

Paradigms of Self-Supervised Representation Learning in Vision

Xinlei Chen

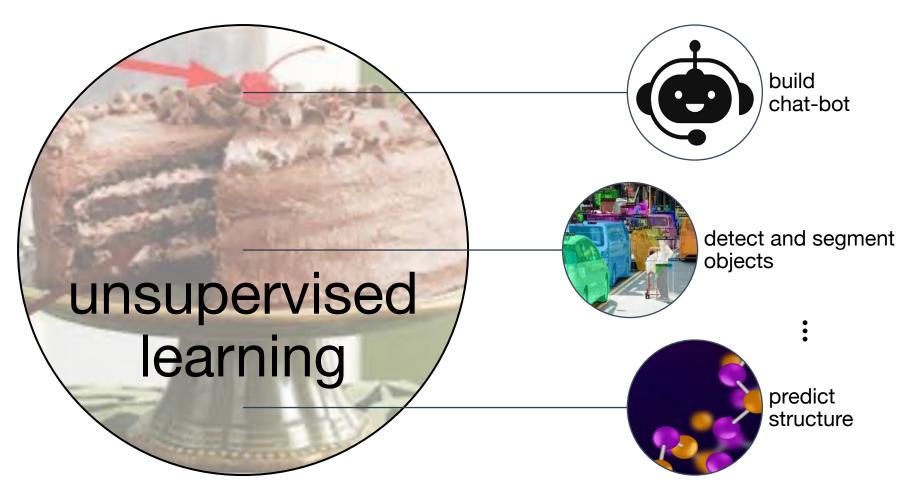
CMU 11-667 Guest Lecture, 10/2023

facebook Artificial Intelligence Research

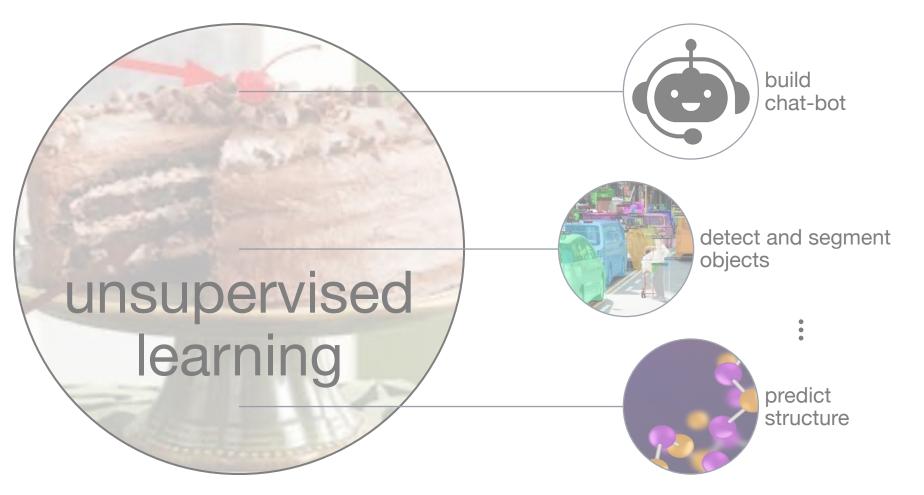
Self-Supervised Learning

Self-Supervised Learning

Self-Supervised Learning



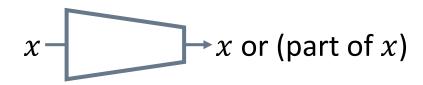
Self-Supervised Representation Learning

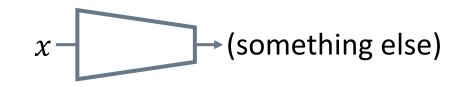


Paradigms for Self-Supervised Learning

• Reconstructive / Autoencoding

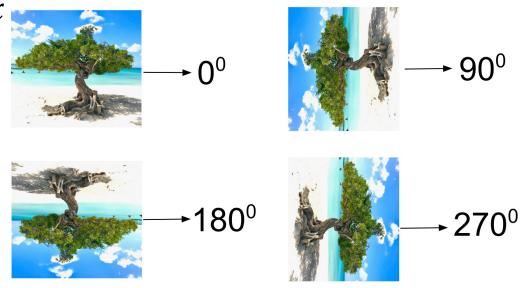
• Non-Reconstructive





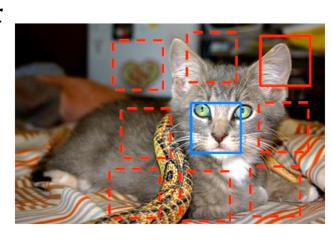
- Simplest form --- autoencoding
 - full data x as input, full x as output
 - often in the form of an (encoder, decoder) pair
 - pre-deep learning examples:
 - principal component analysis (PCA)
 - *k*-means clustering
 - optimize the (1) cluster centers and (2) cluster assignments
 - such that the reconstruction loss is minimized
 - when all data points are replaced with their cluster centers
 - other variants of matrix factorization / decomposition

