Sparsity for Efficient Long Sequence Generation

Beidi Chen (CMU / FAIR)

H20: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurlPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.
https://github.com/FMInference/H20

StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.
https://github.com/mit-han-lab/streaming-lim

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time. ICML 2023 (Oral). Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song,
Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher Ré, Beidi Chen.
https://github.com/FMInference/DejaVu

Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt. Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin
Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava.

https://github.com/FMInference/H2O
https://github.com/mit-han-lab/streaming-llm
https://github.com/FMInference/DejaVu

LLMs are Powerful

OUTPUY

'/\
n

Conversational Al Content Generation Al Agents

Finishing a
morning routine

@ Openal Researchv APlv ChatGPTv Safety Company- Search Login» | Try ChatGPT 2

Efficient Long Sequence Generation

Blog

I ntrod u Ci n g G PTS You can now create custom versions of ChatGPT that combine

instructions, extra knowledge, and any combination of skills.

4 Default (GPT-3.5) 0

y Creative Writing Coach Laundry Buddy
Generate an opening sentence for my talk "Sparsity for Efficient Long Sequence Generation ronteyou > you feeciback o mprove your oK. cetinge: sarting and everythin

settings, sorting and everything

laundry.
n

Game Time ~ Tech Advisor
| can quickly explain board games or From setting up a printer to

card games to players of any skill 5 troubleshooting a device, I'm here to
level. Let the games begin! help you step-by-step.

"Ladies and gentlemen, today we delve into the fascinating world of sparsity as a key

ingredient for achieving efficient long sequence generation."

Sticker Whiz L The Negotiator

Il help turn your wildest dreams into Il help you advocate for yourself and
die-cut stickers, shipped to your door. N get better outcomes. Become a great
negotiator.

LLMs are Powerful, but Very Expensive to Deploy

§ R

L R

wwnx > ; *"& o 6 6 6 b6

Conversational Al Content Generation Al Agents

Major Challenges: memory IO (Pope et al.) + limited context window
* large mem, e.g. a Llama2-70B model needs
= 140 GB for parameters,
= 160 GB for activation (KV cache),
even with Multi-Group-Attention (8K seqlen + 64 batch size)
* |ow parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
* Perplexity explosion beyond pre-trained windows

Exponential model size

Load model Cache KV

Load model love \ Cache KV

Load model love randomized \C'ache KV

Load model love randomized algorithms

Log4%erplexity & VRAM usage of Llama 2 7B as a function of input lengths

——- attention_sinks vram —— attention_sinks perplexity
r -
—=~ transformers vram —=~ transformers perplexity

——- windowed vram ;"— windowed perplexity

W
&)]

w
o

N
[

[
w
w

[~
U
B
o
Q
2
—
o
=
2
@
o
S—
%
g
a
]
a

g
o
CUDA VRAM Usage (GB), lower is better

=
w
o

4000 6000 8000 10000
Input Sequence Length

We need to design more efficient algorithms for LLM inference!

H,O (veurips23)

Sutic Sparsary (Straded) Static Sparsity (Localy Sutic Spaesity w. H,0
l_ I I [I

B B S

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

StreamingLLM (new &)

Model 4 million tokens... 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu (cvi23)

/ Deja Vu \

Attention,,,
| | | | | ‘ Predictor ‘
=

2x lower latency than
T FasterTransformer and
EEEEEEEE 6x than HuggingFace
wienon, | on 8xA100 with

— L el contextual sparsity.

N .

Compress, Then Prompt (new &)

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

Background: Transformer Architecture

Attention

MLP

A = softmax(QK") VvV

Background: Transformer Architecture

Attention MLP

W, Wi, W,, W, } € Raxd (W, W,} € Rix4d

10

H,O (veurips23)

Suatic Sparsaty (Straded) Static Sparsity (Local) Sutic Speesity w. I1,0

[[T

I - ==

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

StreamingLLM (new &)

Model 4 million tokens... 22x faster than sliding
window recomputation with Attention Sink.

Load model Cache KV

Load model love \ Cache KV

Load model love randomized \C'ache KV

Load model love randomized algorithms

Background: Transformer Architecture

Attention

A = softmax(QK") Vv

13

KV Cache Bottleneck

KV states for context or previously
generated tokens will be cached

Q Love to avoid re-computation.
Randomized
Algorithms
\O & X
o, O\
K cache ,b(\@o 3

KV cache size scales linearly with sequence length and batch size.

