Assignment 5

Number of late days used - 0


Q1. Classification Model (40 points)

python main.py -q 1


Test Accuracy of best model


Visualization

Point Cloud Predicted Class Ground Truth
plot Lamp (2) Chair (0)
plot Chair (0) Vase (1)
plot Vase (1) Lamp (2)
plot Chair (0) Chair (0)
plot Vase (1) Vase (1)
plot Lamp (2) Lamp (2)

Interpretation

Q2. Segmentation Model (40 points)

python main.py -q 2


Test Accuracy of best model


Visualization

Predicted Point Cloud Ground Truth Point Cloud Accuracy
plot plot 0.967
plot plot 0.879
plot plot 0.925
plot plot 0.506
plot plot 0.562
plot plot 0.538

Interpretation

Q3. Robustness Analysis (20 points)


Experiment 1 - Perturbation

# For Classification task.
python main.py -q 3-cls-exp1

# For Segmentation task.
python main.py -q 3-seg-exp1

Note: The first row in the tables represent the best model peroformances as shown in task 1 and 2.

plot

Perturb Scale Classification Accuracy
0 0.981
0.5 0.869
1 0.849
1.5 0.675
2 0.647
3 0.647
4 0.647
5 0.647
6 0.647
7 0.647

plot

Perturb Scale Segmentation Accuracy
0 0.905
0.5 0.66
1 0.561
1.5 0.510
2 0.471
3 0.413
4 0.384
5 0.365
6 0.348
7 0.312


Experiment 2 - Rotation

# For Classification task.
python main.py -q 3-cls-exp2

# For Segmentation task.
python main.py -q 3-seg-exp2

Note: The first row in the tables represent the best model peroformances as shown in task 1 and 2.

plot

Rotation Angle Classification Accuracy
0 0.981
5 0.972
10 0.94
15 0.854
20 0.682
30 0.359
45 0.243
60 0.23
90 0.751

plot

Rotation Angle Segmentation Accuracy
0 0.905
5 0.88
10 0.823
15 0.746
20 0.654
30 0.511
45 0.263
60 0.237
90 0.398


Experiment 3 - Number of Points

# For Classification task.
python main.py -q 3-cls-exp3

# For Segmentation task.
python main.py -q 3-seg-exp3

Note: The first row in the tables represent the best model peroformances as shown in task 1 and 2.

plot

#Points Classification Accuracy
10000 0.981
8000 0.981
6000 0.979
4000 0.981
2000 0.98
1000 0.974
500 0.974
100 0.925
75 0.89
50 0.818
25 0.593
10 0.311

plot

#Points Segmentation Accuracy
10000 0.905
8000 0.905
6000 0.905
4000 0.904
2000 0.904
1000 0.898
500 0.887
100 0.825
75 0.807
50 0.784
25 0.72
10 0.618

Q4. Bonus Question - Locality (20 points)

PointNet Cls PointNet++ Cls
Test Accuracy 98.111% 93.494%

Visualization

Point Cloud Predicted Class Ground Truth
plot Chair (0) Chair (0)
plot Lamp (2) Vase (1)
plot Chair (0) Lamp (2)

plot