Paradigms of Self-supervised
Representation Leaming in Vision

o

Xinlei Chen

CMU 11-667 Guest Lecture, 10/2023



Self-Supervised Learning

* Pre-train representations without labels for downstream tasks




Self-Supervised Learning

* Pre-train representations without labels for downstream tasks




Self-Supervised Learning

* Pre-train representations without labels for downstream tasks

build
chat-bot

I %% | detect and segment
S objects

predict
structure




Self-Supervised Representation Learning

* Pre-train representations without labels for downstream tasks

build
chat-bot

— A'.‘ <4 ,’5
L =g detect and segment
(R objects

unsupervised
learning

predict
structure




» Reconstructive / Autoencoding

— x or (part of x)

Paradigms for Self-supervised Learning

 Non-Reconstructive

— (something else)




Reconstructive Self-Supervised Learning

» Simplest form --- autoencoding x_D Ly

e full data x as input, full x as output
 often in the form of an (encoder, decoder) pair

 pre-deep learning examples:
* principal component analysis (PCA)
* k-means clustering
» optimize the (1) cluster centers and (2) cluster assignments
 such that the reconstruction loss is minimized
« when all data points are replaced with their cluster centers
 other variants of matrix factorization / decomposition



Reconstructive Self-Supervised Learning

* Augmented form --- with transformation
e each data x has a transformation t sampled from pre-defined set T

easy to design T, so popular in vision

now the new data is x = (x, t)

can predict either x or t as part of x “

examples:
* (t) rotation prediction

|Gidaris et al, ICLR 2018]
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Reconstructive Self-Supervised Learning

e each data x has a transformation t sampled from pre-defined set T

easy to design T, so popular in vision
now the new data is x = (x, t)
can predict either x or t as part of x

examples:
* (t) rotation prediction
* (t) relative position prediction

[Doersch et al, ICCV 2015]
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Reconstructive Self-Supervised Learning

* Augmented form --- with transformation
each data x has a transformation t sampled from pre-defined set T
easy to design T, so popular in vision
now the new data is x = (x, t)

can predict either x or t as part of x

examples:
o (t ) rotation prediction

( ) denoising autoencoder

[Vincent et al, ICML 2008]



Reconstructive Self-Supervised Learning

* Augmented form --- with transformation
e each data x has a transformation t sampled from pre-defined set T
* easy to design T, so popular in vision
* now the new data is x = (x, t)
e can predict either x or t as part of x

« examples:
* (t) rotation prediction
* (t) relative position prediction
* (x) denoising autoencoder
* (x) masked autoencoder




Reconstructive Self-Supervised Learning

« Augmented (special) form --- with masking / dropping

» channels: colorization
» center patch: context encoder
» random patch: MAE (to talk about)
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[Zhang et al, ECCV 2016] [Zhang et al, CVPR 2017] [Pathak et al, CVPR 2016] [He et al, CVPR 2022]



Reconstructive Self-Supervised Learning

« Augmented (special) form --- with masking / dropping
» channels: colorization
e center patch: context encoder
» random patch: MAE (to talk about)
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Reconstructive Self-Supervised Learning

« Augmented (special) form --- with masking / dropping
* channels: colorization

e center patch: context encoder
» random patch: MAE (to talk about)
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[Radford et al, 2018] [Radford et al, 2019] [Brown et al, 2020] [OpenAl, 2023]



ArXiv: https://arxiv.org/abs/2111.06377, CVPR 2022
Code: https://github.com/facebookresearch/mae

Masked Auto-Encoders Are
Scalable Vision Leamers
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https://arxiv.org/abs/2111.10566
https://github.com/facebookresearch/simsiam

What is MAE?

* Very simple self-supervised learning methoad
« BERT-like algorithm and behavior

« But with crucial changes for images

Directly predict pixels!




* Vision Transformer (ViT)
* |less inductive bias

* non-overlapping
tokenization
 easier for MAE

« Scalable
» with larger models
e ONn larger datasets
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Changes from BERT: Mask Ratio

Masked input: 80% You guess?