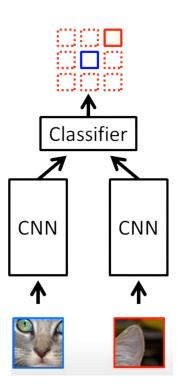
- Augmented form --- with transformation
 - each data x has a transformation t sampled from pre-defined set \mathcal{T}
 - easy to design $\mathcal T$, so popular in vision
 - now the new data is $\dot{x} = (x, t)$
 - can predict either x or t as part of \dot{x}
 - examples:
 - (t) rotation prediction



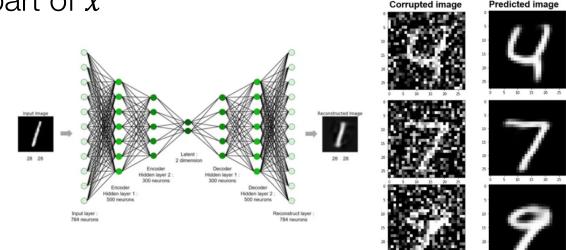
[Gidaris et al, ICLR 2018]

- Augmented form --- with transformation
 - each data x has a transformation t sampled from pre-defined set \mathcal{T}
 - easy to design $\mathcal T$, so popular in vision
 - now the new data is $\dot{x} = (x, t)$
 - can predict either x or t as part of \dot{x}
 - examples:
 - (t) rotation prediction
 - (t) relative position prediction





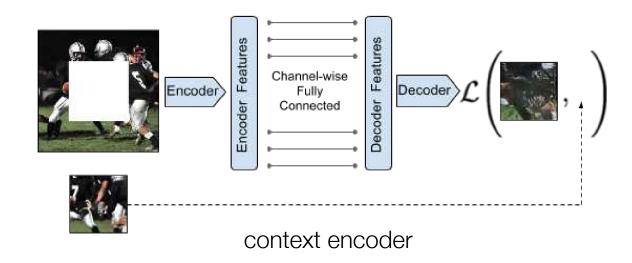
- Augmented form --- with transformation
 - each data x has a transformation t sampled from pre-defined set \mathcal{T}
 - easy to design \mathcal{T} , so popular in vision
 - now the new data is $\dot{x} = (x, t)$
 - can predict either x or t as part of \dot{x}
 - examples:
 - (t) rotation prediction
 - (t) relative position prediction
 - (x) denoising autoencoder



[Vincent et al, ICML 2008]

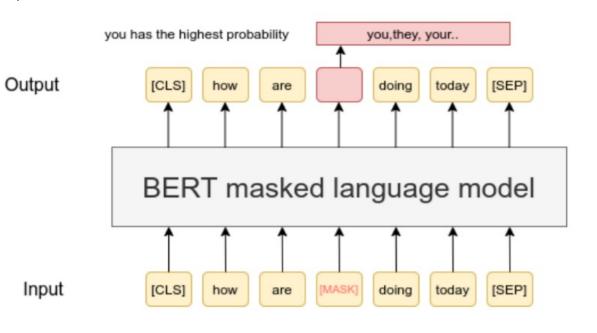
- Augmented form --- with transformation
 - each data x has a transformation t sampled from pre-defined set \mathcal{T}
 - easy to design $\mathcal T$, so popular in vision
 - now the new data is $\dot{x} = (x, t)$
 - can predict either x or t as part of \dot{x}
 - examples:
 - (t) rotation prediction
 - (*t*) relative position prediction
 - (x) denoising autoencoder
 - (x) masked autoencoder

- <u>Augmented</u> (special) form --- with *masking / dropping*
 - channels: colorization
 - center patch: context encoder
 - random patch: MAE (to talk about)



[Zhang et al, ECCV 2016] [Zhang et al, CVPR 2017] [Pathak et al, CVPR 2016] [He et al, CVPR 2022]

- <u>Augmented</u> (special) form --- with *masking / dropping*
 - channels: colorization
 - center patch: context encoder
 - random patch: MAE (to talk about)
- Even more effective for *text*
 - random masking: BERT



[Devlin et al, NAACL 2019]

- <u>Augmented</u> (special) form --- with *masking / dropping*
 - channels: colorization
 - center patch: context encoder
 - random patch: MAE (to talk about)
- Even more effective for *text*
 - random masking: BERT
 - sequential masking: GPT

