
14-760:

ADVANCED REAL-WORLD
NETWORKS

LECTURE 17 * SPRING 2019 * KESDEN

SERIAL COMMUNICATION

Courtesy 18-349

SERIAL VS. PARALLEL

3

MCU 1 MCU 2
TX

RX

MCU 1 MCU 2

signal

Data[0:7]

Serial

Parallel

WHY SERIAL COMMUNICATION?

• Serial communication is a pin-efficient way of sending and receiving bits of data

• Sends and receives data one bit at a time over one wire

• While it takes eight times as long to transfer each byte of data this way (as compared to parallel communication),

only a few wires are required

• Typically one to send, one to receive (for full-duplex), and a common signal ground wire

• Simplistic way to visualize serial port

• Two 8-bit shift registers connected together

• Output of one shift register (transmitter) connected to the input of the other shift register (receiver)

• Common clock so that as a bit exits the transmitting shift register, the bit enters the receiving shift register

• Data rate depends on clock frequency

4

SIMPLISTIC VIEW OF SERIAL PORT OPERATION

7
6 7
5 6 7
4 5 6 7
3 4 5 6 7
2 3 4 5 6 7
1 2 3 4 5 6 7
0 1 2 3 4 5 6 7

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Transmitter Receiver
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6
0 1 2 3 4 5

0 1 2 3 4
0 1 2 3

0 1 2
0 1

0

n
n+1
n+2
n+3
n+4
n+5
n+6
n+7
n+8

Interrupt raised when
Transmitter (Tx) is empty

a Byte has been transmitted
and next byte ready for loading

Interrupt raised when
Receiver (Rx) is full

a Byte has been received
and is ready for reading

SIMPLE SERIAL PORT

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7Transmit
Hold Register

Transmit
Shift Register

0 1 2 3 4 5 6 7

Processor Peripheral

0 1 2 3 4 5 6 7

Receive
Shift Register

Receive
Buffer Register

PROTECTING AGAINST DATA LOSS

• How can data be lost?

• If the transmitter starts to send the next byte before the receiver has had a chance to process/read the current byte

• If the next byte is loaded at the transmitter end before the current byte has been completely transmitted

• Most serial ports use FIFO buffers so that data is not lost

• Buffering of received bytes at receiver end for later processing

• Buffering of loaded bytes at transmitter end for later transmission

• Shift registers free to transmit and receive data without worrying about data loss

• Why does the size of the FIFO buffers matter?

7

SERIAL PORT

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
FIFO Buffer

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
FIFO Buffer

FIFO Buffer

Processor Peripheral

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Clock

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Clock

FIFO Buffer

TYPES OF SERIAL COMMUNICATIONS

• Synchronous communication
• Data transmitted as a steady stream at regular intervals
• All transmitted bits are synchronized to a common clock signal

• The two devices initially synchronize themselves to each other, and then continually send characters to stay
synchronized

• Faster data transfer rates than asynchronous methods, because it does not require additional bits to mark the
beginning and end of each data byte

• Asynchronous communication
• Data transmitted intermittently at irregular intervals

• Each device uses its own internal clock resulting in bytes that are transferred at arbitrary times

• Instead of using time as a way to synchronize the bits, the data format is used

• Data transmission is synchronized using the start bit of the word, while one or more stop bits indicate the end of
the word

• Asynchronous communications slightly slower than synchronous

9

SYNC VS. ASYNC

• Synchronous communications

• Requires common clock (SPI)

• Whoever controls the clock controls communication speed

• Asynchronous communications

• Has no clock (UART)

• Speed must be agreed upon beforehand (the baud-rate configuration accomplishes that)

WHAT IS RS-232?

