**Assignment 1: Rendering Basics with PyTorch3D** Student name: Kangle Deng (##) Exploring loss functions (###) Fitting a voxel grid
Optimized        Groundtruth       
(###) Fitting a point cloud
Optimized        Groundtruth       
(###) Fitting a mesh
Optimized        Groundtruth       
(##) Reconstructing 3D from single view (###) Image to voxel grid
Input        Predicted        Groundtruth       
(###) Image to point cloud
Input        Predicted        Groundtruth       
(###) Image to mesh
Input        Predicted        Groundtruth       
(###) Quantitative comparison
Voxel        Point Cloud        Mesh       
F1 @ 0.05        74.600        93.360        88.330       
(###) Analyze effects of hyperparams variations
w_smooth = 0.1        w_smooth = 1        w_smooth = 10       
F1 @ 0.05        88.330        87.373        84.461       
Input        w_smooth = 0.1        w_smooth = 1        w_smooth = 10        Groundtruth       
We can see that increasing w_smooth will put more emphasis on the smoothness of the meshes. (###) Inteprete your model I visualize the probability of each voxel predicted by my model (blue means lower, and red means higher):
Input        Predicted        Probability        Groundtruth       
We can see the voxel model usually predicts lower values in the boundary voxels, and greater values in the interior area. This means the output of the model is continuous (smaller values when closer to boundaries), which makes it difficult to learn some hollow chairs with only several rods. (##) Exploring some recent architectures (###) Implicit Network I implement the implicit decoder according to Occupancy Networks: Learning 3D Reconstruction in Function Space. The F1 @ 0.05 is 55.538.
Input        Predicted        Groundtruth