
Name:___________________

15-111/Kesden Spring 2003
Exam 2 (Retake)

Singly Linked Lists

1. Given the provided, minimal LinkedList, including the Node, please implement the method
described below:

 /**
 * Removes the first item equal to the keyItem from the list.
 * This method removes at most one item. If there are multiple
matching
 * items, it removes only the matching item closest to the head.
 * The list is not changed in any other way.
 * <p>
 * In the event of an error, it does not change the list,
instead it
 * returns leaving the list in its prior condition.
 * <p>
 * @param keyItem The first item within the list equal to this
item is
 * removed from the list.
 */
 public void removeFirstMatchingItem (Comparable keyItem) {

 return;
 }

2. Given the provided, minimal LinkedList class, including the Node, please implement the
method described below:

/**
 * Creates and returns a new list, which contains exactly those
 * items that are present in exactly one of the two lists, but
 * not both.
 * <p>
 * It does not change either of the original lists
 * <p>
 * In the event of an error, it returns an empty list.
 * <p>
 * @param otherList is the list that should be compared with
 * this list
 * <p>
 * @return a new list, which contains exactly those items
 * that are present in exactly one of the two lists, but not
 * both.
 */
 public LinkedList Xor(EnhancedLinkedList otherList) {

 return null; // Remove this!
 }

3. Please draw a figure, or a collection of figures, that shows the evaluation of the following

expression using a single stack. The figure(s) should depict the stack after each operation
and should also clearly indicate the operation.

4,5,+,3,/,2,*

4. Please draw a figure representing the call stack after each method call and method return

of someFunction (4), where someFunction() is defined as below:

 int someFunction(int var){

 if (0 == var) return 1;
 if (1 == var) return 1;

 return someFunction (var-1) + someFunction (var-2);
 }

5. Quick sort is said to have an average case runtime on the order of “nlog n”. Please explain
why this is the case, yet quick sort is O(n2)

6. Is selection sort ever a better choice than quick sort? Why or why not? If so, please give

an example.
7. Which sort is more efficient, selection sort or bubble sort? Why?

public class LinkedList
{

 public class IndexException extends Exception
 {

 public String toString()
 {
 return ("Bad index in Linked List");
 }
 }

 private Node head;
 private Node tail;

 public LinkedList()
 {
 head = tail = null;
 }

 public void addHead(Comparable data)
 {

 Node newNode;
 newNode = new Node(data);

 newNode.setNext(head);

 head = newNode;

 if (null == tail)
 {
 tail = head = index = newNode;
 }
 }

}

// For question #1 and question #2
public class Node
{
 private Comparable data;
 private Node next;

 public Node (Comparable data, Node next)
 {
 this.data = data;
 this.next = next;
 }

 public Node (Comparable data)
 {
 this.data = data;
 this.next = null;
 }

 public Comparable getData()
 {
 return data;
 }

 public Node getNext()
 {
 return next;
 }

 public void setNext(Node next)
 {
 this.next = next;
 }

 public void setData(Comparable data)
 {
 this.data = data;
 }
}

// For question #3
public class DNode
{
 private Comparable data;
 private DNode next;

 public DNode (Dnode prev, Comparable data, DNode next)
 {
 this.prev = prev;

 this.data = data;
 this.next = next;
 }

 public DNode (Comparable data)
 {
 this.prev = null;
 this.data = data;
 this.next = null;
 }

 public Comparable getData()
 {
 return data;
 }

 public DNode getNext()
 {
 return next;
 }

 public DNode getPrev()
 {
 return prev;
 }

 public void setNext(DNode next)
 {
 this.next = next;
 }

 public void setPrev(DNode prev)
 {
 this.next = prev;
 }

 public void setData(Comparable data)
 {
 this.data = data;

 }

