Expression Trees
An expression tree is a binary tree which is used to represent a mathematical expression. For example, if we have the expression (2 * (4 + (5 + 3))), we could construct a tree to represent it.
In an expression tree, the parent nodes are the operators, and the children are the operands. To find the result of this expression, we need to first solve (5 + 3), which is 8, then solve (4 + 8), which is 12, and then finally solve 2 * 12, which is 24. So our root node will contain the operator within the outermost set of parentheses, it's left child will be the value "2", and the right child will be the remaining expression that needs to be solved, which would be (4 + (5 + 3)).
When we talked about solving expressions using stacks, we had three different ways we could represent an expression: infix, where the operator comes between its two operands; prefix, where the operator comes before its two operands; and postfix, where the operator comes afters its two operands. Given an expression tree, we can generate any of those representations using one of the three traversals of a binary tree: in-order, pre-order, and post-order.
In-Order Traversal
In an infix expression, the operator comes between its operands, so if we want to generate the infix expression from an expression tree, we will need to print the operand on the left before we print out the operator. But what if the left operand is another expression to evaluate? We use recursion. We print out the entire left subtree, then print the current node, then print out the entire right subtree.
void inOrder(BinaryTreeNode root) { if (null == root) return; inOrder(root.left()); // print the entire left subtree System.out.println(root.data()); inOrder(root.right()); // print the entire right subtree return; }In this code, "root" refers to the root of the current subtree, not the root of the whole tree (although we would have to start at the root of the whole tree). So, how does this work? Let's look at the steps that this method takes for the simple expression 5 + 3 (for convenience, the nodes have been numbered:
- We start by calling inOrder(1) (the root)
- (1) is not null, so we call inOrder(2) (1's left)
- (2) is not null, so we call inOrder(2's left)
- (2)'s left is null, so it just returns back to (2)
- We've done the left, so now we print the data at (2), which in this case is "5"
- we've printed (2), so now we call inOrder(2's right)
- (2)'s right is null, so it just returns back to 2
- (2) has now finished, so it returns back to (1)
- we've printed (1)'s left, so now we print the data at (1), which in this case is "+"
- we've printed (1), so now we call inOrder(3)
- (3) is not null, so we call inOrder(3's left)
- (3)'s left is null, so it just returns back to (3)
- We've done the left, so now we print the data at (3), which in this case is "3"
- we've printed (3), so now we call inOrder(3's right)
- (3)'s right is null, so it just returns back to (3)
- (3) has now finished, so it returns back to (1)
- (1) has now finished, so the result is "5+3", which is the infix representation of the tree
Pre-Order Traversal
We can generate a prefix expression using a pre-order traversal. Much like for the in-order traversal, we will use recursion to print the entire left subtree and the entire right subtree. In a prefix expression, the operator comes before its two operands, so we will have to print out the parent node's data before recursively printing its left and right children.
void preOrder(BinaryTreeNode root) { if (null == root) return; System.out.println(root.data()); preOrder(root.left()); // print the entire left subtree preOrder(root.right()); // print the entire right subtree return; }So, instead of printing the data after we have printed the left subtree, we are going to print the data first, so that the operator will print out before its operands, giving us the prefix representation of the expression.
Post-Order Traversal
By now, you should see a pattern. The last representation is postfix, and we will use a post-order traversal to obtain it. Since in postfix the operator comes after its two operands, will recursively print the left and right subtrees before we print out the data at the current node.
void postOrder(BinaryTreeNode root) { if (null == root) return; postOrder(root.left()); // print the entire left subtree postOrder(root.right()); // print the entire right subtree System.out.println(root.data()); return; }Level-order traversal
Try to think about a way to traverse a tree and visit its nodes in level order. In other words print the root, then everything at level 2 (children of the root), then everything at level 3 (children of level 2).It is true that this is the natural result of a linear walk through the vector representation of a tree. But, please don't approach the problem that way. Try to find an algorithmic solution with the same flavor as the traversals we covered today -- one that would work somewhat independent of the representation.
Let's observe that our goal can be accomplished if we "look one level down the tree". In other words, the parent can see its children, but the children, the siblings, can't see each other. Given this, it is clear that the parent needs to drive the process.
So, here's what we are going to do. We are going to approch this iteratively. We are going to maintain a queue of verticies, inserting them by level, from left-to-right. So, when we visit a node, we will enqueue its children.
We get things started by enqueuing the root. Once we've done that, we enter our main work loop. Each iteration, we will dequeue a node -- the node that we are visiting. At this point, we will consider it visited and print it out, or whatever. Then, we will enqueue its children. By doing this, all nodes at level n are enqueued, and will be processes, before any deeper node at level n + 1 or greater. We continue this loop, until we've processed all of the nodes -- the queue is empty.
The pseudocode below ignores some Java details for clarity, but should communicate the algorithm well.
void levelOrder (BinaryTreeNode root) { if (root == null) // Problem case return; // Initialize the queue Queue levelQueue = new Queue(); levelQueue.enqueue (root); // Process nodes, until we've got them all while (!levelQueue.isEmpty()) { root = levelQueue.dequeue(); System.out.println (root.data()); if (root.left() != null) levelQueue.enqueue(left); if (root.right() != null) levelQueue.enqueue(right); } }