14

Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!
But hard to adapt to generation: el
 Reduce quadratic attention but not KV cache size -+
= e.g., FlashAttention, Reformer

—-— - -

e

’

15

Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!
SHNE Sparsity [Snoed)
But hard to adapt to generation: | |
 Reduce quadratic attention but not KV cache size
= e.g., FlashAttention, Reformer
* Result high cache miss rates and degrade accuracy
" e.g., Sparse Transformer
* Expensive eviction policy
= e.g., Gisting Tokens

An ideal cache has a small cache size, a low miss rate, and a low-cost eviction policy.

16

Sparsity for Smaller Cache Size

1001
2 Observation: although densely trained, LLMs
g " e attention score matrices are highly sparse,
N) . . .
S with a sparsity over 95% in almost all layers
5 70- * l|eads to 20x potential KV cache reduction
< OPT-308 * maintains same accuracy
OPT-13B
60 -
—— OPT-6.7B
0 10 20 30 40 50

Layer Index

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.

Heavy-Hitters for Low Miss Rate

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

le5 le6

1.4
8
129 r2.0 §
5] 5]
£ 1.0 “ g
= \ 1532
3 0.8+ \ 2
5 <
0.6 1.0
2 0.4 =
S AT 0.5 £
0.2 3
<
0.0 - 0.0

0 10000 20000 30000 40000 50000
Word Index

Key Observation: a small set of tokens are important along the generation
e accumulated attention scores of all the tokens follow a power-law distribution

Love
Randomized

Algorithms

K cache

Heavy-Hitters for Low Miss Rate

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

le5 le6

1.4 -
2 901 - [Baseline
% 129 A 2.0 g 80 - EZA w.o. Heavy Hitter
5] nn
= 1.5°5 S -
Q 08 T ‘ 8 = /
5 < 5 60 - .
= S /
5] = Q 4
2 0.4 3 < ;j — g g
O o L0.5 € 40 / [/
0.2 =~ 5 // ‘ ‘ /// A
' ¢ 11 KA /
< 3011 [¢ A
0.0] - 0.0 i ‘ a g %
0 10000 20000 30000 40000 50000 20 CdPA OpenBlookQA Pi(I)A RTE
Word Index

Key Observation: a small set of tokens are important along the generation
e accumulated attention scores of all the tokens follow a power-law distribution
* masking heavy-hitter tokens degrades model quality

Greedy Algorithm for Low-cost Policy

Challenge: how to deploy such algorithm without access to the full attention?

OpenBookQA MathQA

PiQA [{ | coPA

RTE ~“Winogrande

® - Baseline o= H>0O w. Global Statistic
==o— H>0O w. Local Statistic Local

Idea: local greedy algorithm
e sum up the attention scores of the previous tokens every decoding step
* Add local / recent tokens

21

H,O: Heavy Hitter Oracle

Value

Z 1.43 1.52 % 0.9

0.03)0.

Children | laughed and played in
Value T
I o -I
! 0.1 0.1 0.6
| 1
Decoding Step 4 Query
m e mmmmm e —m— ==,
Children | laughed and played in the J- sunny J- park I . 1 ecoe

22

H,O: 3-29X Throughput and 1.9X Latency

XSUM, LLaMA-7B XSUM, LLaMA-13B XSUM, LLaMA-30B
H 6] e — | owof
12 = S R (S S 2]
% A100 FlexGen H,0
12 60
&N @ o %5 Heavy-Hitter Oracle
5 8 B 8 Pacal Throughput (token/s) 494 918 (1.9X)
o ¢ o | 8 - Fy
& 44 —*— Heavy-Hitter Oracle =8 ~de— Heavy-Hitter Oracle | 30 = Late nc (S) 99 5 3 (1 9X)
I,ocul' \ 4 | OC.’I" ‘ 20 y)
21 == Full 21 w==s Full 3 10
] T T T 0 .]
100 R0 60 40 20 0 100 hil) 60 40 20 0 100 X0 o0 40 20 0
KV Cache Budget (%) KV Cache Budget (%) KV Cache Budget (%)
Hugging Face Deep Speed FlexGen H,O
Throughput (T4) token/s 0.6 0.6 8.5 18.83 (3-29X)

e compatible with quantization
* generate sentences with fewer repeated words and more creativity

23

Model Input

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

LLaMA-7B Full Cache
Output

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that/he began to cry.|The patrons were so moved that they
began to cry} and the musician was so

LLaMA-7B Local 20% Cache
Output

He (CCCCCCCCCCCCG D), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

LLaMA-7B H>O 20% Cache
Output

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

24

What are these heavy hitters?