• So far, we’ve talked about clocks being synchronized and using the clock as a reference for data transmission

• Fine for short distances (e.g., within chips on the same board)

• When data is transmitted over longer distances (off-chip), voltage levels can be affected by cable capacitance

• A logic “1” might appear as an indeterminate voltage at the receiver

• Wrong data might be accepted when clock edges become skewed

• Enter RS232: Recommended Standard number 232

• Serial ports for longer distances, typically, between PC and peripheral

• Data transmitted asynchronously, i.e., no reference clock

• Data provides its own reference clock

11

RS-232

Courtesy 18-349

RS232 – BITS AND SERIAL BYTES

• Serial ports on IBM-style PCs support asynchronous communication only

• A “serial byte” usually consists of

• Characters: 5-8 data bits

• Framing bits: 1 start bit, 1 parity bit (optional), 1-2 stop bits

• When serial data is stored on your computer, framing bits are removed, and this looks like a real 8-bit byte

• Specified as number of data bits - parity type - number of stop bits

• 8-N-1 a eight data bits, no parity bit, and one stop bit

• 7-E-2 a seven data bits, even parity, and two stop bits

7 6 5 4 3 2 1 0

PARITY BITS

• Simple error checking for the transmitted data

• Even parity

• The data bits produce an even number of 1s

• Odd parity

• The data bits produce an odd number of 1s

• Parity checking process

1. The transmitting device sets the parity bit to 0 or to 1 depending on the data bit values and the type of parity checking selected.

2. The receiving device checks if the parity bit is consistent with the transmitted data; depending on the result, error/success is returned

• Disadvantage

• Parity checking can detect only an odd number of bit-flip errors

• Multiple-bit errors can appear as valid data

14

PARITY EXAMPLE
15

DATA MODULATION

• When sending data over serial lines, logic signals are converted into a form the physical media (wires)

can support

• RS232C uses bipolar pulses

• Any signal greater than +3 volts is considered a space (0)

• Any signal less than -3 volts is considered a mark (1)

• Conventions

• Idle line is assumed to be in high (1) state

• Each character begins with a zero (0) bit, followed by 5-8 data bits and then 1, 11/2, or 2 closing

stop bits

• Bits are usually encoded using ASCII (American Standard Code for Information Interchange)

16

RS-232 SIGNAL LEVELS
17

Source: Dallas Semiconductors
Application note 83

TERMINOLOGY

• DTE: Data terminal equipment, e.g., PC

• DCE: Data communication equipment, e.g., modem, remote device

• Baud Rate

• Maximum number of times per second that a line changes state

• Not always the same as bits per second

18

Source: Dallas Semiconductors
Application note 83

SERIAL PORT CONNECTOR

• 9-pin (DB-9) or 25-pin (DB-25) connector

• Inside a 9-pin connector
• Carrier Detect - Determines if the DCE is connected to a working phone line
• Receive Data - Computer receives information sent from the DCE
• Transmit Data - Computer sends information to the DCE
• Data Terminal Ready - Computer tells the DCE that it is ready to talk
• Signal Ground - Pin is grounded
• Data Set Ready - DCE tells the computer that it is ready to talk
• Request To Send - Computer asks the DCE if it can send information
• Clear To Send - DCE tells the computer that it can send information
• Ring Indicator – Asserted when a connected modem has detected an incoming call

• What’s a null modem cable?

19

RS-232 PIN CONNECTIONS

Source: Dallas Semiconductors
Application note 83

HANDSHAKING

• Some RS232 connections using handshaking lines between DCE and DTE

• RTS (ReadyToSend)

• Sent by the DTE to signal the DCE it is Ready To Send

• CTS (ClearToSend)

• Sent by the DCE to signal the DTE that it is Ready to Receive

• DTR (DataTerminalReady)

• Sent to DTE to inform the DCE that it is ready to connect

• DSR (DataSetRead)

• Sent to DCE to inform the DTE that it is ready to connect

• Handshaking lines can make it difficult to set up the serial communications, but seamless after set-up.

• Also, software handshaking (XON/XOFF)

21

Transmit
Transmit

or Receive
Transmit

Receive

Simplex Mode
Transmission is possible
only in one direction.

