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Bourbaki, Charles Denis Sauter



Dramatis Personae: Bourbaki 4

Bourbaki, Nicolas
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Carnap’s Notes of Frege

In a mathematical lecture two things are always mixed together:

1 the pure inferences,
2 the commentary on them.

This mixture has the potential to negatively influence
mathematical rigor. In conceptual notation, assuming a complete
understanding of it, words are superfluous.
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The Bourbaki Volumes

I Set theory

II Algebra

III Topology

IV Functions of one real variable

V Topological vector spaces

VI Integration

VII Commutative algebra

VIII Lie groups
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Some Bourbaki Idiosyncrasies

Presentation strictly linear, no external references.

Problem solving is secondary to axiomatics.

Algorithmic content is off-topic.

Combinatorial structure is non-essential.

Logic is treated minimally.

Applications nowhere in sight.

And (cela va sans dire) no pictures.
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Introductory Calculus Course, 1970’s

The natural numbers form a monoid, described by the Peano axioms.

N can be extended to a commutative group, Z.

Lo and behold, Z carries a ring structure.

Rings are nice, but fields are better: localize to get Q.

Rationals are great, but there are lots of gaps: the Cauchy completion has
none: voila R.

Now let’s prove Stokes’ theorem on C1 hypersurfaces.
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Turing, Alan
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What is Computation?
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Computation
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A Milestone
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Plato

I believe that mathematical reality lies outside of us, that our
function is to discover or observe it, and that the theorems which we
prove . . . are simply our notes of our observations.

G. H. Hardy
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Buchberger’s Spiral

The

Creativity

Spiral

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture
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Some CDM Idiosyncrasies

Problem solving central motivation.

Algorithmic content is crucial.

Combinatorial structure is essential.

Logic is the foundation.

Applications are ubiquitous.

Visualization is used extensively.

Programming helps understanding.
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The Golden Opportunity

The standard of correctness and completeness necessary to get a
computer program to work at all is a couple of orders of magnitude
higher than the mathematical community’s standard of valid proofs.

Bill Thurston
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CS Students

Many have great facility with programming – though not necessarily with the
fundamental mathematical machinery.

One can exploit this facility to enhance their understanding of math.

And one can exploit understanding of math to improve one’s ability to solve
algorithmic problems.
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Example: 00-free Sequences

Problem: Determine the number of binary sequences of length n that contain
no two consecutive 0’s.

Standard approach: compute by brute force, conjecture answer and prove it.

DeleteCases[Tuples[{0,1}, n], {___,0,0,___}];

Better: write a program that constructs only the 00-free sequences.
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Computing with Relations

Really background material.

Computational aspects often not well-understood.

Example:

Given two equivalence relations, compute their meet.

Good solution: represent the relations as kernels.
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Kernels

The kernel relation of a function.

x Kf y ⇐⇒ f(x) = f(y)

For equivalence relations: let f be a choice function.

f(x) = min
`

z | z ρ x
´

Implementation: Just a plain array of integers.
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Minimization

Typical application: (slow) algorithm to minimize DFAs.

// h = meet( f, g )
for p = 1..n do

i = f[p];
j = g[p];
if( (i,j) is new pair ) // membership query

h[p] = val(i,j) = p;
else

h[p] = val(i,j);
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Join and Closures

So meets are easy to compute, but how about joins?

Given a relation ρ on A and a relational property P , find the least relation σ

that

contains ρ: ρ ⊆ σ, and

has property P .

σ is the P -closure of ρ.
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Transitive Closure

Existence à la Bourbaki:

ρ
⋆ =

\

{σ | ρ ⊆ σ transitive }

Slightly more constructive:

ρ
⋆ =

[

ρ
i = 1 + ρ + ρ

2 + . . . + ρ
n + . . .

Solves the join problem for equivalence relations:

ρ ⊔ σ = (ρ ∪ σ)⋆
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Algorithms

Represent binary relations by Boolean matrices.

Get nice algebraic correspondence

˙

Rel[n], •
¸ ∼=
−→

˙

B
n×n

, ·
¸

but not efficient for large n.

Represent binary relations by digraphs, use classical graph algorithms (DFS,
BFS, Warshall).
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Closure and Boolean Matrices



Computational Discrete Mathematics: Relations 26

Flipping Pebbles

Operations:

Flip all pebbles in one circle.

Set all pebbles in one circle to
red.

