
1

Beidi Chen (CMU / FAIR)

Sparsity for Efficient Long Sequence Generation

H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models. NeurIPS 2023. Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, Beidi Chen.
https://github.com/FMInference/H2O

StreamingLLM: Efficient Streaming Language Models with Attention Sinks. Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis.
https://github.com/mit-han-lab/streaming-llm

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time. ICML 2023 (Oral). Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song,
Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher Ré, Beidi Chen.
https://github.com/FMInference/DejaVu

Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt. Zhaozhuo Xu, Zirui Liu, Beidi Chen, Yuxin
Tang, Jue Wang, Kaixiong Zhou, Xia Hu, Anshumali Shrivastava.

https://github.com/FMInference/H2O
https://github.com/mit-han-lab/streaming-llm
https://github.com/FMInference/DejaVu

LLMs are Powerful, but expensive to deploy

2

Conversational AI Content Generation AI Agents
10/27/23, 1:21 AM ChatGPT

https://chat.openai.com/c/6e1bfe0b-519b-40bb-af60-f4a28df6df11 1/1

Generate an opening sentence for my talk "Sparsity for Efficient Long Sequence Generation

"

"Ladies and gentlemen, today we delve into the fascinating world of sparsity as a key

ingredient for achieving efficient long sequence generation."

Send a message

ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT September 25 Version

Efficient Long Sequence Generation

Default (GPT-3.5)

LLMs are Powerful, but expensive to deploy

Major Challenges: memory IO (Pope et al.) + limited context window
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for parameters,
§ 160 GB for activation (KV cache),
 even with Multi-Group-Attention (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
• Perplexity explosion beyond pre-trained windows

3

Conversational AI Content Generation

 , but Very Expensive to Deploy

AI Agents

LLMs are Powerful, but expensive to deploy

4

 , but Very Expensive to Deploy

0

1

10

100

1,000

10,000

2018
2019

2020
2021

Exponential model size

1

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
5

Conversational AI Content Generation Text Summarization

 , but Very Expensive to Deploy

I

I love randomized algorithms

I love randomized

I love Cache KV

Cache KV

Cache KV

…

Load model

Load model

Load model

Load model

2

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
6

 , but Very Expensive to Deploy

3

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
7

 , but Very Expensive to Deploy

We need to design more efficient algorithms for LLM inference!

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

H2O (NeurIPS’23)

StreamingLLM (new 🔥)

Deja Vu (ICML’23)

Compress, Then Prompt (new 🔥)

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

Model 4 million tokens… 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

Background: Transformer Architecture

9

𝐴 = softmax 𝑄𝐾! V 𝑊" 𝑊#

Attention MLP

Background: Transformer Architecture

10

𝑊",𝑊# ∈ 𝑅$%&$

Attention MLP

{𝑊' ,𝑊(,𝑊) ,𝑊* 	} ∈ 𝑅$%$

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

H2O (NeurIPS’23)

StreamingLLM (new 🔥)

Deja Vu (ICML’23)

Compress, Then Prompt (new 🔥)

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

Model 4 million tokens… 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

10x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
12

Conversational AI Content Generation Text Summarization

 , but Very Expensive to Deploy

I

I love randomized algorithms

I love randomized

I love Cache KV

Cache KV

Cache KV

…

Load model

Load model

Load model

Load model

2

Background: Transformer Architecture

13

𝐴 = softmax 𝑄𝐾! V

Attention

14

KV Cache Bottleneck

I

Love

Randomized

Algorith
ms

Randomize
d

LoveI

Algorithms

Q

K cache

KV states for context or previously
generated tokens will be cached
to avoid re-computation.

KV cache size scales linearly with sequence length and batch size.

1515

Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!

But hard to adapt to generation:
• Reduce quadratic attention but not KV cache size

§ e.g., FlashAttention, Reformer

1616

Existing Approaches and Challenges

Naturally, we can limit the cache size like the SW/HW caches. Attention approximation
has been widely studied in training long sequences!