Changes from BERT: Mask Ratio

Masked input: 80% MAE’s guess



Changes from BERT: Mask Ratio

Masked input: 80% MAE’s guess Ground truth



Changes from BERT: Mask Ratio

« BERT: 15% is enough to create a challenging task
* MAE: 75% - 80% is about optimal
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95% mask

original
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MAE Can Generalize
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Changes from BERT: Encoder-Decoder

Class
Label
 BERT: encoder only &
e ) s )
 MAE:
* large encoder BERT
(e.qg., Vil-Large)
¢ Sma” deCOdeI’ Elcws) E1 EN E[SEP] E1 EM,
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S Encoder-Decoder

Changes from B

* MAE:
* large encoder on visible patches
» small decoder on all patches % PR
mEnsEn i | [ el fm
o HuEEsE g WS S
» Very efficient when coupled FEHEE @ ==~ >~ EREEs
with high mask ratio (75%) SERES Ew NEREN
»

 Single projection layer to map
from encoder to decoder



Representation Evaluation: Encoder Only

» After MAE pre-training, throw away decoder
* Encoder with full sequence is used for benchmark representations




Scalapility on ImageNet Classification

fine-tuning accuracy
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[Li et al, ArXiv 2021]

Object Detection Transfer

pre-training APPox APmask
initialization data ViTl-B ViIT-L ViT-B ViT-L
supervi . 493 479 439
random none 489 507 436 449 O
MoCo V3~ —INTK 47.9—493— 4277 = 44.0
BEiIT IN1k+DALL-E 49.8 53.3 44 4 47.1
MAE IN1k 50.3 53.3 44.9 47.2

» On COCO, improved previous pre-training by 3 to 4%



Analysis: Mask

Ratio
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Analysis: Mask Token in Encoder

case ft lin FLOPs

encoder w/ [M] 84.2 59.6 3.3X
encoder w/o [M] 84.9 73.5 1x

* Encoder with [M] is default in BERT
* big domain gap for linear probing
 pre-train sees 25% of the images only, while evaluation sees 100%

* Encoder w/o [M] is default in MAE



Analysis: Augmentations

case ft

none 84.0
crop, fixed size 84.7
crop, rand size 84.9
crop + color jit 84.3

lin
65.7
73.1
73.5
71.9

 MAE can work with minimal data augmentation

* In contrast, augmentation recipes can be crucial for others

* Well, one can view “masking” as a type of augmentation



Analysis: Reconstruction larget

lin

case ft

pixel (w/o norm) 84.9
pixel (w/ norm) 85.4
PCA 84.6
dVAE token 85.3

(d) Reconstruction target. Pixels as recon-

struction targets are effective.

 Pixels with normalization: per-patch

« PCA: only keeps low-frequency component

* dVAE token: from DALLE

739
139
F2.3
71.6



Reconstructive Self-Supervised Learning

X — x or (part of x)

« Simplest form
 autoencoding

* Augmented form
o With transformation

* Augmented (special) form
 with masking / dropping



How about Contrastive Learning”

grad e Similarity & P scsy | grad
~ dissimilarity l
I
Y
encoder encoder
image

Claim (!): 1t is also an implicit form of reconstructive learning
[Chen et al, ICML 2020]




Connection Point: Instance Discrimination

 Implicit form --- with instance discrimination on a dataset
e each data has its own class, so one instance per class
 for a data set with N data points, we have N classes
* now the new data is X = (x, i), where i is an instance indicator
 the task is to predict i as part of x

CNN backbone

2048D

low dim L2 norm / 2-th image

Eo--panm :
— U )D Softmax | ——> i-th image

128D 128D \ E n-1 th image
ﬁ n-th image
— »
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Jo(x)

[Dosovitskiy et al, TPAMI 2015] [Wu et al, CVPR 2018§]



Contrastive is Reconstructive

 Implicit form --- with contrastive learning
 instance discrimination: predict i from a fixed set as part of X
» contrastive (Siamese net): predict i from a dynamic set as part of i

e can be easily augmented with transformations T
* now we have x = (x, t, 1), the task is to predict i as part of x

« SO contrastive learning is reconstructive learning
« And a rather weak one --- that relies heavily on 7 to make it meaningful

[Chen et al, ICML 2020] [He et al, CVPR 2020] [Chen et al, arXiv 2020] [Chen et al, ICCV 2021]



Paradigms for Self-supervised Learning

» Reconstructive / Autoencoding * Non-Reconstructive

X x or (part of x) X — }(something else)




Does Non-Reconstructive Even Work”?