Phenomenon: Attention Sink

Layer 0 Head 0 Layer 1 Head 0 Layer 2 Head 0 Layer 9 Head 0 Layer 16 Head 0 I

< o
N 2
al
0
o
-1 o
-2 10)
12
-3
19
-4
2 ou
e 2
2
2
1

Layer 23 Head 0
' 4
0 N o
o
-t 10 -1
12
- .,
' R '
w L e PR

1.25

1.00
Layer 31 Head 0

0.75
10

12

14

Average attention logits in Llama-2-7B over 256 sentences

First few tokens!

* Observation: large attention scores are given to initial tokens, even if they're not semantically significant.
* Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

26

Understanding Attention Sinks

e SoftMax operation's role in creating attention sinks — attention scores have to
sum up to one for all contextual tokens. (SoftMax-Off-by-One, Miller et al. 2023)

* Initial tokens' advantage in becoming sinks due to their visibility to subsequent
tokens, rooted in autoregressive language modeling.

* The model learns a bias towards their absolute position Llama-2-13B PPL (})
rather than the semantics are crucial. 0+1024 (window) ~ 5158.07
4+1024 5.40
4"\n”+1020 5.6

Understanding Attention Sinks

 Pre-train with a Dedicated Attention Sink Token

2.8

— Vanilla
4 1 SinkqToken Cache Config 0+1024 1+1023 2+1022 4+1020
2 Vanilla 27.87 1849 18.05 18.05
526 Zero Sink 29214 19.90 1827 18.01
" Learnable Sink 1235 18.01 18.01 18.02
23

0 20 40 60 80 100 120 140
k Steps

e Similar Phenomenon in Darcet et al. Vision transformers need registers

Without registers With registers
Input DeiT-111 CLIP DINOv2 DeiT-111 CLIP DINOv2

*, S SRR

28

StreamingLLM

(a) Dense Attention (b) Window Attention

Current Token
i - O erH- Ol

<4—— T cached tokens —» T-L evicted L cached
tokens tokens

O(TL) v PPL: 5158x

Breaks when initial
tokens are evicted.

O(T?)x PPL: 5641x

Has poor efficiency and
performance on long text.

(c) Sliding Window

w/ Re-computation (d) StreamingL.LM (ours)

previous tokens
are truncated

k -
Attention Sink

L re- computed
tokens

O(TL?»Xx PPL: 5.43v

Has to re-compute cache
for each incoming token.

L cached
tokens

evicted
tokens

O(TL)v PPL:5.40v

Can perform efficient and stable
language modeling on long texts.

29

Log4%erplexity & VRAM usage of Llama 2 7B as a function of input lengths

——- attention_sinks vram —— attention_sinks perplexity
r -
—=~ transformers vram —=~ transformers perplexity

——- windowed vram ;"— windowed perplexity

W
&)]

w
o

N
[

[
w
w

[~
U
B
o
Q
2
—
o
=
2
@
o
S—
%
g
a
]
a

g
o
CUDA VRAM Usage (GB), lower is better

=
w
o

4000 6000 8000 10000
Input Sequence Length

Infinite Streaming Ability

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
* Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: 1 2 3 4 5 6 7 8 Test: 1 2 3 4 5 6 7 8 2?2 ?

Opportunity with StreamingLLM:

Train: 1 2 3 4 5 6 7 8 Test: 1 2 3 4 x x 5 6 7 8

Stably Model up to 4 Million Tokens

Llama-2 (StreamingLLM)

Falcon (StreamingLLM)

1.5
— Falcon-7B
—— Falcon-40B
0.5oM 1M oM 3M aM

Input Length

Pythia (StreamingLLM)
1.5 -
% %
Q. Q 1.5
o (o) :
° — Llama-2-7B | © —— Pythia-2.8B
—— Llama-2-13B —— Pythia-6.9B
—— Llama-2-70B —— Pythia-12B
0.5 om 1M 2M 3M am 92 oM 1M 2M 3M 4M
Input Length

Input Length

MPT (StreamingLLM)

0.5

— MPT-7B
— MPT-30B

oM 1M 2M 3M 4M
Input Length

32

22X Faster than Sliding Window Recomputation

o Llama-2-7B Pythia-12B
121
7
10 6
g’ 35
2 © 2
= =3
4 2
2 1 Window
0 0 Attention
oK 5K 10K 15K 20K oK 5K 10K 15K 20K
Input Length Input Length s StreaMingLLM
Window
Attention
Falcon-7B MPT-7B
: (Re-compute)
6 : 12 Dense Attn
! 10
T : T g
Q4 L Q
(o)) ! (@) 6
= | ke
ZAR 4
B 2
0ok " 5K 10K 15K 20k 9ok 5K 10K 15K 20K

Input Length

Input Length

33

“__ ~ ButStreamingLLM will forget the middle contents?

