Return to the Lecture Notes Index

15-111 Lecture 33 (Friday, April 19, 2003)

Expression Trees

An expression tree is a binary tree which is used to represent a mathematical expression. For example, if we have the expression (2 * (4 + (5 + 3))), we could construct a tree to represent it.

In an expression tree, the parent nodes are the operators, and the children are the operands. To find the result of this expression, we need to first solve (5 + 3), which is 8, then solve (4 + 8), which is 12, and then finally solve 2 * 12, which is 24. So our root node will contain the operator within the outermost set of parentheses, it's left child will be the value "2", and the right child will be the remaining expression that needs to be solved, which would be (4 + (5 + 3)).

When we talked about solving expressions using stacks, we had three different ways we could represent an expression: infix, where the operator comes between its two operands; prefix, where the operator comes before its two operands; and postfix, where the operator comes afters its two operands. Given an expression tree, we can generate any of those representations using one of the three traversals of a binary tree: in-order, pre-order, and post-order.

In-Order Traversal

In an infix expression, the operator comes between its operands, so if we want to generate the infix expression from an expression tree, we will need to print the operand on the left before we print out the operator. But what if the left operand is another expression to evaluate? We use recursion. We print out the entire left subtree, then print the current node, then print out the entire right subtree.

void inOrder(BinaryTreeNode root)
{
        if (null == root) return;

        inOrder(root.left());   // print the entire left subtree

        System.out.println(root.data());

        inOrder(root.right());  // print the entire right subtree

        return;
}
  

In this code, "root" refers to the root of the current subtree, not the root of the whole tree (although we would have to start at the root of the whole tree). So, how does this work? Let's look at the steps that this method takes for the simple expression 5 + 3 (for convenience, the nodes have been numbered:

  1. We start by calling inOrder(1) (the root)
  2. (1) is not null, so we call inOrder(2) (1's left)
  3. (2) is not null, so we call inOrder(2's left)
  4. (2)'s left is null, so it just returns back to (2)
  5. We've done the left, so now we print the data at (2), which in this case is "5"
  6. we've printed (2), so now we call inOrder(2's right)
  7. (2)'s right is null, so it just returns back to 2
  8. (2) has now finished, so it returns back to (1)
  9. we've printed (1)'s left, so now we print the data at (1), which in this case is "+"
  10. we've printed (1), so now we call inOrder(3)
  11. (3) is not null, so we call inOrder(3's left)
  12. (3)'s left is null, so it just returns back to (3)
  13. We've done the left, so now we print the data at (3), which in this case is "3"
  14. we've printed (3), so now we call inOrder(3's right)
  15. (3)'s right is null, so it just returns back to (3)
  16. (3) has now finished, so it returns back to (1)
  17. (1) has now finished, so the result is "5+3", which is the infix representation of the tree

Pre-Order Traversal

We can generate a prefix expression using a pre-order traversal. Much like for the in-order traversal, we will use recursion to print the entire left subtree and the entire right subtree. In a prefix expression, the operator comes before its two operands, so we will have to print out the parent node's data before recursively printing its left and right children.

void preOrder(BinaryTreeNode root)
{
        if (null == root) return;
        
        System.out.println(root.data());
        
        preOrder(root.left());   // print the entire left subtree
        
        preOrder(root.right());  // print the entire right subtree
        
        return;
}
  

So, instead of printing the data after we have printed the left subtree, we are going to print the data first, so that the operator will print out before its operands, giving us the prefix representation of the expression.

Post-Order Traversal

By now, you should see a pattern. The last representation is postfix, and we will use a post-order traversal to obtain it. Since in postfix the operator comes after its two operands, will recursively print the left and right subtrees before we print out the data at the current node.

void postOrder(BinaryTreeNode root)
{
        if (null == root) return;
        
        postOrder(root.left());  // print the entire left subtree
        
        postOrder(root.right()); // print the entire right subtree
        
        System.out.println(root.data());
        
        return;
}