Half-duplex Mode
Data is transmitted in
one direction at a time but
the direction can be
changed.

Full-duplex Mode
Data may be transmitted
simultaneously in both
directions.

SERIAL DATA COMMUNICATION MODES
22

FLOW CONTROL

• Necessary to prevent terminal from sending more data than the peripheral can consume (and vice-versa)

• Higher data rates can result in missing characters (data-overrun errors)

• Hardware handshaking
• Hardware in UART detects a potential overrun and asserts a handshake line to prevent the other side from

transmitting

• When receiving side can take more data, it releases the handshake line

• Software flow-control

• Special characters XON and XOFF

• XOFF stops a data transfer (control-S or ASCII code 13)

• XON restarts the data transfer (control-Q or ASCII code 11)

• Assumption is made that the flow-control becomes effective before data loss happens

23

LIMITATIONS

• Not useful for long distances
• Cable capacitance is an issue, e.g. 50pF/ft

• Ground reference is poor
• Cross-talk between parallel wires

• Biasing

• Little ability to reject outside noise

• Point-to-point

• Not standard for multi-drop receivers

• No standard for multiple senders

• Multi-point work-arounds (Non-standard)

• Daisy chain receivers

• Buffered multiplexer for multiple senders

SEATALK

SEATALK-1

• Example proprietary serial line solution

• Not compatible with RS-232

• 4800,N,8,1

• Parity bit is actually used to indicate first byte of each datagram, not parity

• All participants are symmetric

• Listen for collision, if quiet, transmit

• Listen while transmitting.

• If garbled stop and retransmit after delay.

• Delay is random, but greater for lower priority devices.

• If a datagram is short, it is garbled.

• Receiver drops it.

RS-422

DIFFERENTIAL ENCODING:
NOT POSITIVE/NEGATIVE

• Notice that in RS-232 TX and RX are

relative to the ground

• Notice that in RS-422:

• There are not TD and RD, just A and B

• A and B are relative to each other

http://www.windmill.co.uk/rs485.html

http://www.windmill.co.uk/rs485.html

DIFFERENTIAL ENCODING:
WHY BETTER

• Not dependent upon quality of ground

• Can’t get a ground loop due to differences

• Current flowing through ground

• Both A and B are driven, not floating

WIRING:
STRAIGHT CABLE VS TWISTED PAIR

https://www.root.cz/clanky/sbernice-rs-422-rs-423-a-rs-485/

Twisted pair (ex, RS-422) allows much higher data rates

than straight run (ex., RS-232).

https://www.root.cz/clanky/sbernice-rs-422-rs-423-a-rs-485/

SINGLE DROP WIRING

https://www.root.cz/clanky/sbernice-rs-422-rs-423-a-rs-485/
http://www.bb-elec.com/Learning-Center/All-White-

Papers/Serial/FAQ-Connect-RS-422-Devices.aspx

https://www.root.cz/clanky/sbernice-rs-422-rs-423-a-rs-485/
http://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/FAQ-Connect-RS-422-Devices.aspx

MULTI-DROP WIRING

http://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/FAQ-Connect-RS-422-Devices.aspx

• Multi-Drop?

• What Seems to be missing here?

• (Hint: One way, master to slaves)

• Addressing

• Can be added at higher level

• Ignore message if not intended recipient

http://www.bb-elec.com/Learning-Center/All-White-Papers/Serial/FAQ-Connect-RS-422-Devices.aspx

RS-485

MULTI-DROP

• Like a multi-point RS-422

• Differential signaling

• Twisted Pair

• 32-256 devices

• Depends on impedance and value of R (ohms)

• RS-422 doesn’t describe addressing, collision

management, etc.

• Left for a higher layer

https://www.lammertbies.nl/comm/info/RS-485.html#topo

https://www.lammertbies.nl/comm/info/RS-485.html#topo

MODBUS

https://support.automationdirect.com/docs/an-misc-027.ppt

The MODBUS protocol comes in 2 versions :

◼ ASCII transmission mode

Each eight-bit byte in a message is sent as 2 ASCII characters.