StreamingH20: Infinite Streaming Ability

Similar position squeezing can be deployed on H20

Traint 1 2 3 4 5 6 7 8 Test: 1 x 2 x 3 4 5 6 7 8
10-Document Question Answering Summarization Task Streaming with H2O to 4 Million Tokens
[StreamLLM-4-508 0.25 4 [StreamlLLM-4-252 3.0 1
40 - ZZ StreamLLM-256-256 EZE H20-128-128
EZA H20-256-256 254
0.20 -
2 307 =3 2.0
3 ?:l’o 0.15 -
2 04] g z 1.5 1
i = % 0.10
1.0 1
10 0.05 -
0.5 1
T T T 0.00 T T T T T
1th 2nd 3rd XSUM CNN-DailyMail 0 M M M aM

Answer Locations Input Length

Demo

(streaming) $ bash scripts/streaming/baseline.sh
Loading model om lmsys/vicuna-13b-v1.3

You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.Ll

amaTokenizer'>. If you see this, DO NOT PANIC! This is expected, and simply means that the ‘legacy’

ious) behavior will be used so nothing changes for you. If you want to use the new behaviour, set "legacy
=False’'. This should only be set if you understand what it means, and thouroughly read the reason why thi

s was added as explained in https://github.com/huggingface/transformers/pull/24565

Loading checkpoint shards: 673 | EEEEEEEEEEE | 2/3 [@0:18<00:09, 9.1@8s/it]

H20KVCache-LayerWwi

H20KVCache-LayerWise:
H20KVCache-LayerWise:

H20KVCache-LayerWise

H20KVCache-LayerWise:
H20KVCache-LayerWise:

H20KVCache-Laye
H20KVCache-LayerWi
H20KVCache-Layerwi
H20KVCache-LayerWis
H20KVCache-Laye
H20KVCache-LayerW
H20KVCache-Laye
H20KVCache-Laye
H20KVCache-LayerWise
H20KVCache-Layerwi
H20KVCache-Layerwi
H20KVCache-LayerWw
H20KVCache—-Layerw

H20KVCache-LayerWise:
H20KVCache-LayerWise:
H20KVCache-LayerWise

H20KVCache-Layerwi

H20KVCache-LayerWise:

H20KVCache-Layer¥
H20KVYCache-Layer¥w
H20KVCache-Layerwi

H20KVCache-LayerWise:
H20KVCache-LayerWise:

1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1004,
1604,
1004,
1004,
1004,
1004,
1004,

Loading checkpoint shards:

2/3 [@0:16<00:08,

8.10s/it]

36

Deja Vu (cvi23)

Deja Vu \

| | ‘ Predjctor ‘

| | | | ‘Predjctor‘
e

| | ‘ Pred‘ictor ‘

./

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

Compress, Then Prompt (new &)

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

Exponential model size

Background: Transformer Architecture

Attention MLP

W, Wi, W,, W, } € Raxd (W, W,} € Rix4d

39

Existing Approaches and Challenges

The idea sparsity or pruning is not new!
* Long history in ML, statistics, neuroscience, signal processing ... (Lecun et al. 90,
Donoho 92, Tibshirani 96, Foldiak et al. 03, Candes et al. 05)

But hard to speed up sparse LLMs in wall-clock time and maintain quality | Memory Access

* Expensive and infeasible to finetune or retrain

* Difficult to find sparsity that preserves emergent ability of LLMs

* Unstructured sparsity is not hardware-efficient (Hooker et al. 20)

—deal sparsity requires no retraining, maintains quality, and speeds up in wall-clock time.

Contextual

40

Hypothesis: Contextual Sparsity Exists Given Any Input

Contextual sparsity: , input-dependent sets of attention heads and MLP parameters
that lead to (approximately) the same output as the full model for an input.

Attention,,,

v

A

Inspired by:
MLP, connections between LLMs, Hidden Markov

— Models and Viterbi algorithm (xie et al.)