Problem: Start at all-blue and gener-
ate the shown configuration.
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Invariants and Characterizations

Easy to handle by brute-force computation, but yields no insights.

A good solution requires to think of the pebbles as a basis over a 7-dimensional
vector space over F2.

X = {x1, x2, x3, x12, x13, x23, x123}

Then one can use a parity check matrix.

P =

0

B

B

@

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 1 1 1 1 1

1

C

C

A
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Logic

5.43

But in fact all propositions of logic say the same thing, to wit
nothing.

L. Wittgenstein
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Circuits
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c
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y
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Boolean Functions

x y Hand(x, y) Hor(x, y) Himp(x, y)

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 1

Hard to manipulate combinatorially, equational reasoning is better.
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Boolean Algebra

Lemma

x + x = x

Proof.

x + x = (x + x) · 1

= (x + x) · (x + x)

= x + x · x

= x + 0

= x

2
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EQN

Famous conjecture from 1933, Robbins’ Conjecture:

x = x + y + x + y

x + y = y + x

(x + y) + z = x + (y + z)

together imply the double negation property: x = x.

Proven in 1996 by the automatic prover EQP.
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Algorithms for Propositional Logic

Normal forms (negation, conjunctive, disjunctive)

Matrix methods

Davis-Putnam-Logeman-Lovelace

Apply to solve combinatorial problems.
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Davis-Putnam-Logeman-Lovelace

(¬p11 ∨ p32 ∧ p23) ∧ (¬p12 ∨ p31 ∧ p33 ∧ p24)∧
(¬p13 ∨ p32 ∧ p34 ∧ p21 ∧ p25) ∧ (¬p14 ∨ p33 ∧ p35 ∧ p22 ∧ p26)∧
(¬p15 ∨ p34 ∧ p36 ∧ p23 ∧ p27) ∧ (¬p16 ∨ p35 ∧ p37 ∧ p24 ∧ p28)∧
(¬p17 ∨ p36 ∧ p38 ∧ p25)∧
(¬p18 ∨ p37 ∧ p26) ∧ (¬p21 ∨ p42 ∧ p13 ∧ p33)∧
(¬p22 ∨ p41 ∧ p43 ∧ p14 ∧ p34)∧
(¬p23 ∨ p42 ∧ p44 ∧ p11 ∧ p15 ∧ p31 ∧ p35)∧
(¬p24 ∨ p43 ∧ p45 ∧ p12 ∧ p16 ∧ p32 ∧ p36)∧
(¬p25 ∨ p44 ∧ p46 ∧ p13 ∧ p17 ∧ p33 ∧ p37)∧
(¬p26 ∨ p45 ∧ p47 ∧ p14 ∧ p18 ∧ p34 ∧ p38)∧
(¬p27 ∨ p46 ∧ p48 ∧ p15 ∧ p35)∧
(¬p28 ∨ p47 ∧ p16 ∧ p36) ∧ (¬p31 ∨ p12 ∧ p52 ∧ p23 ∧ p43)∧
(¬p32 ∨ p11 ∧ p13 ∧ p51 ∧ p53 ∧ p24 ∧ p44)∧
(¬p33 ∨ p12 ∧ p14 ∧ p52 ∧ p54 ∧ p21 ∧ p25 ∧ p41 ∧ p45)∧
(¬p34 ∨ p13 ∧ p15 ∧ p53 ∧ p55 ∧ p22 ∧ p26 ∧ p42 ∧ p46)∧
(¬p35 ∨ p14 ∧ p16 ∧ p54 ∧ p56 ∧ p23 ∧ p27 ∧ p43 ∧ p47)∧
(¬p36 ∨ p15 ∧ p17 ∧ p55 ∧ p57 ∧ p24 ∧ p28 ∧ p44 ∧ p48)∧
(¬p37 ∨ p16 ∧ p18 ∧ p56 ∧ p58 ∧ p25 ∧ p45)∧
(¬p38 ∨ p17 ∧ p57 ∧ p26 ∧ p46) ∧ (¬p41 ∨ p22 ∧ p62 ∧ p33 ∧ p53)∧
(¬p42 ∨ p21 ∧ p23 ∧ p61 ∧ p63 ∧ p34 ∧ p54)∧
(¬p43 ∨ p22 ∧ p24 ∧ p62 ∧ p64 ∧ p31 ∧ p35 ∧ p51 ∧ p55)∧
(¬p44 ∨ p23 ∧ p25 ∧ p63 ∧ p65 ∧ p32 ∧ p36 ∧ p52 ∧ p56) ∧ . . .
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Knight’s Tour

Can even push a bit further: code the existence of a Knight’s Tour as a
propositional formula.