◼ RTU transmission mode

Each eight-bit byte in a message is sent as two four-bit hexadecimal

characters.

The main advantage of the RTU mode is that it achieves higher throughput.

ASCII mode allows time intervals of up to 1 second to occur between

characters without causing an error.

ASCII VS MTU

Address ChecksumDataFunction

The Modbus frame structure is the same for requests (master to slave

messages) and responses (slave to master messages).

Modbus ASCII

Modbus RTU

: CR LF

3A Hex 0D Hex 0A Hex

Address ChecksumDataFunctionsilence silence

Silence >= 3.5 characters

FRAME STRUCTURE

Address ChecksumDataFunction

Valid slave device addresses are in the range of 0 ... 247 decimal.

The individual slave devices are assigned addresses in the range of 1 ... 247.

Value 0 is reserved for broadcast messages (no response).

Request :

A master addresses a slave by placing the slave address in the address field of

the message.

Response :

When the slave sends its response, it places its own address in this address field

of the response to let the master know which slave is responding.

FRAME ADDRESS

Valid codes are in the range of 1 ... 255 decimal.

Request :

The function code field tells the slave what kind of action to perform.

Response :

For a normal response, the slave simply echoes the original function code.

For an exception response, the slave returns a code that is equivalent to the original

function code with its most significant bit set to a logic 1.

Address ChecksumDataFunction

FRAME FUNCTION FIELD

Valid codes are in the range of 0 ... 255 decimal.

Request :

The data field contains additional information which the slave must use to take

the action defined by the function code. This can include items like register

addresses, quantity of items to be handled, etc...

Response :

If no error occurs, the data field contains the data requested.

If an error occurs, the field contains an exception code that the master

application can use to determine the next action to be taken.

Address ChecksumDataFunction

DATA FIELD

Valid codes are in the range of 0 ... 255 decimal.

Modbus RTU uses CRC : Cyclycal Reduncy Check (2 byte)

Modbus ASCII uses LRC : Longitudinal Redundancy Check (1 bytes)

Request :

The checksum is calculated by the master and sends to the slave.

Response :

The checksum is re-calculated by the slave and compared to the value sent by the master.

If a difference is detected, the slave will not construct a response to the master.

Address ChecksumDataFunction

CHECKSUM FIELD

Request :

Function code = 3 : Read n words

Slave

Address
CRC16

First word

address

Function

code = 3

Number of

words to read

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Response :

Slave

Address
CRC16

Number of

bytes read

Function

code = 3

Value of the

first word

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Value of the

last word

2 bytes

RTU FRAME EXAMPLE

Code Type

01 Read n consecutive output bits

02 Read n consecutive input bits

03 Read n consecutive output words

04 Read n consecutive input words

05 Write 1 output bit

06 Write 1 output word

07 Read exception status

08 Access diagnostic counters

11 Read event counter

12 Read connection events

15 Write n output bits

16 Write n output words

17 Read identification

EXAMPLE FUNCTION CODES

NMEA 0183

OVERVIEW

• National Marine Electronics Association (NMEA)

• RS-422 Based Protocol for interconnecting devices on boats

• Originally RS-232

• Changed to RS-422 for multi-drop and length of cable

• What types of data?

• Depth sounder

• GPS

• Speed sensor

• Temp sensor

• AIS, etc

• Common applications

• Collect from devices, unify on single display

• Unify toward a goal, e.g. GPS, speed and wind to autopilot

• ASCII based data

SERIAL CONFIGURATION

• Commonly

• 4800, N, 8, 1

• High Speed

• 38400, N, 8, 1

• Used for time-sensitive, high-density updates, most commonly AIS

• Remember

• Multi-drop, not multi-point

MULTIPLEXERS

https://www.navstore.com/actisense-pro-mux-1-nmea-0183-multiplexer.html

https://www.navstore.com/actisense-pro-mux-1-nmea-0183-multiplexer.html

MESSAGE STRUCTURE

https://en.wikipedia.org/wiki/NMEA_0183#Serial_configuration_(data_link_layer)

https://en.wikipedia.org/wiki/NMEA_0183Serial_configuration_(data_link_layer)