Output	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	\bigcirc	0	\bigcirc	0	0	0	0	\bigcirc	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	
Hidden Layer	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	
Input	•	0	0	•	0	•	•	0	•	0	0	0	•	0	0	C

[Radford et al, 2018] [Radford et al, 2019] [Brown et al, 2020] [OpenAl, 2023]

ArXiv: <u>https://arxiv.org/abs/2111.06377</u>, CVPR 2022 Code: <u>https://github.com/facebookresearch/mae</u>

Masked Auto-Encoders Are Scalable Vision Learners

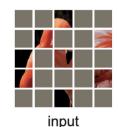
Kaiming He*†, Xinlei Chen*, Saining Xie, Yanghao Li, Piotr Dollar, Ross Girshick

facebook

Artificial Intelligence Research

What is MAE?

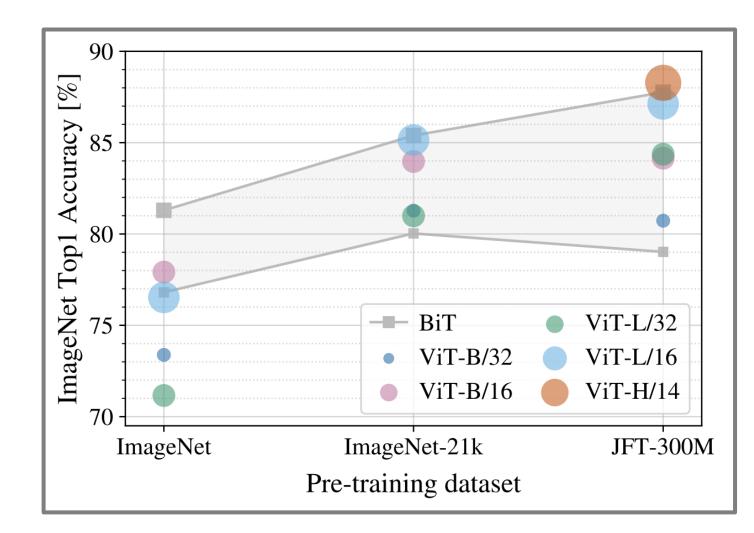
- Very simple self-supervised learning method
- BERT-like algorithm and behavior
- But with crucial changes for images



Directly predict **pixels**!

BERT-like: Transformers

- Vision Transformer (ViT)
 - less inductive bias
 - <u>non-overlapping</u> tokenization
 - easier for MAE
- Scalable
 - with larger models
 - on larger datasets

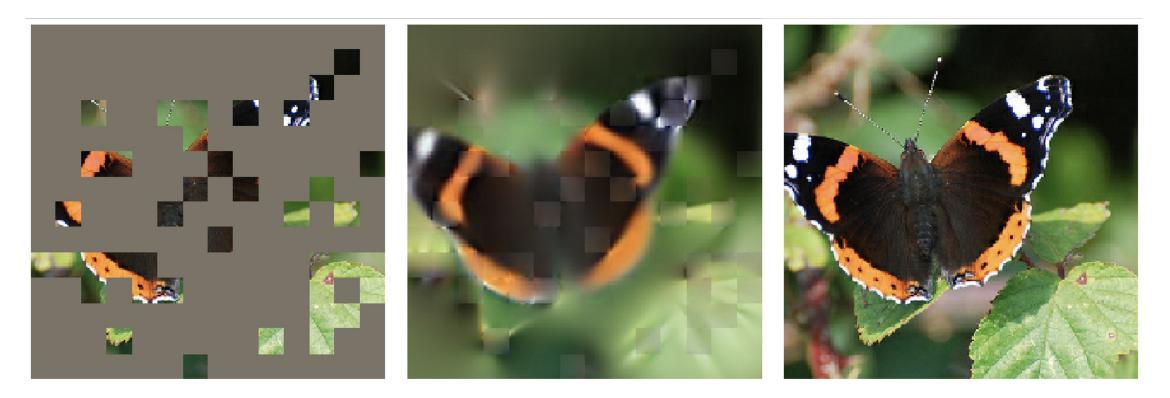


Masked input: 80%

You guess?