But hard to adapt to generation:
• Reduce quadratic attention but not KV cache size

§ e.g., FlashAttention, Reformer
• Result high cache miss rates and degrade accuracy

§ e.g., Sparse Transformer
• Expensive eviction policy

§ e.g., Gisting Tokens

An ideal cache has a small cache size, a low miss rate, and a low-cost eviction policy.

17

Sparsity for Smaller Cache Size

Observation: although densely trained, LLMs
• attention score matrices are highly sparse,

with a sparsity over 95% in almost all layers
• leads to 20× potential KV cache reduction
• maintains same accuracy

Attention sparsity widely exists in pre-trained models, e.g. OPT /LLaMA /Bloom/GPT.
(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

18

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

19

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it
I

Love

Randomized

Algorith
ms

Randomize
d

LoveI

Algorithms

Q

K cache

20

Heavy-Hitters for Low Miss Rate

Key Observation: a small set of tokens are important along the generation
• accumulated attention scores of all the tokens follow a power-law distribution
• masking heavy-hitter tokens degrades model quality

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to evict tokens? Once evicted, future tokens can no longer attend to it

21

Greedy Algorithm for Low-cost Policy

(a) (b) (c) (d)

COPA

MathQAOpenBookQA

PiQA

RTE Winogrande

Challenge: how to deploy such algorithm without access to the full attention?

Idea: local greedy algorithm
• sum up the attention scores of the previous tokens every decoding step
• Add local / recent tokens

22

H2O: Heavy Hitter Oracle

0.1

0.1 0.5

Children laughed and the sunny parkplayed

0.2 0.1 0.1

1

0.9

0.4

0.03 0.02 0.2 0.05 0.9

0.6

in

1.43 0.651.52 0.9

0.6

0.03 0.02 0.05 0.9

0.1

0.1 0.5

0.2 0.1 0.1

1

0.9

0.4

0.2 0.3 0.01 0.02 0.9

0.6

1.6 0.621.8 0.9

0.01

0.03 0.04 0.02 0.90.01

0.51

0.4

0.1

0.1

0.1 0.5

Children laughed and in the sunny parkplayed

0.2 0.1

1

0.9

0.6

0.2 0.1 0.1 0.6

1.4 0.61.5 0.5

0.4

0.1

0.4

0.1Query

Key

Value

Decoding Step 4

Value

Key

0.03QueryDecoding Step 5

0.6

0.02Eviction w. Global Statistic
(infeasible)

2323

H2O: 3-29X Throughput and 1.9X Latency

Hugging Face Deep Speed FlexGen H2O

Throughput (T4) token/s 0.6 0.6 8.5 18.83 (3-29X)

• compatible with quantization
• generate sentences with fewer repeated words and more creativity

A100 FlexGen H2O

Throughput (token/s) 494 918 (1.9X)

Latency (s) 99 53 (1.9X)

Model Input

LLaMA-7B Full Cache
Output

LLaMA-7B Local 20% Cache
Output

LLaMA-7B 20% Cache
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that he began to cry. The patrons were so moved that they
began to cry, and the musician was so

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

He ((((((((((((((, [)), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

24

Model Input

LLaMA-7B Full Cache
Output

LLaMA-7B Local 20% Cache
Output

LLaMA-7B 20% Cache
Output

In a small, bustling cafe nestled in the heart of a vibrant city, a serendipitous event unfolded, leaving a lasting
impression on all who witnessed it. As the patrons sat sipping their coffees and engaging in animated conversations,
a talented street musician entered the cafe, carrying a weathered guitar and radiating an aura of creativity.

He began to play, and the patrons were captivated. The musician’s performance was so moving that the patrons
began to applaud, and the musician was so moved that he began to cry. The patrons were so moved that they
began to cry, and the musician was so

He began to play, and the room was filled with the sound of his music. The patrons of the cafe were enthralled
by the music, and the atmosphere was electric. The cafe was packed with people, all of whom were enjoying
the music. The musician was a young

He ((((((((((((((, [)), 1999, 2000, 2001, 1, and, and, and, and, and, and, and, and, and, and, and,

What are these heavy hitters?

25

First few tokens!

