
Project 2: Part 2: Basic Filesystem Operations

Due: 11:59PM Wednesday, March 24, 2010

1 Introduction

In this lab, you will embark on the actual file system implementation. In particular, you will start
by getting the following FUSE operations to work:
– CREATE/MKNOD, LOOKUP, and READDIR
Recall that YFS has the following architecture.

We provide you with skeleton code for both the YFS and extent server modules above. The YFS
module implements the core file system logic. This module runs as a single process called yfs client
that supports a mountpoint on the local host. The code skeleton for this module consists of two
pieces:

- The FUSE interface. This code lies in fuse.cc, and serves to translate FUSE operations
from the FUSE kernel modules into YFS client calls. We provide you with much of the code
needed to register with FUSE and receive FUSE operations; you will be mostly responsible
for calling the appropriate methods on the yfs client class and replying back over the FUSE
interface.

- The YFS client. This code lies in yfs client.cc,h. Unlike a traditional network file system
client, the YFS client actually implements the file system logic! For example, when creating a
new file, the yfs client must add directory entries in the directory block itself (In a traditional
network file system, the server performs this task). To fetch and store data blocks that contain
file data or directory entries, yfs client communicates with the extent server. Therefore,

1



yfs client should know how to interpret and manipulate extents in order to perform the
appropriate file system operations.

The extent server acts as a centralized storage location for all the data representing your filesystem,
much like a hard disk would. In later labs, you will serve the same file system contents on multiple
hosts, each running its own yfs client. The only way they can share data is by reading and writing
the extent server. The extent server code skeleton consists of two pieces:

- Extent client. This code lies in extent client.cc,h. This is a wrapper class for communica-
tiong with extent server using RPCs.

- Extent server. The code lies in extent server.cc,h and extent smain.cc. The extent server
manages a simple key-value store. The extent server simply stores entire files as strings
(std::string), without interpreting the contents of those strings. It also stores information
about the attributes of files. More concretely, your extent server should support put(key,value),
get(key), getattr(key), and remove(key) RPCs.

2 Getting started

To use the starter code for this part of the lab, you will need to copy the code in the
part2 branch to trunk. To accomplish this, do the following:

% cp branches/part2/* trunk/

To use YFS in this lab, we recommend using the start.sh, stop.sh and test scripts as shown below.
If you want to manually run the binaries, you’ll need to start the extent server and yfs client(s).
For example, to run the extent server on port 3772, type this:

% ./extent_server 3772 &

Next, start the yfs client process using three parameters: a unique mountpoint, the port number
for the extent server, and the port number for the running lock server, which is not used in this
lab. The mountpoint must be an empty directory that already exists. To start the yfs client using
mountpoint ./myfs and extent server that listens on port 3772, type this:

% mkdir myfs
% ./yfs client ./myfs 3772 3762 &

We provide you with the script start.sh to automatically start extent server and yfs client and
stop.sh to kill previously started processes. Actually, start.sh starts two yfs clients with ./yfs1 and
./yfs2 mountpoints respectively. (In this lab, you should only be concerned with one yfs client.
The next lab will use both yfs clients.) Thus, instead of typing in commands manually as before,
you can simply do:

2



% ./start.sh
% ./test-lab-2.pl ./yfs1
% ./stop.sh

The skeleton code implements only the GETATTR and STATFS operations, and so the file system
you just mounted will not be useful at all. However, once you finish this lab, you should be able to
run the Part 2 tests successfully, which tests creating empty files, looking up names in a directory,
and listing directory contents. Note: testing this lab on the command line using commands like
touch will not work until you implement the SETATTR operation, which is not required until the
next lab. For now, you should do your testing via the create/open, lookup, and readdir system
calls in a language like Perl, or simply use the provided test script.

3 Your Job

Your job is to implement the extent server. You must store the file system’s contents in the extent
server, so that in future labs you can share one file system among multiple servers. For our labs,
it is okay to implement a simple extent server that stores data only in memory; this means that if
you restart it, all the data previously stored will be lost.

To make your life easier, we recommend avoiding the implementation of any extent server/client
RPC functions that are not already defined for you. If you choose not to follow this guideline, you
will have a lot of work for you in store in Part 6.

You must then implement the LOOKUP, CREATE/MKNOD, and READDIR FUSE operations in
YFS. Specifically, you must implement fuseserver readdir, fuseserver lookup, and fuseserver create helper
in fuse.cc.

On some systems, FUSE uses the MKNOD operation to create files, and on others, it uses CREATE.
The two interfaces have slight differences, but in order to spare you the details, we have given
you wrappers for both that calls a single common routine called createhelper() which you must
implement.

As before, if your server passes our tester on the official class programming environment, you are
done. If you have questions about whether you have to implement specific pieces of file system
functionality, then you should be guided by the tester: if you can pass the tests without implement-
ing something, then you do not have to implement it. For example, you don’t need to implement
the exclusive create semantics of the CREATE/MKNOD operation. You may modify or add any
files you like, other than the tester script. You must use the RPC library you extended in Part 1.