Masked input: 80%

MAE's guess



Masked input: 80%

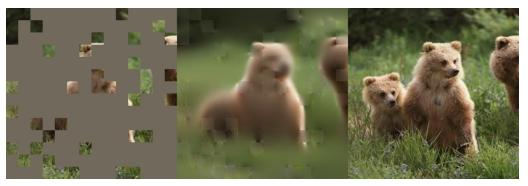
MAE's guess

Ground truth

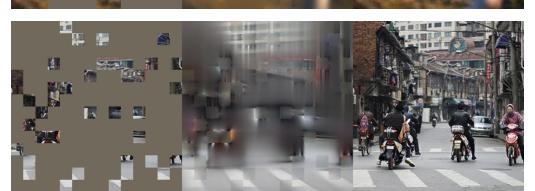
- BERT: 15% is enough to create a challenging task
- MAE: 75% 80% is about optimal

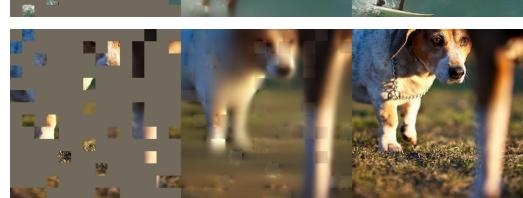
ImageNet val set (unseen)

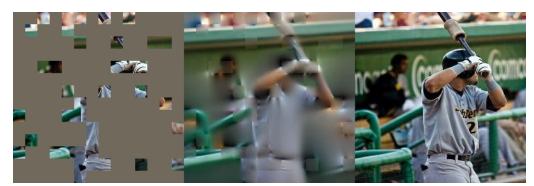
1



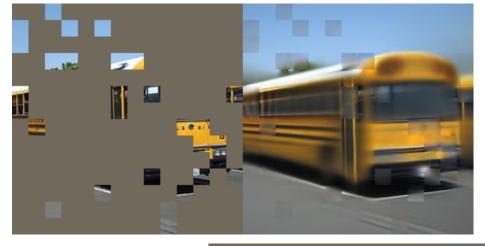
COCO val set (unseen)







75% mask



original

85% mask

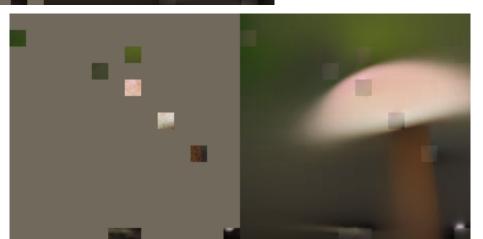
MAE Can Generalize

original

75% mask

85% mask

MAE Can Generalize

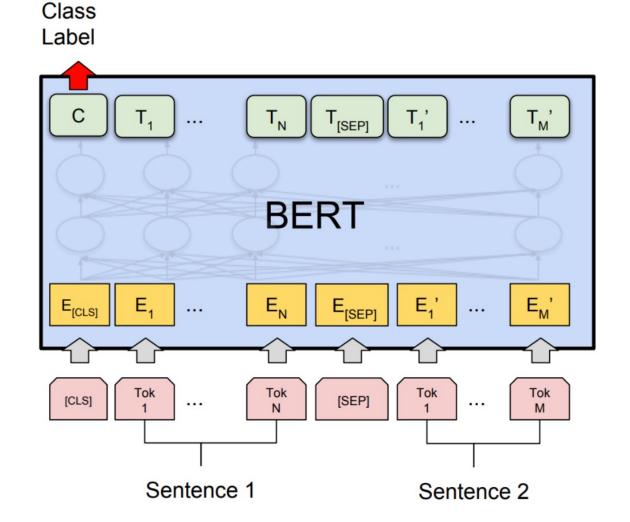


95% mask

Changes from BERT: Encoder-Decoder

• BERT: encoder only

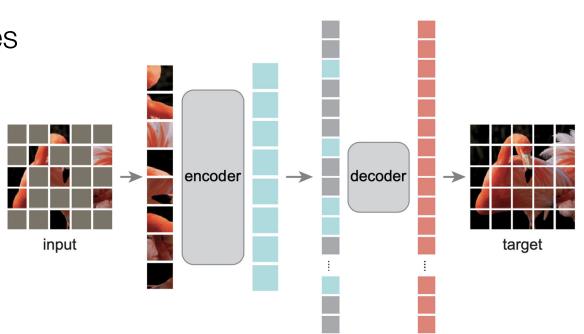
- MAE:
 - large encoder (e.g., ViT-Large)
 - **small** decoder (e.g., ViT-Base)



Changes from BERT: Encoder-Decoder

• MAE:

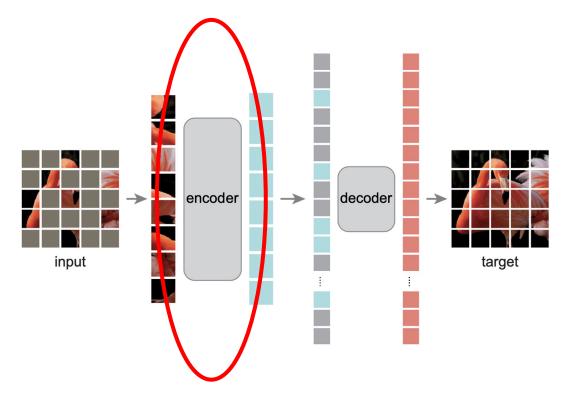
- large encoder on visible patches
- small decoder on all patches
- Very efficient when coupled with <u>high</u> mask ratio (75%)



