T) + ED:PLM (131B) + ED:MTF (13B) [T]

CD:FLM (168B)

060 ? Pretrained with LM
CD:FLM (168B) + CD:MTF (13B)
0.55 * ND:PLM (168B) + ND:MTF (13B)

ED:PLM (168B) + ED:MTF (13B)

Pretrained with MLM
¢ CD:MLM (168B) + CD:MTF (13B)
4 ND:MLM (168B) + ND:MTF (13B)
¢ ED:MLM (168B) + ED:MTF (13B)

0.50 - 4

0.45

Figure 5: Performances after finetuning on TO training tasks [3]
* Architecture: Encoder-Decoder (ED), Causal-Decoder (CD), Non-Casual-Decoder (ND)
* Task: Full (Auto-regressive) LM (FLM), Prefix-LM (PLM), Masked-LM (MLM)

Median task score average (T0O eval)

0.40

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 23
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Figure 5: Performances after finetuning on TO training tasks [3]
* Architecture: Encoder-Decoder (ED), Causal-Decoder (CD), Non-Casual-Decoder (ND)
* Task: Full (Auto-regressive) LM (FLM), Prefix-LM (PLM), Masked-LM (MLM)

Median task score average (T0O eval)

0.40

Encoder-decoder and MLM performs best after multi-task fine-tuning

[3] Wang et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot 24
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Generalization?”. ICML 2022.



Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models

* Empirical results: better generalization right after pretraining, no multi-task supervised learning needed

25 Fall 2023 11-667 CMU




Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models

* Empirical results: better generalization right after pretraining, no multi-task supervised learning needed

Easy to scale up

* More training signals per sequence: 100% versus 15%

targets targets
May |the force be with you} May be with you

* Converges faster [empirical observations]

* More stable [hands-on observations]
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Which Language Model: Conclusion

Popular choice: Decoder-only models + Auto-regressive language models

* Empirical results: better generalization right after pretraining, no multi-task supervised learning needed

Easy to scale up

* More training signals per sequence: 100% versus 15%

targets targets
May |the force be with you} May be with you

* Converges faster [empirical observations]

* More stable [hands-on observations]

OpenAl’s choice

* There is perhaps only one seat for the largest LLM.

* GPT-3 won at that certain point, and took that niche

* Everyone else followed, no evidence to gamble with SSS$SSS

27 Fall 2023 11-667 CMU




Outline

* Why Scaling Up

* Which Language Model to Scale Up

* What Factors Matter in Scaling
 What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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Scaling Factors

Many factors in configuring a scaled up pretraining run for Transformer Decoder + Autoregressive LM

Model size (parameter counts)

Pretraining dataset size
Pretraining compute (FLOPs or TPU/GPU hours)

Network shape (Parameters allocations)

Effective batch size

Learning rate & learning rate schedular

Context length

PAS) Fall 2023 11-667 CMU




Scaling Factors

Many factors in configuring a scaled up pretraining run for Transformer Decoder + Autoregressive LM

Model size (parameter counts)

Pretraining dataset size

Pretraining compute (FLOPs or TPU/GPU hours)
Network shape (Parameters allocations)
Effective batch size

Learning rate & learning rate schedular

=

J\

- Main factors to study

Hyper-parameters with rule of thumb
- 1. Batch size determined by GPU memory

2. Try biggest LR before blowing up

30
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Scaling Law Study: Setup

Empirically study the relationship between various factors to language model performances [4]
* Model: GPT-style, auto-regressive loss, maximum 1.5 billion non-embedding parameters
* Pretraining data: WebText2, harvest from Reddit out links, at max 23 billion tokens

* Metric: language modeling loss on testing data

[4] Kaplan et al. “Scaling Laws for Neural Language Models”. arXiv 2020.