Unfortunately, without external code 4 × 4 is the limit . . .
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Tic-Tac-Toe



Computational Discrete Mathematics: Algebra 37

Dihedral Groups
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As Permutations
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Group Actions

ϕ : G × X → X

ϕ(a ∗ b, x) = ϕ(a, ϕ(b, x))

ϕ(1, x) = x

Already familiar from transition systems: just more algebraic structure.



Computational Discrete Mathematics: Algebra 40

Computing with Polynomials

Cycle index polynomial for dihedral group D20:

1

40
(x20

1 + 10x
9
2x

2
1 + 11x

10
2 + 2x

5
4 + 4x

4
5 + 4x

2
10 + 8x20)

Substituting three colors:

1
40

`

(c1 + c2 + c3)
20 + 10(c2

1 + c2
2 + c2

3)
9
(c1 + c2 + c3)

2+

11(c2
1 + c2

2 + c2
3)

10
+ 2(c4

1 + c4
2 + c4

3)
5
+ 4(c5

1 + c5
2 + c5

3)
4
+

4(c10
1 + c10

2 + c10
3 )

2
+ 8(c20

1 + c20
2 + c20

3 )
´
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Expand . . .
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Elementary Cellular Automata
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Firing Squad



Computational Discrete Mathematics: Automata Theory 44

Fredkin Automata
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Automata Theory

Excluded blocks in cellular automata naturally lead to counting problems for
regular languages:

γL(n) = |L ∩ Σn|

Calls for use of generating functions.

g(x) =
X

n≥0

γL(n)x
n
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Polynomial Equations

L ⊆ {a, b}∗: all words of length at least 5.

The minimal DFA for L:

1 2 3 4 5 6

a 2 3 4 5 6 6

b 2 3 4 5 6 6

Leads to a linear system of polynomial equations:

I − T
tr

x =

0

B

B

B

B

B

B

@

1 0 0 0 0 0

−2 x 1 0 0 0 0

0 −2 x 1 0 0 0

0 0 −2 x 1 0 0

0 0 0 −2 x 1 0

0 0 0 0 −2 x 1 − 2 x

1

C

C

C

C

C

C

A
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Solving

Which system we can solve very easily (in the right environment).

The solution vector is

1, 2x, 4x
2
, 8x

3
, 16x

4
,

32 x5

1 − 2x

and the generating function is

g(x) =
32x5

1 − 2x

Nice, but what exactly are the coefficients in g(x) =
P

γL(n)xn ?
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More Solving

32x
5 = c0 +

X

n≥1

(cn − 2cn−1) x
n

From this one can see that cn = 2n provided that n ≥ 5, and 0 otherwise.

The last step can be handled by a program (at least for sufficiently simple
automata).
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Open Environment

CS majors tend to be extremely opinionated about the relative merits and
demerits of various systems, programs and languages.

No point forcing a particular environment on them when they are already more
comfortable and experienced in another.

So, anything goes: Java, C, C++, ML, perl, python, Maple, Mathematica, . . .



Support Structure: Computational Support 50

Computational Support for Experimental Mathematics

Document-centric user interface:
• compute,
• visualize,
• store,
• document.

Interactive, expressive prototyping language.

General compute engine to manipulate data.

Reasonably large algorithm base.

Fast code to generate sizeable structures.

Seamless connection between the modules.

Strong support for graphics.
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My Workhorse: Mathematica

Mathematica kernel for general manipulation.

Automata algorithm library.

Context sensitive online help and examples.

Notebook frontend as user interface.

MathLink communication protocol.

External C++ code for fast computation.
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Preserving Content

“Universities generate content every day through their courses and
seminars. Then they throw it away. There is a certain charm with this
approach, but it is not cost effective. Universities operate like
renaissance quartets based on live performances. . . . Content storage
and reuse are also important to test and ameliorate performance and
to generate an institutional memory.”

Dennis Tsichritzis, “Reengineering the University,”
CACM June 1999
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Preserving Content, II

“Jesus saves, and so should you.”

Dana Scott
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BlackholeTM Course Destruction System

Popular course management systems are not a solution.

In fact, they exacerbate the problem.