X — (something else)

* If it predicts something else, won't it simply ignore the data”

* Yes, it is! So circumventing this issue is a crucial topic in non-
reconstructive SSL

« Will take our work, SImSiam as an example
 but the underlying mechanism is still unclear



ArXiv: https://arxiv.org/abs/2011.10566, CVPR 2021
Code: https://github.com/facebookresearch/simsiam

—xplorng SImple Siamese
Representation Leaming

% ‘

Xinlei Chen Kaiming He



https://arxiv.org/abs/2011.10566
https://github.com/facebookresearch/simsiam

SimSiam Architecture

similarity

predictor h ~ stop-grad
encoder f encoder f
x1 A xo

image &
« Contrastive learning: reconstruct i via (similarity + dissimilarity)
« SimSiam: only predict similarity, SO no reconstruction of input i




——» similarity <€—

|
X

Simsiam Algorithm ¢ '
encoder f e
Algorithm 1 SimSiam Pseudocode, PyTorch-like v1 4 Ay

image T
backbone + projection mlp

# f:
# h: prediction mlp

for x in loader: # load a minibatch x with n samples

X1, X2 = aug(x), aug(x) # random augmentation
zl, z2 = £(x1), f(x2) # projections, n-by-d ° 1
pl, p2 = h(zl), h(z2) # predictions, n-by—-d Symmetrlzed |OSS

L = D(pl, z2)/2 + D(p2, z1)/2 # loss

L.backward () # back-propagate ° S|mp|e COS”’]G S|m||ar|ty

update (£, h) # SGD update

def D(p, z): # negative cosine similarity
z = z.detach() # stop gradient

» Gradient only via predictor
p = normalize(p, dim=1) # lZ2-normalize
z = normalize(z, dim=1) # 1l2-normalize 1 StOp—grad on Other

return —(p*z) .sum(dim=1) .mean ()




Stop-Grad is Crucial for Simsiam

« Without it, representation collapses (YR
« Implicit for momentum encoder Pfed?orh , sop-grad
Settlng top_1 encoder f encoder f
w/ stop-grad 67.7+0.1 zy A Az
w/0 stop-grad 0.1
05 L
— w/ stop-grad vd M\-“W >
f: = w/0 stop-grad = ¥
g S ——w/ stop-grad = —— w/ stop-grad
—w/o stop-grad —w/o stop-grad
1. , , , . , , , . . . . - .
0 epochs 100 ’ 0 epochs 100 ’ 0 epochs 100

loss curve monitor 1: std of p monitor 2: KNN classifier



* Tried different settings:

“redictor Is Important

similarity

predictor h stop-grad

encoder f encoder f

1 T9

image T

<« effectively w/o stop-grad: symmetrized loss

<—— does not converge

setting top-1
previous default 67.7
w/0 predictor 0.1
random predictor 1.5
not decay predictor lr 68.1

<« default for comparisons

* Not crucial: predictor can be removed without collapsing



Comparison to Other Siamese Learning

grad

encoder

grad

[Grill et al,

encoder

NeurlPS 2020] [Caron et al,

similarity & -———— .grad
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|
\
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image
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similarity

Sinkhorn-Knopp

encoder

image

SwAV

grad similarity
predictor
moving
average
encoder — >
image
BYOL
grad similarity
predictor
encoder
image
SimSiam

NeurlPS 2020]

encoder
* Momentum encoder
* Exponential Moving Average
on encoder weights
___ *Sinkhorn-Knopp

* online clustering algorithm
that balances cluster
assignments



SimSiam Simplifies Siamese Learning

« SIMCLR w/0 negatives > similarity <
. . predictor h stop-grad
« SWAV w/0 online clustering A
encoder f encoder f
* BYOL w/0 momentum encoder o A A 2,

image T

* MoCo w/0 negatives or momentum encoder



Comparisons to Others, ImagelNet

batch negative momentum

method Size Dairs encoder 100-ep | 200-ep | 400-ep | 800-ep

SIMCLR | 4096 66.5 68.3 69.8 70.4
MoCo | 256 67.4 69.9 71.0 72.2
BYOL | 4096 66.5 70.6 73.2 74.3
SwAV | 4096 66.5 69.1 70.7 71.8

SimSiam | 256 68.1 70.0 70.8 71.3

« SImSiam is batch size friendly, momentum encoder free, and
competitive



Comparisons to Others, VOC Detection

Pre-train AP50 | AP75 AP
SImCLR 75.9 46.8 50.1
MoCo 771 48.5 52.5
BYOL 77.1 47.0 49.9
SWAV 75.5 46.5 49.6
SimSiam (Optimal) 77.3 48.5 52.5

 All methods generally perform well, and outperform ImageNet
supervised pre-training



Paradigms for Self-supervised Learning

» Reconstructive / Autoencoding * Non-Reconstructive
X— — x or (part of x) X— — (something else)
1. Masked Auto-Encoders 2. Simple Siamese
Question: |Is Contrastive learning reconstructive? Why? @
Xinlei Chen

xinleic@meta.com