Phenomenon: Attention Sink

Average attention logits in Llama-2-7B over 256 sentences

• Observation: large attention scores are given to initial tokens, even if they're not semantically significant.
• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

26

• SoftMax operation's role in creating attention sinks — attention scores have to
sum up to one for all contextual tokens. (SoftMax-Off-by-One, Miller et al. 2023)

• Initial tokens' advantage in becoming sinks due to their visibility to subsequent
tokens, rooted in autoregressive language modeling.

• The model learns a bias towards their absolute position
 rather than the semantics are crucial.

Understanding Attention Sinks

Llama-2-13B PPL ()

0+1024 (window) 5158.07

4+1024 5.40

4”\n”+1020 5.6

27

• Pre-train with a Dedicated Attention Sink Token

• Similar Phenomenon in Darcet et al. Vision transformers need registers

Understanding Attention Sinks
VISION TRANSFORMERS NEED REGISTERS

Timothée Darcet1,2, Maxime Oquab1, Julien Mairal2 & Piotr Bojanowski1
1 FAIR, Meta
2 INRIA
{timdarcet,qas,bojanowski}@meta.com
julien.mairal@inria.fr

ABSTRACT

Transformers have recently emerged as a powerful tool for learning visual rep-
resentations. In this paper, we identify and characterize artifacts in feature maps
of both supervised and self-supervised ViT networks. The artifacts correspond to
high-norm tokens appearing during inference primarily in low-informative back-
ground areas of images, that are repurposed for internal computations. We propose
a simple yet effective solution based on providing additional tokens to the input se-
quence of the Vision Transformer to fill that role. We show that this solution fixes
that problem entirely for both supervised and self-supervised models, sets a new
state of the art for self-supervised visual models on dense visual prediction tasks,
enables object discovery methods with larger models, and most importantly leads
to smoother feature maps and attention maps for downstream visual processing.

Without registers With registers
Input DeiT-III CLIP DINOv2 DeiT-III CLIP DINOv2

Figure 1: Register tokens enable interpretable attention maps in all vision transformers, similar to
the original DINO method (Caron et al., 2021). Attention maps are calculated in high resolution for
better visualisation. More qualitative results are available in appendix D.

1 INTRODUCTION

Embedding images into generic features that can serve multiple purposes in computer vision has
been a long-standing problem. First methods relied on handcrafted principles, such as SIFT (Lowe,
2004), before the scale of data and deep learning techniques allowed for end-to-end training. Pur-
suing generic feature embeddings is still relevant today, as collecting valuable annotated data for
many specific tasks remains difficult. This difficulty arises because of the required expertise (e.g.,
medical data, or remote sensing) or the cost at scale. Today, it is common to pretrain a model for
a task for which plenty of data is available and extract a subset of the model to use as a feature
extractor. Multiple approaches offer this possibility; supervised methods, building on classification

1

ar
X

iv
:2

30
9.

16
58

8v
1

 [c
s.C

V
]

28
 S

ep
 2

02
3

28

StreamingLLM

29

AI Agents

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

§ 140 GB for weights,
§ 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times
30

 , but Very Expensive to Deploy

3

Infinite Streaming Ability

31

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
• Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: Test:

Opportunity with StreamingLLM:

Train: Test:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ? ?

1 2 3 4 5 6 7 8 1 2 3 4 x x 5 6 7 8

Stably Model up to 4 Million Tokens

32

Dense Attention Window Attention Sliding Window

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

Dense Attention Window Attention Sliding Window

w/ Re-computation StreamingLLM

Dense Attention Window Attention StreamingLLM

22X Faster than Sliding Window Recomputation

33

Window
Attention

StreamingLLM

Window
Attention
(Re-compute)

Dense Attn

Infinite Streaming Ability

34

Urgent need for LLMs in streaming applications such as multi-round dialogues, where long
interactions are needed.

Key challenge:
• Pre-trained model (e.g., LLaMA) cannot go beyond its pre-trained context window

Train: Test:

Opportunity with StreamingLLM:

Train: Test:

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 ? ?

1 2 3 4 5 6 7 8 1 2 3 4 x x 5 6 7 8

The perplexity remains stable throughout up to 4 Million Tokens!