Delivery is not the issue; the trouble starts after the final.
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CCaps: Persistent, Personalized Storage

The objective of the proposed research is to design, implement and operate a system
that will store, organize, index and make searchable course content, and preserve that
content reliably over long periods of time. Course Capsules will not only archive the
university generated learning objects, but also the creative work of the students.
Content markup will allow the Capsules to respond intelligently to requests by the
user, and to provide a knowledge base both for the period of active learning while on
campus, and for professional development after graduation. For the faculty, Capsules
will form a trusted repository of course material and will encourage sharing and reuse.

The impact of the proposed research is to provide better efficiency in terms of both

effort and cost in the creation, use and reuse of course content for the faculty, and

sustained, intelligent access to academic knowledge for the students.
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Proof of Concept: Mathematics

XML is expressive and flexible enough to make standards reasonable.

It is easily parsed, generated and transformed.

It can be transmitted easily over the web.

It can be rendered in standard browsers.

It is handled by third party software.

It solves the persistence problem.
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From Presentation to Semantics

A simple expression

ax
2 + bx + c

By convention probably a polynomial of degree 2.

One element in R[x] or maybe Z[x], or Q[x], or C[x], or . . .
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Computer Algebra

The internal representation in Mathematica (presentation markup).

Cell[BoxData[RowBox[{

RowBox[{"a", " ",

SuperscriptBox["x", "2"]}], "+", " ",

RowBox[{"b", " ", "x"}], " ", "+", " ", "c"}]],

"Input", CellLabel->"In[62]:="

]
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Parsing

Retains just enough semantics to process the expression.

Plus[c, Times[b, x], Times[a, Power[x, 2]]]
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Towards MathML . . .

XMLElement["math", {"xmlns" ->"http://www.w3.org/1998/Math/MathML"},
{XMLElement[ "apply", {}, {XMLElement["plus", {}, {}],
XMLElement[ "apply", {}, {XMLElement["times", {}, {}],

XMLElement["ci", {}, {"a"}],
XMLElement[ "apply", {}, {XMLElement["power", {}, {}],
XMLElement["ci", {}, {"x"}],
XMLElement["cn", {"type"->"integer"}, {"2"}]}]}],

XMLElement[ "apply", {}, {XMLElement["times", {}, {}],
XMLElement["ci", {}, {"b"}],
XMLElement["ci", {}, {"x"}]}],
XMLElement["ci", {}, {"c"}]}]}]

Slightly more semantics: function application, some typing.
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. . . and OpenMath

XMLElement["OMOBJ", {}, {XMLElement["OMA", {},
{XMLElement["OMS", {"cd"->"arith1", "name"->"plus"}, {}],
XMLElement["OMA", {}, {XMLElement[ "OMS", {"cd"->"arith1","name"->"times"},{}],
XMLElement["OMV", {"name"->"a"}, {}],
XMLElement["OMA", {}, {XMLElement["OMS", {"cd"->"arith1","name"->"power"},{}],

XMLElement["OMV", {"name"->"x"}, {}],
XMLElement["OMI", {}, {"2"}]}]}],

XMLElement["OMA", {}, {XMLElement[ "OMS", {"cd"->"arith1","name"->"times"},{}],
XMLElement["OMV", {"name"->"b"}, {}],
XMLElement["OMV", {"name"->"x"}, {}]}],
XMLElement["OMV", {"name"->"c"}, {}]}]}]

Content dictionaries, all symbols bound to appropriate theories.
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Comments and Formal Properties

<Definition id="c6s1p4.d1" for="monoid">

<CMP>

A <with role="definiens">monoid</with> is a structure (M, ∗, e)
where (M, ∗) is a semi-group and e is a unit for *.

</CMP>

<FMP>

∀M, ∗, e.s grp(M, ∗) ∧ unit(e) → monoid(M, ∗, e)
</FMP>

</Definition>
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The Good/Bad News

The initial conversion can be done relative painlessly within Mathematica.

But the final result is (at best) very raw OpenMath.

Requires significant additional editing, currently in rather primitive
environments.

At present, almost prohibitively labor-intensive.
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Legacy Material
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Availability

All course materials (except for exams) are posted on the web, including the
computational machinery.

Generates some interesting email queries.
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FCEs

For whatever it’s worth:

Course rating 4.52, 4.89 and 4.27

Instructor rating 4.61, 5.00 and 4.73
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Student Comments

Theoretical aspects and connections are a great thing that I learned in this
course.

This class covers a lot of ground, but it isn’t impossible to understand,
and it is extremely interesting.

[. . . ] could make studying the mathematics of a rock interesting.
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