MESSAGE EXAMPLES

https://en.wikipedia.org/wiki/NMEA_0183#Serial_configuration_(data_link_layer)

https://en.wikipedia.org/wiki/NMEA_0183Serial_configuration_(data_link_layer)

DETAILED MESSAGE EXAMPLE

http://freenmea.net/docs

http://freenmea.net/docs

LIMITATIONS

• Multi-drop, but not multi-point

• Many devices exchange data versus strictly send or receive it

• AIS needs to send other boats’ info, but receive own boat info to send it out

• Autopilot needs boat parameters to calculate course, but sends out information about deviation

• Etc

• Total rats nest of wiring

• No common bus.

• It is hard to build a “star” around a multiplexer snaking all sorts of wires through a boat

CAN BUS

https://teaching.shu.ac.uk/aces/ag1/files/m167/CAN%20BUS.ppt

53

OVERVIEW

• CAN is an important embedded protocol

• Primarily automotive, but used in many other places

• CAN specifies:

• Physical layer

• Protocol layer

• Message filtering layer (with add-on protocols)

• Note

• How message prioritization achieved

• How “small” nodes can be kept from overloading with received messages

THE DEVELOPMENT OF CAN

The development of CAN began when more and more electronic devices were implemented into modern

motor vehicles. Examples of such devices include engine management systems, active suspension, ABS, gear

control, lighting control, air conditioning, airbags and central locking. All this means more safety and more

comfort for the driver and of course a reduction of fuel consumption and exhaust emissions.

To improve the behavior of the vehicle even further, it was necessary for the different control systems (and

their sensors) to exchange information. This was usually done by discrete interconnection of the different

systems (i.e. point to point wiring). The requirement for information exchange has then grown to such an

extent that a cable network with a length of up to several miles and many connectors was required. This

produced growing problems concerning material cost, production time and reliability.

BEFORE CAN

WITH CAN

The solution to this problem was the connection of the

control systems via a serial bus system. This bus had to fulfill

some special requirements due to its usage in a vehicle. With

the use of CAN, point-to-point wiring is replaced by one serial

bus connecting all control systems. This is accomplished by

adding some CAN-specific hardware to each control unit that

provides the "rules" or the protocol for transmitting and

receiving information via the bus.

57

THE CAN BUS

• CAN is a broadcast type of bus.

• This means that all nodes can "hear" all

transmissions. There is no way to send a

message to just a specific node; all nodes will

invariably pick up all traffic. The CAN

hardware, however, provides local filtering so

that each node may react only on the

“interesting” messages.

58

BASIC CONFIGURATION

59

CAN BUS OVERVIEW

• The physical layer uses differential transmission on a twisted pair wire. The bus uses Non-Return To Zero
(NRZ) with bit-stuffing.

• The nodes are connected to the bus in a wired-and fashion: if just one node is driving the bus to a logical
0, then the whole bus is in that state regardless of the number of nodes transmitting a logical 1.

• Max. transfer rate of 1000 kilobits per second at a maximum bus length of 40 meters or 130 feet when
using a twisted wire pair which is the most common bus medium used for CAN.

• Message length is short with a maximum of 8 data bytes per message and there is a low latency between
transmission request and start of transmission. The messages are protected by a CRC type checksum

60

CAN BUS OVERVIEW

• The bus access is handled via the advanced serial communications protocol Carrier
Sense Multiple Access/Collision Detection with Non-Destructive Arbitration. This means
that collision of messages is avoided by bitwise arbitration without loss of time.

• There is no explicit address in the messages, instead, each message carries a numeric
value which controls its priority on the bus, and may also serve as an identification of the
contents of the message.