But StreamingLLM will forget the middle contents?

StreamingH2O: Infinite Streaming Ability

35

Similar position squeezing can be deployed on H2O

Train: Test:1 2 3 4 5 6 7 8 1 x 2 x 3 4 5 6 7 8

Demo

36

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

H2O (NeurIPS’23)

StreamingLLM (new 🔥)

Deja Vu (ICML’23)

Compress, Then Prompt (new 🔥)

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

Model 4 million tokens… 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

LLMs are Powerful, but expensive to deploy

38

 , but Very Expensive to Deploy

0

1

10

100

1,000

10,000

2018
2019

2020
2021

Exponential model size

1

Background: Transformer Architecture

39

𝑊",𝑊# ∈ 𝑅$%&$

Attention MLP

{𝑊' ,𝑊(,𝑊) ,𝑊* 	} ∈ 𝑅$%$

4040

Existing Approaches and Challenges

The idea sparsity or pruning is not new!
• Long history in ML, statistics, neuroscience, signal processing … (Lecun et al. 90,

Donoho 92, Tibshirani 96, Foldiak et al. 03, Candes et al. 05)

But hard to speed up sparse LLMs in wall-clock time and maintain quality
• Expensive and infeasible to finetune or retrain
• Difficult to find sparsity that preserves emergent ability of LLMs
• Unstructured sparsity is not hardware-efficient (Hooker et al. 20)

Ideal sparsity requires no retraining, maintains quality, and speeds up in wall-clock time.

Memory Access

Contextual

41

Contextual sparsity: small, input-dependent sets of attention heads and MLP parameters
that lead to (approximately) the same output as the full model for an input.

Attentionk

MLPk

Attentionk+1

Inspired by:
connections between LLMs, Hidden Markov
Models and Viterbi algorithm (Xie et al.)

Hypothesis: Contextual Sparsity Exists Given Any Input

42

Contextual Sparsity: Existence

Observation:
keep only high activation in
attention/MLP blocks

• 85% structured sparse
o 80% attention, 95% MLP

• lead to 7× potential parameter
reduction for each input

• maintain accuracy

43

Contextual Sparsity: Existence

Attentionk

MLPk

Attentionk+1

Static

44

Contextual Sparsity: Existence

Attentionk

MLPk

Attentionk+1

None-Contextual

45

Contextual Sparsity: Existence

Attentionk

MLPk

Attentionk+1

Contextual

46

Contextual Sparsity Exists in MLPs

• Due to activation functions,
e.g., ReLU, GeLU

• Similar observation in (Li et al.)

47

Contextual Sparsity Exists in Attention

48

Contextual Sparsity Exists in Attention

La
ye

r L

This fruit shipping company provide different vehicle options like car and [MASK]

Truck

49

Contextual Sparsity Exists in Attention

La
ye

r L

This fruit shipping company provide different vehicle options like car and [MASK]

Truck

• Contextual sparsity exists
• We should design “similarity”-based sparsity prediction

50

Contextual Sparsity: Prediction

2 4
1
3

4
1
2

5
87654321

4321Attentionk

MLPk

Attentionk+1

3

8

6 7

…

input

Challenge: how to predict high activation on-the-
fly without computing the full attention or MLP?

Key idea: design a “similarity”-based prediction
• formulate the prediction problem as near-

neighbor search (NNS).
• Data – neurons or attention heads
• Query – input at each layer

NNS algorithms can make prediction based on the similarity between input & parameters.

Contextual Sparsity: Efficiency

51

2 4

1

3

4

1

2

5
1 2 3 4 5 6 7 8

1 2 3 4Attentionk

MLPk

Attentionk+1

3

8

6 7

…

input

NNS overhead and SpMM
• it performs at each layer
• hash table is not efficient
 on GPU
• Sparse matmul complicates

the implementation

52

Key Insight: Slowly Changing Embeddings across Layers

Cosine similarity between representations at consecutive layers is very high.

53

For the residual connection Xʹ = X +F (X), X’s norm dominates.