Attention,

Contextual Sparsity: Existence

0.810
0.808
0.806

50804

C 0.802

S 0.800

go.
0.798
0.796
0.794

—de— — %

Static Sparsity
—¥— Non-Contextual Sparsity
—#— Contextual Sparsity

2 3 4 5 6 7 8

Theoretical Reduction

Observation:
keep only high activation in
attention/MLP blocks

e 85% structured sparse
o 80% attention, 95% MLP

* l|ead to 7x potential parameter
reduction for each input
* maintain accuracy

42

Contextual Sparsity: Existence

0.810
0.808
0.806

50.804

2 0.802

S 0.800

So.
0.798
0.796
0.794

—de— — %

Static Sparsity
—¥— Non-Contextual Sparsity
—#— Contextual Sparsity

2 3 4 5 6 7 8

Theoretical Reduction

Attention,,,

MLP,

Attention,

Static

43

Contextual Sparsity: Existence

0.810
0.808
0.806

50.804

2 0.802

S 0.800

So.
0.798
0.796
0.794

e —c) :
Attention,,,
MLP,
Static Sparsity
—¥— Non-Contextual Sparsity
—#— Contextual Sparsity
5 3 4 5 6 . 3 Attention,

Theoretical Reduction

None-Contextual

44

Contextual Sparsity: Existence

0.810
0.808
0.806

50.804

2 0.802

S 0.800

So.
0.798
0.796
0.794

—de— — %

Static Sparsity
—¥— Non-Contextual Sparsity
—#— Contextual Sparsity

2 3 4 5 6 7 8

Theoretical Reduction

Attention,,,

MLP,

Attention,

Contextual

45

Contextual Sparsity Exists in MLPs

N 100% s
o
3 98%
=
S Due to activation functions,
2 96%
g e.g., ReLU, GelLU
5 949% Similar observation in (Lietal.)
f — QPT-30B
2 929, OPT-06B
X — (OPT-1758B

90%

>0 20 40 60 80

Transformer Layer

46

Contextual Sparsity Exists in Attention

< 100%
(v
()
I
s 80%
e
©
>
2 60%
<
2 —— OPT-30B
i 40% OPT-66B
° —— OPT-175B
20%
>0 20 40 60 80

Transformer Layer

47

Contextual Sparsity Exists in Attention

Truck
A ~Q
:// A

|
| Head 42 . |
' i |
| |
| Head 43 T |

o
=
Head 44
'
T T T T T T T T T
‘ . X S W\ < d
QW 2N (0% o™ ¢ O\ @ 0
\\\ MRS UM <« S J
N //

N e o e e o e o —— — —— —— s —

This fruit shipping company provide different vehicle options like car and [MASK]

48

e Contextual sparsity exists

 We should design “similarity”-based sparsity prediction

Contextual Sparsity:

Challenge: how to predict high activation on-the-

Attention,,,

T fly without computing the full attention or MLP?
I @®
MLP, 1|/2|3|4|5|6|7|8 yi€lo.
%% Key idea: design a “similarity”-based prediction
| * formulate the prediction problem as near-
Atention |1 R %@ neighbor search (NNS).
T @ * Data — neurons or attention heads
input Query — input at each layer

NNS algorithms can make prediction based on the similarity between input & parameters.

Contextual Sparsity: Efficiency

Attention,,,

MLP,

Attention,

@®

0l6

@6

©@

@®

NNS overhead and SpMM

* it performs at each layer

* hash table is not efficient
on GPU

* Sparse matmul complicates
the implementation

Key Insight: Slowly Changing Embeddings across Layers

1.00 1.0 r———v__\w
0.99 0.8 |
2 >
© ©
= 0.98 = 0.6
£ £
wn wn
20.97 204
wn ()]
3 3 —_— n=1
Q Q
0.96 0.2 —_—n=2
— n=4
0.95 0.0 n=38
S A0 AC AR PP 0 20 40 60 80
o D
N o M0 \//\ Transformer Layer

Cosine similarity between representations at consecutive layers is very high.

52

Key Insight: Slowly Changing Embeddings across Layers

2000
£ 1500
S 1000
500

0

Residual Around Attention 2500 Residual Around MLP
”>F((|>|() 2000 ”’;(')'()
[[F(X)]] £ 1500 [1F(X)]
21000
500
_ AN
0 20 40 60 80 0 20 40 60 80
Transformer Layer Transformer Layer

For the residual connection X' = X +F (X), X’s norm dominates.