• An elaborate error handling scheme that results in retransmitted messages when they
are not properly received.

• There are effective means for isolating faults and removing faulty nodes from the bus.

61

BASIC BIT ENCODING

NRZ BIT STUFFING
(ADDED SLIDE)

• 2 bits stuffed after 5 bits at same level

• Generates transitions for syncing

https://commons.wikimedia.org/wiki/File:Bitstuffing_en.svg

https://commons.wikimedia.org/wiki/File:Bitstuffing_en.svg

63

CAN BUS CHARACTERSTICS

64

BUS CHARACTERISTICS – WIRED AND

Only if all nodes transmit recessive bits

(ones), the Bus is in the recessive state.
If any one node transmits a dominant bit

(zero), the bus is in the dominant state.

T is Transmitter, R is receiver. Note nodes can therefore check the line while transmitting.

This is important particularly during arbitration.

65

BUS ACCESS AND ARBITRATION – CSMA/CD NDA
CSMA/CD NDA – Carrier Sense Multiple Access/Collision avoidance by Non

Destructive arbitration

66

BUS TRANSMISSION SPEED

• Arbitration limits bus speed.

• Maximum speed = 2 x tpd

• tpd = propagation delay of medium

67

THE CAN PROTOCOL

• Specifies how small packets of data may be transported from point A to point B using a

shared communications medium.

• It (quite naturally) contains nothing on topics such as

• flow control

• transportation of data larger than can fit in a 8-byte message

• node addresses

• establishment of communication, etc.

68

HIGHER LAYER PROTOCOLS

• Higher layer protocols are used in order to

• standardize startup procedures including bit rate setting

• distribute addresses among participating nodes or kinds of messages

• determine the layout of the messages

• provide routines for error handling at the system level

• Some high layer protocols

• Device net

• CANKingdom

• CANopen

69

THE CAN STANDARD

• The CAN standard defines four message types

• Data Frame – the predominantly used message type

• Remote Frame

• Error Frame

• Overload Frame

• The messages uses a clever scheme of bit-wise arbitration to control access to the bus, and

each message is tagged with a priority.

• The CAN standard also defines an elaborate scheme for error handling and confinement.

• CAN may implemented using different physical layers, and there are also a number of different

connector types in use.

1. THE DATA FRAME

Summary: "Hello everyone, here's some data labeled X, hope you like it!"

• The Data Frame is the most common message type. It comprises the following major parts (a few details
are omitted for the sake of brevity):
• the Arbitration Field, which determines the priority of the message when two or more nodes are contending for

the bus. The Arbitration Field contains:

• For CAN 2.0A, an 11-bit Identifier and one bit, the RTR bit, which is dominant for data frames.

• For CAN 2.0B, a 29-bit Identifier (which also contains two recessive bits: SRR and IDE) and the RTR bit.

• the Data Field, which contains zero to eight bytes of data.

• the CRC Field, which contains a 15-bit checksum calculated on most parts of the message. This checksum is
used for error detection.

• an Acknowledgement Slot; any CAN controller that has been able to correctly receive the message sends an
Acknowledgement bit at the end of each message. The transmitter checks for the presence of the Acknowledge
bit and retransmits the message if no acknowledge was detected.

CAN DATA FRAMES

Note 1: It is worth noting that the presence of an Acknowledgement Bit on the bus does not mean that any of the intended

addressees has received the message. The only thing we know is that one or more nodes on the bus has received it correctly

Note 2: The Identifier in the Arbitration Field is not, despite of its name, necessarily identifying the contents of the message.

THE REMOTE FRAME

• Summary: "Hello everyone, can somebody please produce the data labeled
X?"

• The Remote Frame is just like the Data Frame, with two important differences:
• It is explicitly marked as a Remote Frame (the RTR bit in the Arbitration Field is recessive), and

• there is no Data Field.