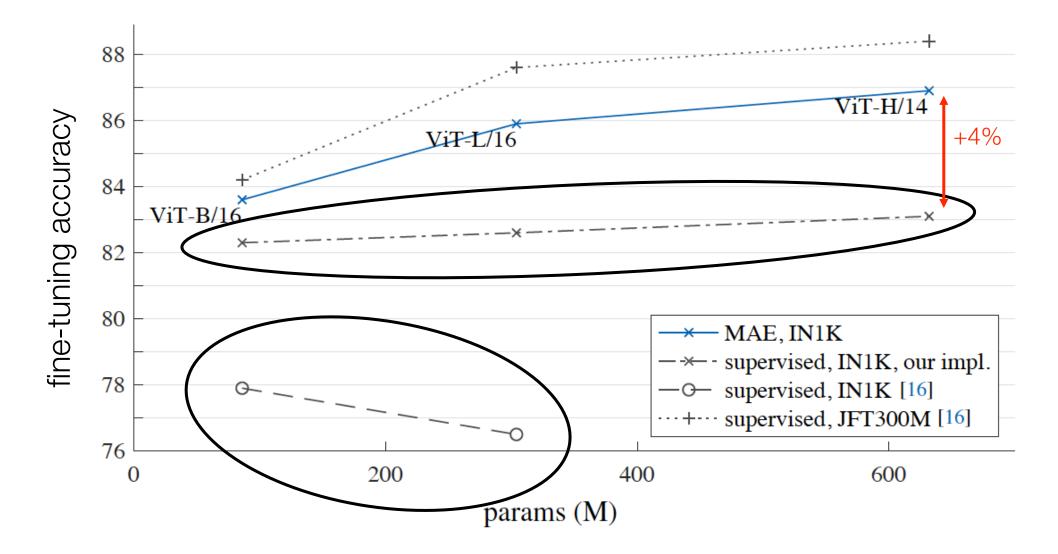
• Single projection layer to map from encoder to decoder

Representation Evaluation: Encoder Only

- After MAE pre-training, throw away decoder
- Encoder with *full sequence* is used for benchmark representations



Scalability on ImageNet Classification



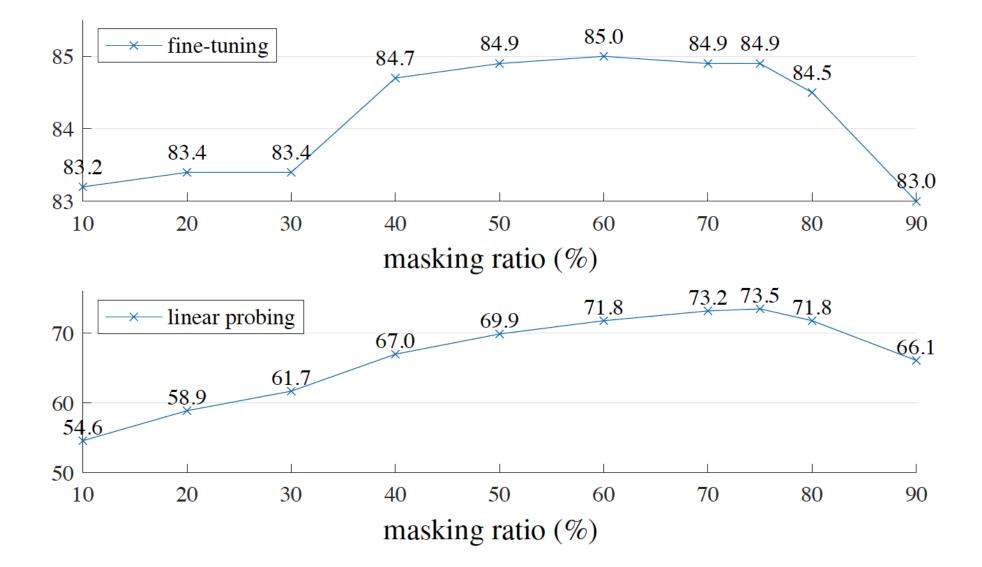
[Li et al, ArXiv 2021]