Predict contextual sparsity n-layers ahead

Attention,,,

a\/v
e A
MLP, 1(2|3|4|5|6|7|8
@06
[®0
Attention,) > 3 4 @®
N—— ®
T ©

Reduce overhead with Asynchronous Execution

Attention,,,

@®

MLP,

Attention,

Reduce Overhead with GEMM-based Predictor

Attention,,,

— Low-cost small MLP predictors

Predictor
MLP,

Predictor
Attention,

Predictor

|

56

Hardware-efficient Implementation

Attention,,,

Predictor
MLP,
Predictor
Attention,
Predictor
\/-/'

Kernel fusion:
« SpMM, indexing + multiplication
* Triton
Memory coalescing:
* Store Atten out projection and
MLP2 in column major

Missing KVCache for a past token:
 |atency is bounded by weight loading
* Fillin missing ones when that head is
loaded by a future token (compute is free)

Deja Vu: 2X FasterTransformer and 6X HuggingFace

100 HuggingFace COPA OpenBookQA Winogrande Lambada
) B FasterTransformer
ii 80 mm DejaVu OPT-175B 0.86 0.446 0.726 0.758
g Deja Vu-OPT-175B 0.85 0.45 0.726 0.753
+ 40
= I. I. I. Il OPT-175B + W4A16 0.85 0.44 0.714 0.757
0 128 256 1o 1024 Deja Vu-OPT-175B + W4A16 0.86 0.452 0.726 0.754

Sequence Length

 demonstrates best performance with batch size=1, ReLU, 175B model
* maintains accuracy even combined with quantization.
* achieves speed up with larger batch size, more activation functions, and smaller models.

58

Can we compress more?

Prompt: Please carefully examine the weight matrix within the model, as it may contain errors. It is
crucial to verify its accuracy and make any necessary adjustments to ensure optimal performance

LLAMA-7B

4)

[Q: Please give answers to this
question: Where is Long
Beach?

\ J

e (Full)

[Los Angeles County,
|California, United
States.

\.

—

Long Beach is a city in

J

4 B

|Q: Please give answers to this
question: Where 1s Tulsa,
[Oklahoma?

\. J

(
Tulsa is in the state of

tf the state.

[Oklahoma. It is located
in the northeastern par

~\

L

J

4)

|Q: Please give answers to this
question: What is Asparagus?

. J

sparagus is a

egetable that 1s grown

in the spring. It is a
member of the lily
family.

\

LLAMA-7B
7= = (62.5% sparsity) = =
|
1

Il am a student and I am
Nooking for a job.
|

Il am a student of the
Wniversity of Tulsa.
1

Il am not sure what
lasparagus is.

S e e e = o= S e e mm =

S e e e e o=

LLAMA-7B
(62.5% sparsity)
w./ Hard Prompt

* e ~

I
"The answer is: Long
Beach is located in the
jUnited States.

I

1The weight matrix is a
Iset of weights that are
lused to calculate the

Iweig,ht of the model...

o e e

IThe Asparagus 1s a plant
Ythat is used for cooking. ,

LLAMA-7B
(62.5% sparsity) -
w./ Learned Prompt 1

I
:Long Beach is a city in
jthe Los Angeles County,
(California.

N e e e e oo o
™ ™ m m m om o= o -

i)
! :
ITulsa is a city in :
I0klahoma. .
I

; [
N e e e e oo "
o \

IAsparagus is a plant that
lsrows in the garden
I

Observation: Prompt Helps SparseGPT pruned models

60

Prompt Learning Strategy for Compressed LLMs

Learnable Soft Tokens

Tokenization -

love ‘ love

CMU CMU

| love CMU - -

Soft Prompt are better and transferable across tasks and different compression techniques.

61

H,O (veurips23)

Sutic Sparsaty (Strided) Static Sparsity (Localy ’i\llk Spessity w. [0
l_ I I I

I P =

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace

Accelerate, and FlexGen with Heavy-Hitter Sparsity.

StreamingLLM (new &)

Model 4 million tokens... 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu (cvi23)

/ Deja Vu \

Attention,,,
| | | | | ‘ Predictor ‘
=

2x lower latency than
T FasterTransformer and
EEEEEEEE 6x than HuggingFace
wienon, | on 8xA100 with

— L el contextual sparsity.

N .

Compress, Then Prompt (new &)

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

QUUUUIZ Time

Is it possible to load LLM < 100 times when
generating / decoding 100 tokens from the
same distribution? If so, how?

Thanks You!

Q&A