• The intended purpose of the Remote Frame is to solicit the transmission of the corresponding Data
Frame. If, say, node A transmits a Remote Frame with the Arbitration Field set to 234, then node B, if
properly initialized, might respond with a Data Frame with the Arbitration Field also set to 234.

• Remote Frames can be used to implement a type of request-response type of bus traffic
management. In practice, however, the Remote Frame is little used. It is also worth noting that the
CAN standard does not prescribe the behaviour outlined here. Most CAN controllers can be
programmed either to automatically respond to a Remote Frame, or to notify the local CPU instead.

REMOTE FRAME (CONTD.)

• There's one catch with the Remote Frame: the Data Length Code must be set to the

length of the expected response message. Otherwise the arbitration will not work.

• Sometimes it is claimed that the node responding to the Remote Frame is starting its

transmission as soon as the identifier is recognized, thereby "filling up" the empty

Remote Frame. This is not the case.

• A Remote Frame (2.0A type):

3. THE ERROR FRAME

Summary: (everyone, aloud) "OH DEAR, LET'S TRY AGAIN"

Simply put, the Error Frame is a special message that violates the framing rules of a
CAN message. It is transmitted when a node detects a fault and will cause all other
nodes to detect a fault - so they will send Error Frames, too. The transmitter will then
automatically try to retransmit the message. There is an elaborate scheme of error
counters that ensures that a node can't destroy the bus traffic by repeatedly
transmitting Error Frames.

The Error FrameThe Error Frame consists of an Error Flag, which is 6
bits of the same value (thus violating the bit-stuffing
rule) and an Error Delimiter, which is 8 recessive
bits. The Error Delimiter provides some space in
which the other nodes on the bus can send their
Error Flags when they detect the first Error Flag.

75

4 THE OVERLOAD FRAME

Summary: "I'm a very busy little 82526 device, could you please wait

for a moment?"

• The Overload Frame is mentioned here just for completeness. It is very

similar to the Error Frame with regard to the format and it is transmitted

by a node that becomes too busy. The Overload Frame is not used very

often, as today's CAN controllers are clever enough not to use it. In fact,

the only controller that will generate Overload Frames is the now

obsolete 82526

76

ISO PHYSICAL LAYER

One of the most common and cheapest

implementations is to use a twisted wire

pair. The bus lines are then called "CAN_H"

and "CAN_L". The two bus lines CAN_H

and CAN_L are driven by the nodes with a

differential signal. The twisted wire pair is

terminated by terminating resistors at each

end of bus line, typically 120 ohms.

77

CAN AND EMI

Due to the differential nature of transmission CAN

is insensitive to electromagnetic interference,

because both bus lines are affected in the same way

which leaves the differential signal unaffected.

To reduce the sensitivity against electromagnetic

interference even more, the bus lines can

additionally be shielded. This also reduces the

electromagnetic emission of the bus itself, especially

at high baud rates.

78

STANDARDISATION

•Vehicle bus system applications can be separated in three

different categories according to their real-time capabilities.

• Class A for a low speed bus with bit rates up to 10 kbps,

e.g for body control applications,

• Class B for a low speed bus with bit rates from 10 kbps

to 125 kbps, e.g. for dashboard and diagnostics,

• Class C for a high speed bus with bit rates from 125

kbps to 1 Mbps for real time applications like engine

management, Gearbox, ABS etc.

79

BUS LEVELS ACCORDING TO ISO-IS 11898

•These are the bus levels according to ISO-IS 11898. A recessive bit is represented by both CAN bus

lines driven to a level of about 2.5 V so that the differential voltage between CAN_H and CAN_L is

around 0 V.

•A dominant bit is represented by CAN_H going to about 3.5 V and CAN_L going to about 1.5 V. This

results in a differential voltage for a dominant bit of about 2V.

80

A BASIC CAN CONTROLLER

• Cheap CAN controller – CPU could get overrun with messages

even if it didn’t need them.