Key Insight: Slowly Changing Embeddings across Layers

2 4

1

3

4

1

2

5

54

1 2 3 4 5 6 7 8

1 2 3 4Attentionk

MLPk

Attentionk+1

3

8

6 7

…

Predict contextual sparsity n-layers ahead

input

2 4

1

3

4

1

2

5

55

1 2 3 4 5 6 7 8

1 2 3 4Attentionk

MLPk

Attentionk+1

3

8

6 7

…

Reduce overhead with Asynchronous Execution

input

56

Reduce Overhead with GEMM-based Predictor

Attentionk

MLPk

Predictor

Predictor

Predictor

Attentionk+1

Low-cost small MLP predictors

57

Hardware-efficient Implementation

Attentionk

MLPk

Predictor

Predictor

Predictor

Attentionk+1

Kernel fusion:
• SpMM, indexing + multiplication
• Triton

Memory coalescing:
• Store Atten out projection and

 MLP2 in column major

Missing KVCache for a past token:
• latency is bounded by weight loading
• Fill in missing ones when that head is

loaded by a future token (compute is free)

5858

Deja Vu: 2X FasterTransformer and 6X HuggingFace

COPA OpenBookQA Winogrande Lambada

OPT-175B 0.86 0.446 0.726 0.758

Deja Vu-OPT-175B 0.85 0.45 0.726 0.753

OPT-175B + W4A16 0.85 0.44 0.714 0.757

Deja Vu-OPT-175B + W4A16 0.86 0.452 0.726 0.754

• demonstrates best performance with batch size=1, ReLU, 175B model
• maintains accuracy even combined with quantization.
• achieves speed up with larger batch size, more activation functions, and smaller models.

5959

Deja Vu: 2X FasterTransformer and 6X HuggingFace

COPA OpenBookQA Winogrande Lambada

OPT-175B 0.86 0.446 0.726 0.758

Deja Vu-OPT-175B 0.85 0.45 0.726 0.753

OPT-175B + W4A16 0.85 0.44 0.714 0.757

Deja Vu-OPT-175B + W4A16 0.86 0.452 0.726 0.754

• demonstrates best performance with batch size=1, ReLU, 175B model
• maintains accuracy even combined with quantization.
• achieves speed up with larger batch size, more activation functions, and smaller models.

Can we compress more?

6060

Observation: Prompt Helps SparseGPT pruned models
Prompt: Please carefully examine the weight matrix within the model, as it may contain errors. It is
crucial to verify its accuracy and make any necessary adjustments to ensure optimal performance

6161

Prompt Learning Strategy for Compressed LLMs

I
love
CMU

I love CMU

Tokenization

Learnable Soft Tokens

I
love
CMU

Soft Prompt are better and transferable across tasks and different compression techniques.

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

H2O (NeurIPS’23)

StreamingLLM (new 🔥)

Deja Vu (ICML’23)

Compress, Then Prompt (new 🔥)

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

Model 4 million tokens… 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

LLMs are Powerful, but expensive to deploy

Major bottleneck: memory IO (Pope et al.)
• large mem, e.g. a Llama2-70B model needs

• 140 GB for weights,
• 160 GB for KV cache even with MGA (8K seqlen + 64 batch size)

• low parallelizability, e.g. generate 100 tokens -> load model, KV cache 100 times

Content Generation

 , but Very Expensive to Deploy

H2O (NeurIPS’23)

StreamingLLM (new 🔥)

Deja Vu (ICML’23)

Compress, Then Prompt (new 🔥)

29x, 29x, 3x higher throughput, 1.9x lower latency
than DeepSpeed Zero-Inference, HuggingFace
Accelerate, and FlexGen with Heavy-Hitter Sparsity.

Model 4 million tokens… 22x faster than sliding
window recomputation with Attention Sink.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …

2x lower latency than
FasterTransformer and
6x than HuggingFace
on 8xA100 with
contextual sparsity.

8x extreme model compression
(Sparse+Quantize) with Prompt Recovery.

QUUUUIZ Time

Is it possible to load LLM < 100 times when
generating / decoding 100 tokens from the
same distribution? If so, how?

Thanks You!

Q&A