The Part 2 tester is the test-lab-2.pl script. Run it with your YFS mountpoint as the argument.
Here’s what a successful run of test-lab-2.pl looks like:

% ./start.sh
% ./test-lab-2.pl ./yfs1
create file-yyuvjztagkprvmxjnzrbczmvmfhtyxhwloulhggy-18674-0
create file-hcmaxnljdgbpirprwtuxobeforippbndpjtcxywf-18674-1
...

3



Passed all tests!
% ./stop.sh

The tester creates lots of files with names like file-XXX-YYY-Z and checks that they appear in
directory listings.Note that if you implemented at-most-once RPC correctly, the tests should pass
with RPC LOSSY set to 5 as well.

If test-lab-2.pl exits without printing ”Passed all tests!”, then it thinks something is wrong with
your file server. For example, if you run test-lab-2.pl on the skeleton code we give you, you’ll
probably see an error message like this:

test-lab-2: cannot create /tmp/b/file-ddscdywqxzozdoabhztxexkvpaazvtmrmmvcoayp-21501-0 : No
such file or directory

This error message may appear because you have not yet implemented the CREATE/MKNOD
operation with FUSE.

4 Detailed Guidance

- Implementing the extent server: You will need to implement the extent server in extent server.cc.
There are four operations: put(key,value), get(key), getattr(key), and remove(key). The put
and get RPCs are used to update and retrieve an extent’s contents. The getattr RPC re-
trieves an extent’s attributes; this has already been done for you as as an example. The
attribute consists of the file size, last modification time (mtime), change time (ctime), and
last access time (atime); these fields can be populated using time(NULL) at the time of access
or creation. Tracking this data in the extent server should be straightforward in the handlers
for the put(key,value) and get(key) RPCs. We will go over how these need to be modified in
recitation, but feel free to use Google to understand when these values should be modified.
The atime/mtime/ctime values you set here will be tested for correctness only in Part 4, but
you should try to implement them properly now.

- Deciding on the file system representation: YFS should name all files and directories with
a unique identifier (much like the i-node number in an on-disk UNIX file system). We have
defined such an 64-bit identifier (called inum) in yfs client.h. Since FUSE accesses each file
and directory in the file system using a unique 32-bit identifier, we suggest you use the least
significant 32-bits of inum as the corresponding FUSE identifier.

When creating a new file or directory, you must assign a unique inum. The easiest thing to
do is to pick a number at random, hoping that it will indeed be unique. (What’s the collision
probability as the number of files and directories grows?)

YFS needs to tell whether a particular inum refers to a file or a directory. To do this, you
should ensure that any 32-bit FUSE identifier (i.e. the lower 32-bit of inum) for a file has the
most significant bit equal to one; likewise, that bit for a directory should be set to zero. The
provided method yfs client::isfile assumes this property holds for inum.

Next, you must choose the format for storing and retrieving file system meta-data (i.e.
file/directory attributes and directory contents). You do not need to store or retrieve file
contents in this lab yet. A file or dir’s attribute contains information such as the file’s length,

4



modification times. A directory’s content contains a list of name to inum mappings. Thus,
resolving a file’s inum involves a series of lookups starting from the file system root (The root
directory has a well-known FUSE id of 0x000000001). Note that you should create the
root directory mapping when the extent server is initialized, i.e. create a 1− > ””
mapping so that the root directory can be looked up properly. You may also assume that
filenames do not have spaces or tabs in them if that simplifies how you represent directory
contents at your extent server.

- Implementing a FUSE file system: For these labs, you will be interfacing with FUSE via
its ”lowlevel” API. We have provided you with lots of code in the main() method of fuse.cc
that handles much of the lowlevel nastiness, along with skeleton code for the operations you
will need to implement. You can find details on what the methods you implement need
to do by googling for fuse lowlevel.h. Study our getattr implementation to get a sense of
how a full FUSE operation handler works, and how it communicates its results and errors
back to FUSE. Every FUSE handler should either pass its successful result using one of the
fuse reply ... routines, or else call fuse reply err to report an error. Where appropriate, we
have provided comments in the code specifying what fields of a fuse structure need to be filled
and how.

Sending back directory information for the READDIR operation is a bit tricky, so we’ve
provided you with much of the necessary code in the dirbuf add, reply buf limited, and fus-
eserver readdir methods. All that’s left for you to do for READDIR in fuse.cc is to get the
directory listing from your yfs client, and add it to the b data structure using dirbuf add.

Though you are free to choose any inumber identifier you like for newly created files, FUSE
assumes that the inumber for the root directory is 0x00000001. Thus, you’ll need to ensure
that when YFS mounts, it is ready to export an empty directory stored under that inumber.

- Misc tips: The start.sh scripts redirects the STDOUT and STDERR of the different processes
to different files in the current working directory. For example, any output you make from
fuse.cc will be written to yfs client1.log. Thus, you should look at these files for any debug
information you print out in your code.

If you wish to test your code with only some of the FUSE hooks implemented, be advised
that FUSE may implicitly try to call other hooks. For example, FUSE calls LOOKUP when
mounting the file system, so you may want to implement that first.

5 Handin

Please submit your code (*not* just the files you modified in this part, but all the files you need
for part2 to work, including the Makefile) to /tags/part2.

6 C++ Tutorials and Resources

- C++ Tutorial
http://www.cplusplus.com/doc/tutorial/

- C++ Reference
http://www.cppreference.com/wiki/start

5