Fall 2023 11-667 CMU




Scaling Law Study: Observations

Network shape (allocation of parameters at different parts) does not matter as much

10%

—%— DNhead = 8 —e— 50M Params —— dimogel = 256
8% | —®— dmodel/NMhead = 64 —— 274M Params , i i = 512
o —+— 1.5B Params —¥— dmodel = 1024
g 6% A wide range of architectures
) achieve similar performance .
£ 4% i 22% additional compute
2 compensates for 1% loss increase
3 2%
0% M
100 10! 10! 102 103 10! 102
Feed-Forward Ratio (dif / dmodel) Attention Head Dimension (dmodel / Nhead)

Aspect Ratio (dmodel / Niayer)

50M Parameters 25M Parameters

Figure 6: Language model loss changes with different network shape configurations [4].

* As long as the network shape is in a general sweet range, it does not impact performance much

4] Kaplan et al. “Scaling Laws for Neural Language Models”. arXiv 2020.
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Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss

7 4.2
6 < —— L=(D/5.4-10%3)7009 | 5.6 —— L =(N/8.8-1013)70-076
3.9
4.8
R 4.0
94
g 3.3 39
= 3]
3.0
2.4
L = (Cnin/2.3-108)70:050
10 10-7 10~ 10°% 10°' 107 108 10° 165 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 7: Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

[4] Kaplan et al. “Scaling Laws for Neural Language Models”. arXiv 2020.
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Scaling Law Study: Observations

A clear mapping from compute, data size, and parameter counts to testing loss
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Figure 7: Mapping from compute (Peta-Flops days), data size, and model parameters to language modeling loss on testing data [4].

 Linear increasement of language modeling accuracy requires exponential scaling

* Three factors need to scale jointly to reach target model performance improvements

[4] Kaplan et al. “Scaling Laws for Neural Language Models”. arXiv 2020.
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Scaling Law Study: Observations

Network parameters matter more than embedding parameters

TS /

6 6
51 51
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Figure 8: Scaling law with network parameter counts include (left) and exclude (right) embeddings [4].

[4] Kaplan et al. “Scaling Laws for Neural Language Models”. arXiv 2020.
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Scaling Law Study: Observations

How large the pretraining corpus should be given target pretraining steps in tokens?
 Large corpus leads to fewer repetitions (epochs)

Return on compute when repeating

3.4 o
3.2/ O Better to collect more data:
2 30 . * Fewer than four repetitions is fine.
5 ol . * More leads to diminishing returns.
a2 , i
:g 2.6 » éooO
[T i
2.41 i
2.21 Up to = 4 epochs i Rapidly diminishing
repeating is almost ! returns forl .
as good as new data 1 more repetitions
2.0 12B 488  120B 480B  1.2T
(1) (4) (10) (40)  (100)
Tokens
(Epochs)

e % Models trained
Loss assuming repeated data is worth the same as new data
Loss predicted by our data-constrained scaling laws

Figure 9: Scaling law with data repetitions [5].

5] Muennighoff et al. “Scaling Data-Constrained Language Models”. NeurlPS 2023.
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Scaling Law Study: Observations

Language modeling loss correlates well with downstream performances

TriviaQA NaturalQuestions
2.2 70 -
—— LLaMA 7B
2.1 —— LLaMA 13B -
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1.5 T T T T T T T T 20 T T T T T 0 T T T T T
0 200 400 600 800 1000 1200 1400 0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Billion of tokens Billion of tokens Billion of tokens

Figure 10: Pretraining loss and downstream zero-shot accuracy during LLaMA pretraining steps [6]

[6] Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. arXiv 2023.
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Scaling Law: Recap

Scaling law: A clear mapping from scaling factors to language modeling accuracy

* Given the same model family, data distribution, techniques, etc.

* Exponential scaling law between data size, model size, and computing FLOPs

38 Fall 2023 11-667 CMU




Scaling Law: Recap

Scaling law: A clear mapping from scaling factors to language modeling accuracy
* Giventhe same model family, data distribution, techniques, etc.