Object Detection Transfer

		pre-training	AP	box	AP ^{mask}		
	initialization	data	ViT-B	ViT-L	ViT-B	ViT-L	
	supervised	IN1k w/ labels	47.9	49.3	42.9	43.9	
<	random	none	48.9	50.7	43.6	44.9	>
	MoCo v3	INIK	47.9	49.3	42.7	44.0	
	BEiT	$IN1k+DALL \cdot E$	49.8	53.3	44.4	47.1	
	MAE	IN1k	50.3	53.3	44.9	47.2	

• On COCO, improved previous pre-training by 3 to 4%

Analysis: Mask Ratio



Analysis: Mask Token in Encoder

case	ft	lin	FLOPs
encoder w/ [M]	84.2	59.6	3.3×
encoder w/o [M]	84.9	73.5	1×

- Encoder with [M] is default in BERT
 - big domain gap for linear probing
 - pre-train sees 25% of the images only, while evaluation sees 100%
- Encoder w/o [M] is default in MAE

Analysis: Augmentations

case	ft	lin
none	84.0	65.7
crop, fixed size	84.7	73.1
crop, rand size	84.9	73.5
crop + color jit	84.3	71.9

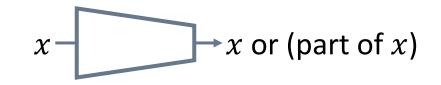
- MAE can work with minimal data augmentation
- In contrast, augmentation recipes can be crucial for others
- Well, one can view "masking" as a type of augmentation

Analysis: Reconstruction Target

case	ft	lin
pixel (w/o norm)	84.9	73.5
pixel (w/ norm)	85.4	73.9
PCA	84.6	72.3
dVAE token	85.3	71.6

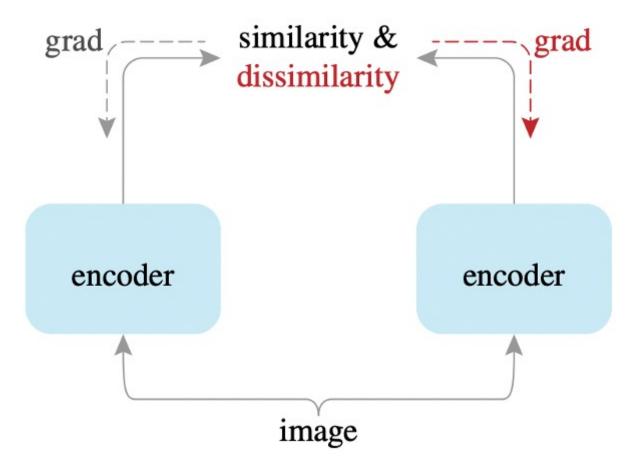
(d) **Reconstruction target**. Pixels as reconstruction targets are effective.

- Pixels with normalization: per-patch
- PCA: only keeps low-frequency component
- dVAE token: from DALLE



- Simplest form
 - autoencoding
- Augmented form
 - with transformation
- Augmented (special) form
 - with masking / dropping

How about Contrastive Learning?

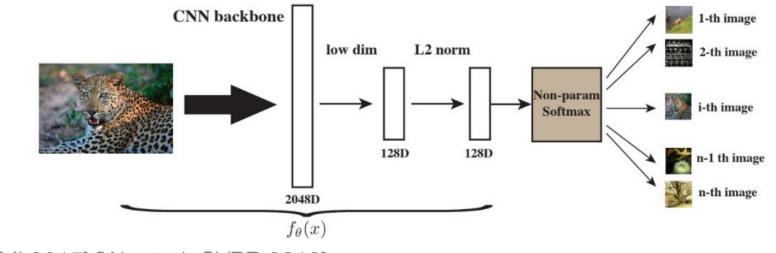


Claim (!): it is also an *implicit* form of reconstructive learning

[Chen et al, ICML 2020]

Connection Point: Instance Discrimination

- Implicit form --- with instance discrimination on a dataset
 - each data has its own class, so one instance per class
 - for a data set with N data points, we have N classes
 - now the new data is $\ddot{x} = (x, i)$, where *i* is an instance indicator
 - the task is to predict *i* as part of \ddot{x}



[Dosovitskiy et al, TPAMI 2015] [Wu et al, CVPR 2018]

Contrastive is Reconstructive

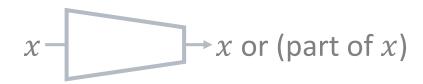
- <u>Implicit</u> form --- with *contrastive learning*
 - instance discrimination: predict *i* from a <u>fixed</u> set as part of \ddot{x}
 - contrastive (Siamese net): predict *i* from a <u>dynamic</u> set as part of \ddot{x}
 - can be easily augmented with transformations ${\mathcal T}$
 - now we have $\ddot{x} = (x, t, i)$, the task is to predict *i* as part of \ddot{x}
- So contrastive learning is reconstructive learning
 - And a rather weak one --- that relies heavily on \mathcal{T} to make it meaningful