81

FULL CAN CONTROLLER

• Hardware message filters sort & filter messages without
interrupting CPU

NMEA 2000

OVERVIEW

• Updated NMEA standard

• Addresses most limitations of older standard

• Essentially based upon CAN

• But they didn’t originally adopt a specific standard for the termination or wire types

• Otherwise compatible physical layers have incompatible connectors

• Raymarine Seatalk-NG

• Simrad Simnet

• CAN

• Updated NMEA 2000 standard uses DeviceNet MicroC connectors

• But, too late! All the proprietary standards are well rooted in the wild

PARAMETER GROUP NUMBERS (PGNS)

https://www.maretron.com/support/manuals/USB100UM_1.6.html

PGNs are rough approximation of NMEA sentences

https://www.maretron.com/support/manuals/USB100UM_1.6.html

ETHERNET, WI-FI, AND BEYOND

MARINE NETWORKS TODAY

• Mix of standards

• Old stuff that still works, e.g. SeaTalk-1

• NMEA-0183 won’t die

• It is still low cost, highly reliable, sufficient

• Perfect for DSC radios, AIS, etc

• USB

• Limited use, mostly via bridging from RS-485

• Still point-to-point, not common bus

• Limited value of RS-485 given data rates

• NMEA-2000 variants

• Usually one of these is used as a common bus

• Everything else gets bridged to this

• Ethernet and Wi-Fi

• Ethernet can be used as common bus in place of CAN standard

• Virtual serial ports convert network data t familiar software interface

MIXING DATA TYPES

• NMEA-0183 is good enough for most individual uses and often times many uses combined

• And it is 4800,n,8,1

• NMEA-0183 isn’t good enough for some things

• AIS, for example, requires 38400,n,8,1

• CAN, Ethernet and Wi-Fi have a ton more bandwidth

• They don’t really have the collision/buffering problem that some NMEA-0183 multiplexers have

• They can basically handle a ton of NMEA data

• Radar data, sonar data, etc can be high resolution and are timely

• There can be problems mixing these with other types of data.

MIXING TYPES OF DATA

• Radar has been using Ethernet (or specialized high-bandwidth connections) since

inception

• When using Ethernet, it was originally the only thing

• Now it often has to share with other devices

• And, modern radars are even higher resolution and faster scanning

• Collision causes missing Radar spokes

THE HOLDING POWER OF LEGACY

• Old interfaces live long lives

• Never underestimate the staying power of “legacy”

• Standard interface is an old-school “COM Port”

• Common bus is necessary for modern data distribution

• CAN bus, ethernet, etc

• Options

• Use “adapter box” to bridge common bus to USB (which is natively mapped as a COM port)

• Map network traffic to “COM Port” as “Virtual COM Port”

NETWORK VIRTUAL COM PORTS

• Abstract network communication as a virtual serial port

• Enables continued use of legacy interface

• COM settings are basically imaginary

• Software just reads and writes from COM port as usual

• UDP

• Unicast or broadcast

• Unreliable

• Map traffic from <IP,Port> to a COM Port.

• TCP

• Unicast only, broadcast isn’t an option

• Reliable

• Requires a connection

• End-User device can act as client or server

• Often times (but not always) TCP server device limits to one client

• Otherwise, how long to buffer data? How much buffer needed

EXAMPLE
“SEAS THE BAY”, 42’ HARDIN EUROPA TRAWLER

• Seatalk Legacy devices

• MFD, GPS, Wireless AP Controller

• NMEA-0183

• 2x VHF Radios (GPS, AIS, DSC)

• AIS Transceiver (In: GPS, Heading, etc; Out: AIS)

• Depth, temperature, and speed

• NMEA-2000 (CAN + Simnet + Seatalk-NG)

• Common Seatalk-NG bus

• AP, Sensor core, Mini-displays, AP control head

• Some radar data (ARPA contacts + more)

• Ethernet

• Radar data and most control

• Upper and lower primary displays

• Wi-Fi

• Laptop

• Cellphone