* Exponential scaling law between data size, model size, and computing FLOPs

What does this mean?
* More predictable bet on scaling up?
—Using observations at smaller scale to determine

* Deterministic but diminishingreturn?

— Exponential cost, linear accuracy gains
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Outline

* Why Scaling Up

* Which Language Model to Scale Up

* What Factors Matter in Scaling

* What Configurations to Scale Up

e Capabilities Emerged from Scaling Up
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What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations

* E.g., One million H100 hours, pretrain the best LLaMA style LLM

* Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations
* E.g., One million H100 hours, pretrain the best LLaMA style LLM

* Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)
A common question when scaling up

 Computing budget is the biggest constraint and is often pre-given and limited

* No room for exploration at target scale

* Only one scaled up pretraining run allowed, both budget-wise and time-wise.

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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What Configurations to Scale Up

Goal: Given a computing budget and a candidate language model, select the optimal scaling up configurations
* E.g., One million H100 hours, pretrain the best LLaMA style LLM

* Configurations to choose: Model size (# of parameters) and pretraining data size (# of tokens)

A common question when scaling up

 Computing budget is the biggest constraint and is often pre-given and limited
* No room for exploration at target scale

* Only one scaled up pretraining run allowed, both budget-wise and time-wise.
Solution: Scaling law

* Use many experiments at small scale to establish the scaling law

* Use scaling Law to predict best configuration at target compute
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]
1. Pretrain different sized models to near converge and track loss
2. Record best (model size, data size) at each FLOP.

3. Estimate the scaling law

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.

Fall 2023 11-667 CMU




Scaling Configuration: Empirical Scaling Law

Empirical Approach #1: Fix model size and varying pretraining tokens [7]

1. Pretrain different sized models to near converge and track loss

2. Record best (model size, data size) at each FLOP.

3. Estimate the scaling law

-10B

-2.5B

-500M
-250M

-75M

@

1022

1021

1020
FLOPS

107 108  10%°

Parameters

Ll 1.5T
1012
100B 678
1011
&
10B .;r./ E‘)
L] ”'. o
- s
o f 1010
1.0B /
by 7
100M ,/}'./ 10° //,,,
1017 1019 1021 1023 1025 1017
FLOPs

1019

1021
FLOPs

1023 1025

Figure 11: Pretraining loss of varying model (left), and the identified optimal parameters (mid) and tokens (right) at different FLOPS [6]
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Empirical Approach #1: Fix model size and varying pretraining tokens [7]
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[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1

3. Estimate the scaling law

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #2: Fix total FLOPs, pretrain different sized models [7]
1. Pretrain to the # of tokens using total FLOPs and track final loss
2. Track best configurations and vary the total FLOPs and rerun #1

3. Estimate the scaling law
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Scaling Configuration: Empirical Scaling Law

Empirical Approach #3: Using data points collected from previous two approaches and fix a parametric functions
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Figure 13: Fitted parametric function of (model size, FLOPs)—Loss using data from approach one (left) and two (right) [6]

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Estimated Optimal Configurations

Applying Empirical Approach #1 to common parameter settings

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion

10 Billion 1.23e+22 1/46  205.1 Billion
67 Billion 5.76e+23 1 1.5 Trillion
175 Billion 3.85e+24 6.7 3.7 Trillion
280 Billion 9.90e+24 17.2 5.9 Trillion
520 Billion 3.43e+25 59.5 11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Table 2: Examples of estimated scaling configurations at different model sizes [3].

Back-of-envelop calculation: 1e+24 FLOPs = 1 Million A100 Hours/40K A100 Days.
* The one used to pretrain LLaMA-65B
* 512 A100 for 3 months

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Performances

Chinchilla: Use scaling law predicted configurations at the same FLOPs of Gopher
 Chinchilla (predicted optimal): 70B parameters and 1.4T (4X) Tokens
* Gopher (guessed setup): 280B (4X) parameters and 300B Tokens

o
=
o

0.06

0.04

0.02

Relative Gain over Gopher

0.00
Various subsets of the Pile

Figure 14: Chinchilla’s Language model accuracy gains on different corpora from the Pile [6]

7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Performances

Universal improvements on various downstream scenarios
* MMLU, BigBench, Close book QA, etc.