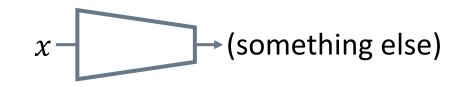
[Chen et al, ICML 2020] [He et al, CVPR 2020] [Chen et al, arXiv 2020] [Chen et al, ICCV 2021]

Paradigms for Self-Supervised Learning

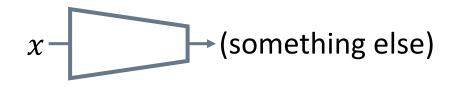
Reconstructive / Autoencoding

• Non-Reconstructive





Does Non-Reconstructive Even Work?



- If it predicts something else, won't it simply *ignore* the data?
- Yes, it is! So circumventing this issue is a crucial topic in nonreconstructive SSL
- Will take our work, SimSiam as an example
 - but the underlying mechanism is still unclear

ArXiv: <u>https://arxiv.org/abs/2011.10566</u>, CVPR 2021 Code: <u>https://github.com/facebookresearch/simsiam</u>

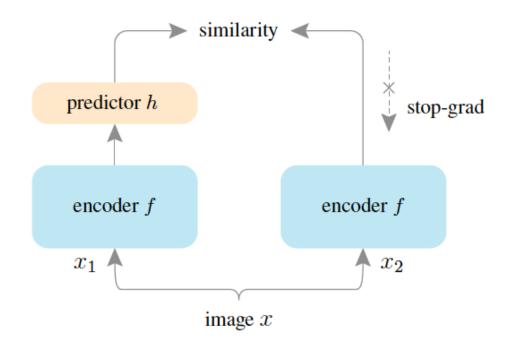
Exploring Simple Siamese Representation Learning

Xinlei Chen

Kaiming He

facebook Artificial Intelligence Research

SimSiam Architecture

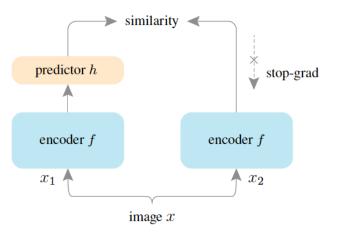


- Contrastive learning: reconstruct i via (similarity + dissimilarity)
- SimSiam: only predict similarity, so no reconstruction of input i

SimSiam Algorithm

Algorithm 1 SimSiam Pseudocode, PyTorch-like

```
# f: backbone + projection mlp
# h: prediction mlp
for x in loader: # load a minibatch x with n samples
   x1, x2 = aug(x), aug(x) \# random augmentation
   z1, z2 = f(x1), f(x2) \# projections, n-by-d
  p1, p2 = h(z1), h(z2) \# predictions, n-by-d
  L = D(p1, z2)/2 + D(p2, z1)/2 \# loss
  L.backward() # back-propagate
   update(f, h) # SGD update
def D(p, z): # negative cosine similarity
   z = z.detach() # stop gradient
   p = normalize(p, dim=1) # l2-normalize
   z = normalize(z, dim=1) # l2-normalize
   return -(p*z).sum(dim=1).mean()
```



- Symmetrized loss
- Simple cosine similarity
- Gradient only via predictor
 - stop-grad on other

