16-889 Assignment 3:

Name: Meghana Reddy Ganesina

Andrew ID: mganesin

0-Grace Days

1. Differentiable Volume Rendering

1.3. Ray sampling (10 points)

Command to run: python main.py --config-name=box

Grid Visualization Ray Visualization
Grid Visualization Ray Visualization

1.4. Point sampling (10 points)

Command to run: python main.py --config-name=box

Sample points
Sample Points

1.5. Volume rendering (30 points)

Command to run: python main.py --config-name=box

Color Map Depth Map
Color Map Depth Map

2. Optimizing a basic implicit volume

2.1. Random ray sampling (5 points)

Code:

sample_coordinates = torch.randint(0, xy_grid.shape[0], (n_pixels,)) xy_grid_sub = xy_grid[sample_coordinates,:]

2.2. Loss and training (5 points)

Code:

loss = torch.mean(torch.square(rgb_gt - out['feature']))
Box center: (0.25, 0.25, 0.00) Box side lengths: (2.00, 1.50, 1.50)

2.3. Visualization

Command to run: python main.py --config-name=train_box

Spiral Sequence of optimized Volume
Spiral optimized

3. Optimizing a Neural Radiance Field (NeRF) (30 points)

Command to run: python main.py --config-name=nerf_lego

I have used the same architecture as the Nerf paper mentions.

Architecture:

# MLP head for density class DensityNet(torch.nn.Module): def __init__(self, cfg): super().__init__() self.model = torch.nn.Sequential( torch.nn.Linear(cfg.n_hidden_neurons_xyz,1), torch.nn.ReLU() ) def forward(self, x): x = self.model(x) return x # MLP head for Color class RgbNet(torch.nn.Module): def __init__(self, cfg, direction, embedding_dim_dir): super().__init__() self.direction = direction layers = [] if self.direction: linear = torch.nn.Linear(cfg.n_hidden_neurons_xyz + embedding_dim_dir, cfg.n_hidden_neurons_dir) else: linear = torch.nn.Linear(cfg.n_hidden_neurons_xyz, cfg.n_hidden_neurons_dir) layers.append(torch.nn.Sequential(linear, torch.nn.ReLU(True))) linear = torch.nn.Linear(cfg.n_hidden_neurons_dir,3) layers.append(torch.nn.Sequential(linear, torch.nn.Sigmoid())) self.model = torch.nn.ModuleList(layers) def forward(self, x, d): y = x for i, layer in enumerate(self.model): if i == 0 and self.direction: y = torch.cat((y,d), dim = -1) y = layer(y) return y class NerfModel(torch.nn.Module): def __init__(self, cfg, input_dim, input_dir_dim): super().__init__() self.direction = cfg.direction self.input_dim = input_dim self.embedding_dim_dir = input_dir_dim self.mlp = MLPWithInputSkips(n_layers=cfg.n_layers_xyz, input_dim=self.input_dim, output_dim=cfg.n_hidden_neurons_xyz, skip_dim=self.input_dim, hidden_dim=cfg.n_hidden_neurons_xyz, input_skips=cfg.append_xyz) self.fc1 = torch.nn.Linear(cfg.n_hidden_neurons_xyz,cfg.n_hidden_neurons_xyz ) self.densitynet = DensityNet() self.rgbnet = RgbNet(cfg, self.direction, self.embedding_dim_dir) def forward(self, x, d): x = self.mlp(x,x) x = self.fc1(x) density = self.densitynet(x) feature = self.rgbnet(x, d) out = {'density': density, 'feature': feature} return out

Default config file given in the assignment has been used as it is except the following parameters were changed:

n_layers_xyz: 8 append_xyz: [4] n_hidden_neurons_xyz: 256 n_hidden_neurons_dir: 128
Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

4. NeRF Extras (Choose at least one! More than one is extra credit)

4.1 View Dependence (10 pts)

Command to run: python main.py --config-name=nerf_lego_direction

Tradeoffs between increased view dependence and generalization quality:

I have followed the NERF paper to implement view dependence. As the paper mentions, view dependence helps in rendering the specularities. On increasing the view dependence the model will overfit on certain views (the seen views will have specularities as groundtruth) and render unexplainable unseen views. Therefore, on increasing view dependence the generalization quality decreases.

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

4.3 High Resolution Imagery (10 pts)

Command to run: python main.py --config-name=nerf_lego_highres

n_pts_per_ray

The following results were obtained by tweaking the n_pts_per_ray parameter to 32, 64, 128 and 256. We can observe that as the n_pts_per_ray increase then the rendering has more high frequency details and less smoothened appearance.

a) n_pts_per_ray = 32

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

b) n_pts_per_ray = 64

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

c) n_pts_per_ray = 128

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

d) n_pts_per_ray = 256

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

n_layers_xyz

The following results were obtained by tweaking the n_layers_xyz parameter to 3, 5 and 8. We can observe that the model learns to render the lego with good resolution within 50 epochs for all the cases. There is no noticeable difference across different n_layares_xyz values.

a) n_layers_xyz = 3 and append_xyz = 2

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

b) n_layers_xyz = 5 and append_xyz = 3

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250

c) n_layers_xyz = 8 and append_xyz = 4

Epoch 10 Epoch 50 Epoch 100 Epoch 250
epoch 10 epoch 50 epoch 100 epoch 250