Method Chinchilla Gopher GPT-3

0-shot 16.6% 10.1% 14.6%
Natural Questions (dev) 5-shot 31.5% 24.5% -
64-shot 35.5% 28.2% 29.9%

0-shot 67.0% 52.8% 64.3%
TriviaQA (unfiltered, test)  5-shot 73.2% 63.6% -
64-shot 72.3% 61.3% 71.2%

0-shot 55.4% 43.5% -
TriviaQA (filtered, dev) 5-shot 64.1% 57.0% -
64-shot 64.6% 57.2% -

Table 2: Close book QA results [3].

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Configuration: Remarks

Scaling law universally exists, but the specific functions differ

4
/

1T /{; Many factors can impact the scaling function:
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1008 i - Aggﬁgjih 5 * Transformer Architectures
. —— Approach 3 * Pretraining Tasks
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© 1.0B Y Gopher (280B) There is no universal scaling function
% GPT-3(175B)
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4
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Figure 15: Scaling law predictions in different settings [7]

[7] Hoffmann et al. “Training Compute-Optimal Large Language Models”. arXiv 2022.
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Scaling Up Pipeline

The current development pipeline of scaling up LLM pretraining, e.g., used by GPT-4, PaLM-2, and many more

Commodity Scale
(Widely Available)

Modeling Research
(Develop the Best
Pretraining Method)

Scaling Trials
(Verify Robustness
with Bigger Scales)

Enormous Scale
(Privileged Access)

—P

Scaling Law
(Estimate Scaling
Function with Runs)

55

Scaling Up
(Million/Billion
Dollar Bets)
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Scaling Up Pipeline

The current development pipeline of scaling up LLM pretraining, e.g., used by GPT-4, PaLM-2, and many more

Enormous Scale
(Privileged Access)

Commodity Scale
(Widely Available)

Modeling Research Scaling Trials Scaling Law Scaling Up
(Develop the Best —— (Verify Robustness ——— (Estimate Scaling ——{ (Million/Billion
Pretraining Method) with Bigger Scales) Function with Runs) Dollar Bets)
Research Production?

* One scaling up run

* Build a better product: LLM

* Better not screw up

* Clear and short-term deliverables
* Resource-heavy

e Fast and many iterations

* Build new knowledge & understanding
* Can/Should take risks

* No guaranteed outcome

* Talent-heavy
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Outline

* Why Scaling Up

* Which Language Model to Scale Up
* What Factors Matter in Scaling
 What Configurations to Scale Up

* Capabilities Emerged from Scaling Up
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Emergent Abilities: Observations
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Figure 16: Scaling Law of FLOPs, Model Sizes, and Language Model Accuracy [8]

[8] Wei et al. “Emergent Abilities of Large Language Models”. Fall 2023 11-667 CMU
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Figure 17: Zero-shot ability on MMLU suddenly emerges at a certain scale [8]

[8] Wei et al. “Emergent Abilities of Large Language Models”. Fall 2023 11-667 CMU
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Emergent Abilities: Observations

Emergent scale

Train. FLOPs Params. Model

Few-shot prompting abilities

e Addition/subtraction (3 digit) 2.3E+22 13B GPT-3

e Addition/subtraction (4-5 digit) 3.1E+23 1758 o .