Stop-Grad is Crucial for SimSiam

 \sqrt{d}

output std

0

0

- Without it, representation collapses
 - Implicit for momentum encoder

setting

w/ stop-grad

w/o stop-grad

100

w/ stop-grad

w/o stop-grad

epochs

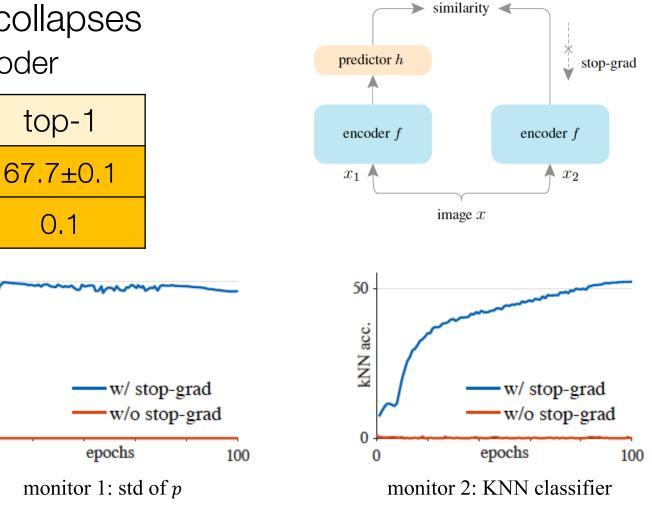
loss curve

-0.5

training loss

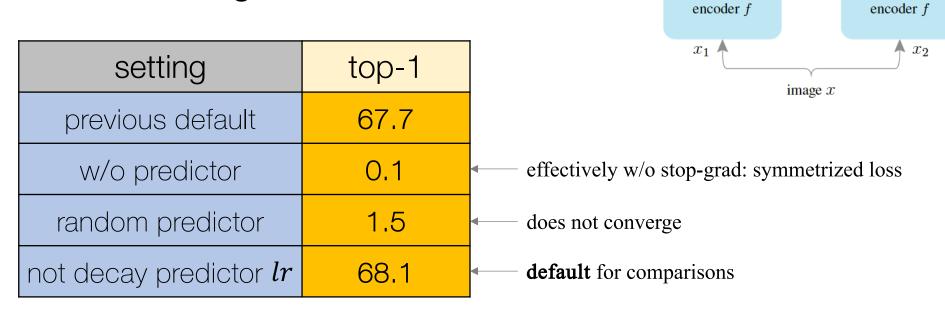
-1

0



Predictor is Important

• Tried different settings:



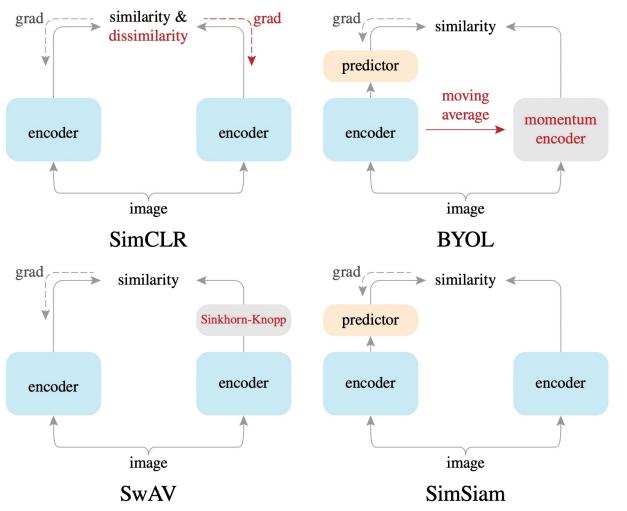
🕨 similarity <

stop-grad

predictor h

• Not crucial: predictor can be removed without collapsing

Comparison to Other Siamese Learning



• Momentum encoder

 Exponential Moving Average on encoder weights

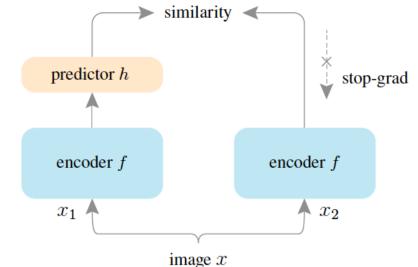
• Sinkhorn-Knopp

 online clustering algorithm that balances cluster assignments

[Grill et al, NeurIPS 2020] [Caron et al, NeurIPS 2020]

SimSiam Simplifies Siamese Learning

- SimCLR w/o negatives
- SwAV w/o online clustering
- BYOL w/o momentum encoder



Comparisons to Others, ImageNet

method	batch size	negative pairs	momentum encoder	100-ер	200-ер	400-ep	800-ep
SimCLR	4096			66.5	68.3	69.8	70.4
MoCo	256			67.4	69.9	71.0	72.2
BYOL	4096			66.5	70.6	73.2	74.3
SwAV	4096			66.5	69.1	70.7	71.8
SimSiam	256			68.1	70.0	70.8	71.3

• SimSiam is batch size friendly, momentum encoder free, and competitive

Comparisons to Others, VOC Detection

Pre-train	AP50	AP75	AP
Supervised	74.4	42.4	42.7
SimCLR	75.9	46.8	50.1
MoCo	77.1	48.5	52.5
BYOL	77.1	47.0	49.9
SwAV	75.5	46.5	49.6
SimSiam (Optimal)	77.3	48.5	52.5

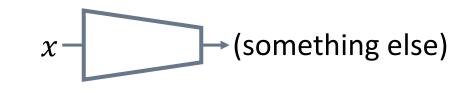
• All methods generally perform well, and *outperform* ImageNet supervised pre-training

Paradigms for Self-Supervised Learning

Reconstructive / Autoencoding

 $x \rightarrow x$ or (part of x)

1. Masked Auto-Encoders



2. Simple Siamese

Question: Is Contrastive learning reconstructive? Why?

Xinlei Chen xinleic@meta.com