¢ MMLU Benchmark (57 topic avg.) 3.1E+23  175B  GPT-3 Abilities emerge at different scales

e Toxicity classification (CivilComments) 1.3E+22 7:.1B Gopher

e Truthfulness (Truthful QA) 50E+23  280B * Hard to map their complexity with emergent scale
e MMLU Benchmark (26 topics) 5.0E+23 280B

e Grounded conceptual mappings 3.1E+23 175B GPT-3 e Should be determined by various factors

e MMLU Benchmark (30 topics) 5.0E+23 70B  Chinchilla

¢ Word in Context (WiC) benchmark 2.5E+24 540B  PaLM * Not clear which factors and their influences

e Many BIG-Bench tasks (see Appendix E) Many Many Many

Augmented prompting abilities

e Instruction following (finetuning) 1.3E+23 68B FLAN
e Scratchpad: 8-digit addition (finetuning) 8.9E+19 40M LaMDA
e Using open-book knowledge for fact checking 1.3E+422 1B Gopher
¢ Chain of thought: Math word problems 1.3E+23 68B LaMDA
¢ Chain of thought: StrategyQA 2.9E423 62B PaLM
¢ Differentiable search index 3.3E422 11B TH

e Self-consistency decoding 1.3E+23 68B LaMDA
e Leveraging explanations in prompting 5.0E+23 280B Gopher
¢ Least-to-most prompting 3.1E+4+23 175B GPT-3
e Zero-shot chain of thought reasoning 3.1E+4+23 1758 GPT-3
e Calibration via P(True) 2.6E+23 52B  Anthropic

Table 3: Abilities and the scale when models acquired them [8].

[8] Wei et al. “Emergent Abilities of Large Language Models”.
TMLR 2022.
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Emergent Abilities: Counter Arguments

“Emergentness” an artifact of exponential metric?

e E.g.: Answer Exact Match: all tokens must be correct to be 1
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Figure 18: Performance of GPT-3 when evaluated with Exponential
(Left) and Continuous (Right) Metrics [9]

[9] Shaeffer et al. “Are Emergent Abilities of Large Language Models a Mirage?”.

arXiv 2023.
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Emergent Abilities: Counter Arguments

“Emergentness” an artifact of exponential metric?
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Figure 19: Emergence score for tasks using different metrics in BIG-Bench [9]

9] Shaeffer et al. “Are Emergent Abilities of Large Language Models a Mirage?”.
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Emergent Abilities: Counter Arguments

“Emergentness” an artifact of exponential metric?
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Figure 19: Emergence score for tasks using different metrics in BIG-Bench [9]
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Emergent Abilities: Remarks

Many of these abilities are what make LLMs great and full of potential

e Zero-shot task solving, Instruction Following, Tool utilization

Open World A Few Companies
Modeling Research Scaling Trials Scaling Law Scaling Up
(Develop the best ——— | (Verify Robustness (Estimate Scaling —— (Million/Billion
Pretraining Method) with bigger scales) Function with Runs) Dollar Bets)
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Emergent Abilities: Remarks

Many of these abilities are what make LLMs great and full of potential

e Zero-shot task solving, Instruction Following, Tool utilization

Open World A Few Companies
Modeling Research Scaling Trials Scaling Law Scaling Up
(Develop the best ——— | (Verify Robustness (Estimate Scaling —— (Million/Billion
Pretraining Method) with bigger scales) Function with Runs) Dollar Bets)

Yet they are often acquired at scales not accessible to majority of the community
* Monopoly of technology/knowledge: Only a few places can do it

* Huge burden for scientific approaches: Infeasible to conduct scientific experiments at large scale
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Scaling Law: Summary

* Why Scaling Up
e Predictable benefits in nearly all scenarios

Which Language Model to Scale Up
e Benefits of decoder models

What Factors Matter in Scaling
e Strong mapping from compute, model size, and pretraining data size to language model performances

What Configurations to Scale Up
 Establish scaling law with small scale explorations, scaling up based on scaling law predictions

Capabilities Emerged from Scaling Up
e Lots of unknowns and challenges!
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Quiz: Why linear improvements of LLM accuracy
requires exponentially more compute, model
parameters, and pretraining data?
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